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Abstract
Nucleic acid strands, which react by forming and breaking Watson-Crick base pairs, can be designed to
form complex nanoscale structures or devices. Controlling such systems requires accurate predictions
of the reaction rate and of the folding pathways of interacting strands. Simulators such as Multistrand
model these kinetic properties using continuous-time Markov chains (CTMCs), whose states and
transitions correspond to secondary structures and elementary base pair changes, respectively. The
transient dynamics of a CTMC are determined by a kinetic model, which assigns transition rates to
pairs of states, and the rate of a reaction can be estimated using the mean first passage time (MFPT)
of its CTMC. However, use of Multistrand is limited by its slow runtime, particularly on rare events,
and the quality of its rate predictions is compromised by a poorly-calibrated and simplistic kinetic
model. The former limitation can be addressed by constructing truncated CTMCs, which only
include a small subset of states and transitions, selected either manually or through simulation. As
a first step to address the latter limitation, Bayesian posterior inference in an Arrhenius-type kinetic
model was performed in earlier work, using a small experimental dataset of DNA reaction rates
and a fixed set of manually truncated CTMCs, which we refer to as Assumed Pathway (AP) state
spaces. In this work we extend this approach, by introducing a new prior model that is directly
motivated by the physical meaning of the parameters and that is compatible with experimental
measurements of elementary rates, and by using a larger dataset of 1105 reactions as well as larger
truncated state spaces obtained from the recently introduced stochastic Pathway Elaboration (PE)
method. We assess the quality of the resulting posterior distribution over kinetic parameters, as
well as the quality of the posterior reaction rates predicted using AP and PE state spaces. Finally,
we use the newly parameterised PE state spaces and Multistrand simulations to investigate the
strong variation of helix hybridization reaction rates in a dataset of Hata et al. While we find
strong evidence for the nucleation-zippering model of hybridization, in the classical sense that the
rate-limiting phase is composed of elementary steps reaching a small “nucleus” of critical stability,
the strongly sequence-dependent structure of the trajectory ensemble up to nucleation appears to be
much richer than assumed in the model by Hata et al. In particular, rather than being dominated
by the collision probability of nucleation sites, the trajectory segment between first binding and
nucleation tends to visit numerous secondary structures involving misnucleation and hairpins, and
has a sizeable effect on the probability of overcoming the nucleation barrier.
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1 Introduction

Nucleic acid strands, which can react in vitro or in vivo by forming and breaking Watson-Crick
base pairs, can be designed to fold into specific two and three-dimensional nanostructures
[19, 41] through methods such as tile and brick assembly [64, 13, 36] and DNA origami
[54, 21]. These nanostructures can execute various chemical [65, 11], mechanical [45, 5, 6],
computational [4, 63, 75], and biomedical tasks [62, 20, 12, 74, 80, 26, 40]. To design and
debug such systems of interacting nucleic acid strands within their environment, it is valuable
to predict both their thermodynamic behaviour (such as energetically stable structures) and
their kinetic behaviour (such as folding pathways or reaction rates).

Efficient, general-purpose methods are available for predicting thermodynamic properties
of interacting nucleic acid strands [34, 85, 76, 25]. These methods leverage “nearest-neighbor”
models of nucleic acid thermodynamics that have been well calibrated from experimental
data over many decades [46, 58, 57]. In contrast, general-purpose methods for predicting
kinetic properties can be slow and inaccurate. One such simulation model, Multistrand
[59, 60], samples folding trajectories from initial to final states through the space of all
possible secondary structures of the nucleic acid system. Each step along the trajectory
is an elementary transition [23], in which a base pair forms or breaks and in which a
holding time is consumed. Such simulations can be prohibitively slow when the reaction is
a rare event, e.g., when the initial and final states are separated by a high energy barrier.
Moreover, Multistrand’s elementary rates are determined by a combination of nearest neighbor
thermodynamics and a 2-parameter Metropolis kinetic model, which is too simplistic to
produce reliable rate predictions.

Two important improvements address these limitations of Multistrand. First, the Pathway
Elaboration (PE) method uses Multistrand to build truncated state spaces of reaction kinetics
[83, 81]. These smaller state spaces are amenable to matrix methods for rate computation,
which are efficient even on rare events. Second, a 15-parameter Arrhenius kinetic model
takes into account the local context around each elementary step, which in principle should
improve reaction rate predictions [82]. This Arrhenius model was calibrated using a dataset
of a few hundred reactions, on small, customised state spaces, that reflect assumptions about
likely pathways. We refer to these as Assumed Pathway (AP) state spaces.

1.1 Improved parameter inference
However, previous work stopped short of the challenging computational task of calibrating
the Arrhenius model using the PE state spaces. In this work, we describe a Bayesian inference
approach to this problem. Section 3.1 introduces a new prior distribution over the kinetic
parameters, which is directly motivated by their physical meaning and which is compatible
with experimental measurements of elementary rates. We use a dataset of 1105 reactions, as
will be described in Section 4.2, that had previously been sourced, but only a small subset
of which had been used for inference in past work. For each reaction in this dataset, we
generated a truncated state space with AP, and also using the existing PE implementation
when it completed within 7 days and with 10GB of guaranteed RAM on a single CPU core1.

Despite a significantly higher computational cost, we find that the larger PE state spaces
do not always lead to more accurate rate predictions than the small, manually designed AP
state spaces. For posterior approximation, we apply the standard random walk Metropolis

1 The majority of the runtime and memory footprint were caused by the unoptimised Python implement-
ation of PE, rather than by the Multistrand stochastic simulations in its inner loops.
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(RWM) algorithm. The resulting posterior approximations in Section 4.3, which are often
multimodal, recover an expected correlation structure among the kinetic parameters. However,
we also uncover severe numerical instability in the linear equation systems required for rate
prediction. Due to numerous design limitations in the legacy software, a significant refactoring
effort was required to implement the above extensions. In Section 4.4, we discuss several
modifications to the kinetic model and inference methods that could improve inference quality.
Full details of this work are described in Lovrod’s MSc Thesis [43].

1.2 Case study
In Section 5, we use the mode of the new posterior to parameterise the Multistrand model,
and present a case study based on the helix association data of Hata et al. [33]. Although
the examined sequences have equal length and similar melting temperatures, the reported
hybridization rates spread over more than two orders of magnitude. Our thermodynamic
simulations confirm a correlation between the experimental rate and the expected number of
free bases in the Boltzmann ensemble of unbound strands. However, our kinetic simulations
suggest that the process of nucleation, in the non-probabilistic sense of reaching three
consecutive correct inter-strand base pairs, is nontrivial and insufficiently explained by the
time to first binding. We then employ Multistrand’s “first step mode” (FSM) to analyse the
probabilistic and temporal behaviour of trajectories that start at the moment of initial binding
and end either with dissociation or hybridization. In particular, we find a positive correlation
between the proportion of successfully associating trajectories and the experimental rate.
Moreover, the two-stranded complexes often spend extended periods of time exploring
conformations with misnucleation and/or hairpins, and visualisations of the reactive FSM
trajectory ensemble indicate a rich and strongly sequence-dependent structure, including a
multimodal first passage time distribution for some reactions.

2 Background and related work

The DNA reactions we consider occur in systems with fixed experimental conditions (solution
volume V , temperature T , and concentrations of Na+ and Mg2+ ions). We often use the
inverse temperature β = 1

kBT , where kB is the Boltzmann constant. A nucleic acid reaction,
in which DNA or RNA strands fold from one three-dimensional structure into another by
forming and breaking base pairs, can be described at the secondary structure level with an
initial microstate (or initial distribution over microstates) representing the reactants, and a
final microstate (or final region of microstates) representing the products. The number of
microstates may in general scale exponentially in the total strand length l.

A thermodynamic model defines the Gibbs free energy ∆G(x) relative to some reference
state, at all allowed states x ∈ X of a system, and gives rise to the Gibbs-Boltzmann
distribution π and its partition function Zβ at inverse temperature β,

π(x | β) = 1
Zβ

· e−β·∆G(x), Zβ =
∫

e−β·∆G(x)dx, (1)

which can be used to compute all quantities of interest at thermodynamic equilibrium.

2.1 Kinetic models of nucleic acid elementary steps
We focus in this work on elementary step models of nucleic acid reactions [23, 15, 59, 60,
22, 82], which offer a relatively fine-grained view of the system, with states and transitions
corresponding to secondary structures and isolated changes in base pairs, respectively. These
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simulators model the reaction kinetics using a continuous-time Markov chain (CTMC) on
this state space, which will be defined in the next section. Notably, Multistrand can model
multi-stranded reactions, but like other currently available elementary step models, it only
allows pseudoknot-free secondary structures.

2.1.1 CTMCs and their mean first passage times (MFPTs)
A finite CTMC is characterised by an initial probability distribution π0 over a finite set
of allowed states X and a transition rate matrix K : X 2 → R, such that for all pairs of
distinct states x and x′, K(x, x′) is the instantaneous transition rate from x to x′, and
K(x, x) = −

∑
x′∈X \x K(x, x′) [69]. We refer to the subset of states I ⊂ X with non-zero

initial probability π0 as the initial region. The transition probability matrix P : X 2 → [0, 1]
is the normalised rate matrix, P (x, x′) = − K(x,x′)

K(x,x) , whereas the transition matrices (or
propagators) Qt = etK for t ∈ R≥0 determine the transient dynamics of a CTMC. A
stochastic process {X(t)}t∈R≥0

can then be identified with this CTMC if and only if

P (X(t0) = x0, . . . , X(tn) = xn) = π0(x0)
∏

m∈[0,n−1]

Qtm+1−tm(xm, xm+1) (2)

holds for any n ∈ N0, t0 < · · · < tn ∈ R≥0, and x0, . . . , xn ∈ X . In other words, trajectory
probabilities can be arbitrarily decomposed into segment probabilities due to Markovianity,
and the probability of any segment is determined solely by its spatial endpoints (xm, xm+1),
its temporal endpoints (tm, tm+1) and the transition rate matrix.

For a fixed final region F ⊂ X , the mean first passage time (MFPT) τF : X → R≥0
denotes the expected time to reach F for the first time from each state. It satisfies

−τF (x) · K(x, x) = 1 +
∑

x′∈X \x

τF (x′) · K(x, x′) for all x ∈ X \ {F} , (3)

which is a numerically solvable matrix equation for sufficiently small CTMCs in which all
states are connected to F [69], and this is the approach taken in this work. The MFPT from
I to F is then defined by taking the expectation over the initial state distribution. When
the state space of a CTMC is large, it can be infeasible to use matrix methods to exactly
compute quantities such as the MFPT. One can instead resort to Monte Carlo estimation,
e.g., via the stochastic simulation algorithm (SSA) [31], although SSA can be prohibitively
inefficient for rare event simulation such as in systems with several metastable regions.

2.1.2 Functional form of CTMC rates
A kinetic model with free parameters θ describes the non-equilibrium dynamics of a CTMC
via transition rates. We classify elementary transitions into three distinct types: association,
in which a base pair is formed between two previously separate complexes, dissociation,
in which a base pair breaks and causes a complex with multiple strands to separate into
two distinct complexes, and isomerisation, in which a base pair is formed/broken within a
complex. The kinetic model in Multistrand [59, 60] can be expressed as

ln K(x, x′|β, θ) = ln K̄(x, x′|β, θ)+


−β · 1∆G(x′)≥∆G(x)(∆G(x′) − ∆G(x)), isomerisation
ln(u · αθ), association
ln(u · αθ) − β · (∆G(x′) − ∆G(x)), dissociation

(4)

where the base transition rate function K̄ : X 2 → R≥0 and the bimolecular scaling parameter
αθ are parametric choices, x and x′ are adjacent microstates, and u is the initial strand
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concentration. A functional form of K̄(x, x′|β, θ) which is symmetric with respect to x and
x′ can easily be shown to satisfy detailed balance,

K(x, x′ | β, θ)
K(x′, x | β, θ) = π(x′ | β)

π(x | β) = e−β·(∆G(x′)−∆G(x)) for all x, x′ ∈ X , (5)

which is a sufficient condition for recovering the Gibbs-Boltzmann distribution (1) in the
steady-state limit.

2.1.3 Context-dependent Arrhenius rates
Kinetic models of Arrhenius type factorise the rate coefficient using a pre-exponential factor
A and an activation energy E that couples to the temperature. They can be parameterised in
ways that make the kinetic behavior of an elementary step dependent on local context features
surrounding the affected base pair [82, 25], e.g., by assuming multiplicative (log-additive)
effects selected by C : X 2 → 2C from a set of transition context features C,

ln K̄(x, x′|θ, β) :=
∑

c∈C(x,x′)

ln Aθ,c − β
∑

c∈C(x,x′)

Eθ,c , θ := (ln αθ, (ln Aθ,c)c∈C , (Eθ,c)c∈C) . (6)

In the Arrhenius model we consider in this work, C comprises topological half contexts, which
refer to base pairing structures on a single side of the affected base pair in an elementary
transition [82]. Symmetry of ln K̄ is ensured by applying the same features to the forward and
reverse directions of a transition. This model differentiates between seven half contexts2 which
categorise transitions into 28 equivalence classes of local contexts3. It therefore contains 15
free kinetic parameters, whereas the Metropolis kinetic model originally used in Multistrand
[59, 60] has only two, (kuni, kbi) ≡ (Aθ, αθ · Aθ).

3 Bayesian model for kinetic parameters

3.1 Prior over kinetic parameters
Our new prior imposes an independent, weak log-normal distribution on the multiplicative
rate contribution from each kinetic parameter dimension,

ln αθ ∼ N
(
µ = −2.3, σ2 = 800

)
[ln

(
M−1)

] , (7)
Eθ,c ∼ N

(
µ = 0.0, σ2 = 25

)
[kcal/mol] , ln Aθ,c ∼ N

(
µ = 7.5, σ2 = 110

)
[ln s−1/2 ] .

Assuming fixed thermodynamic parameters, this prior effectively describes a temperature-
dependent Gaussian law over the elementary log-rates, and provides support for all values
that may be physically possible. It leads to ln K̄ ∼ N (15.0, 364.8) at 25◦C and ln K̄ ∼
N (15.0, 342.3) at 50◦C, which is compatible with experimental measurements of elementary
rates [47, 15] as well as values from past calibration of the Metropolis model [59, 60, 68, 82, 83].

Notably, the pre-exponential factors Ac have non-negative support, and the particularly
weak prior for ln α is centred at − ln(10), which corresponds to the assumption that the
numerical value of the bimolecular elementary rate coefficient is approximately one order
of magnitude smaller than the numerical value of the unimolecular rate coefficient, when
measured in the standard units of M−1s−1 and s−1, respectively [59, 60, 68, 82, 83]. Our weak

2 C := {stack, loop, end, stack+loop, stack+end, loop+end, stack+stack}.
3 The number of unordered pairs of half contexts is the multiset coefficient

(( 7
2

))
=

(8
2

)
= 28.
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assumptions for the parameters Ec are that each elementary scale Arrhenius activation energy
should be less, in magnitude, than experimentally estimated macroscale activation energies
[9, 3, 50, 52], and that the elementary scale and macroscale activation energies will be closer
in value for simple reactions such as hairpin closing/opening, helix association/dissociation
and bubble closing, especially when the strands are short. Furthermore, centering Ec at zero
amounts to a regularisation towards the functional form of the original Metropolis model.

3.2 Likelihood of observations

Our observation model for macroscopic rates follows an approach that was previously used
for posterior inference [82] and for maximum likelihood estimation [82, 83] of elementary
step rates. Given a kinetic parameterisation θ and a state space X , a deterministic rate
prediction for a reaction is simulated as the inverse of the expected MFPT τF from the initial
state distribution π0, representing reactants, to the non-empty final region F , representing
products. More precisely, the rate coefficient prediction k̂ depends on the MFPT as:

k̂ =


1

Eπ0 [τF | X , β, θ] for reactions of the form A → B or A → B + C

1
u Eπ0 [τF | X , β, θ] for reactions of the form A + B → C or A + B → C + D.

(8)

The former case describes unimolecular reactions, for which k̂ has the meaning of a first-
order reaction rate coefficient. Its estimate is based on the assumption that there are no
intermediate association steps along the reaction pathway, which holds in our dataset. The
latter case describes bimolecular reactions, for which k̂ has the meaning of a second-order
reaction rate coefficient4. By dimensional analysis, it requires a concentration quantity to
relate to a time quantity. In general, second-order rates cannot be determined directly from
the CTMC model of the Multistrand simulator, but the simple estimate above, which uses
the initial concentration u of reactants, is justified in the limit of low concentrations, where
the initial association step of second order is rate-limiting for the full reaction5.

For each reaction r, our noise model then centers a log-normal distribution at the predicted
rate coefficient to obtain a probabilistic synthetic observation for the log-rate coefficient, i.e.,
log10 kr ∼ N (log10 k̂r, σ2

r), where the variance σ2
r is taken as the experimental variance of the

log-rate coefficients among the reactions of the same group. A group of reactions is defined
by its experimental publication and reaction type, and corresponds to a row in Appendix
Table 3. In the case where k̂ is a non-physical prediction, which occurs when the sparse
solver for the MFPT fails or produces a negative or infinite prediction, we instead apply a
constant likelihood close to zero, N (5σ2

r | 0, σ2
r). It should be noted that this noise model

is an ad hoc choice for constructing a likelihood kernel and, in its current form, cannot be
understood as a physically motivated generative model.

4 Note that the experimental rate coefficients in our dataset were not necessarily computed under the
same assumptions, and, for instance, we have several strand displacement reactions in our dataset
whose rate coefficients were estimated with first order fits. This warrants reconsideration in future work,
particularly if new reactions at higher concentrations are included in the dataset.

5 See [59, Ch. 7,8] for a discussion about estimating second-order rates from Multistrand simulation
statistics, and [82, Sec. 5.2] for the modelling assumptions in (8).
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3.3 Approximations of the intractable likelihood
In order to truncate the intractable state space underlying the Multistrand simulator, we
employ the deterministic method in [82], which we call Assumed Pathway (AP), and the
more recent stochastic method Pathway Elaboration (PE) [83]. A distinct truncated state
space X is precomputed once for each reaction and is treated as fixed during inference.

The states included in the AP approximation are the non-pseudoknotted secondary
structures whose base pairs occur in either the initial or final secondary structure, and which
are reachable by elementary step transitions where the affected base pair is always at the
boundary of a hybridized domain. Thus the AP method only considers a small subset of
states and transitions which are assumed to cover the dominant pathway. For instance, in a
helix association reaction, any hairpin formations prior to or during helix association would
not be modelled, although they could significantly affect reaction rates [27]. To avoid these
sorts of limitations, the PE method constructs truncated CTMCs stochastically, using the
states found through a succession of distance-biased and unbiased trajectory samples [83].

The criteria for the initial and final regions in our simulations are reported in Appendix
Table 1. In many cases, these criteria define regions that are much broader than those
considered in previous work [83]. The initial states are treated as Boltzmann distributed
according to the thermodynamic model, for which we use Nupack 3.2.2 [76]. The number of
states in the PE approximations that satisfy the criteria for our endpoint regions is stochastic:
Our simulations led to initial regions with up to 3689 states and final regions with up to
1080 states. In contrast, the AP state spaces include exactly one initial and one final state.

The computational cost of the PE method depends strongly on the choice of hyperpara-
meters and on the size and energy landscape of the true state space. We aim to construct
truncated CTMCs using a set of hyperparameters suggested in the original reference (nb = 128,
nκ = 256, b = 0.4, κ = 16ns) [83]. Each CTMC construction attempt for all reactions in our
dataset is given 7 days with at least 10GB of RAM on a single CPU core. However, these
resources proved insufficient for our initial choice of hyperparameters for many reactions.
We therefore attempted eight different hyperparameter settings, which we report and name
in Appendix Table 2. We give preference to the hyperparameter settings in order of the
expected resulting state space size. We did not use the δ-pruning step of the PE method,
because, in the existing implementation, its computational cost incurred during the CTMC
construction did not warrant the speedup that could have been achieved in inference. All
PE state spaces were generated with the Metropolis kinetic parameters

kuni = 3.61 × 106 [s−1] , kbi = 1.12 × 105 [M−1 s−1] , (9)

which are equivalent to the Arrhenius parameters

ln α = −3.47 [ln M−1] , ∀c ∈ C. ln Ac = 7.55 [ln s−1/2 ] , Ec = 0 [kcal/mol] (10)

in the sense of Section 2.1.3. These parameters were the result of previous parameter tuning
on PE state spaces via gradient-free maximum a posteriori (MAP) optimisation [83].

4 Bayesian inference for kinetic parameters

4.1 Bayesian inference methods
Following the approach taken in [82], we used Markov chain Monte Carlo (MCMC) [18, 53, 42]
for approximate Bayesian inference, but with a different implementation choice. In particular,
our Bayesian model was expressed in the probabilistic programming framework PyMC [56],
using custom operations to construct and solve the sparse linear equations for the MFPT,
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and the random walk Metropolis (RWM) algorithm [48] was used for inference. In addition to
the inference algorithm implementation, PyMC provides a number of standard tools [7, 55]
for diagnosing the behaviour of MCMC samplers, e.g., trace plots and the effective sample
size (ESS) estimated using Geyer’s initial monotone sequence criterion [29, 30].

Figure 1 Posterior densities over the Arrhenius kinetic parameters in Section 2.1.3. Approxim-
ations are obtained from 600 samples using RWM, on AP and PE inference targets as defined in
Section 4.2. The corresponding trace plots are shown in Appendix Figure 7.

4.2 Dataset and likelihood approximation results
The dataset used for parameter inference, summarised in Appendix Table 3, consists of
1105 DNA reactions and includes hairpin opening/closing [9, 8, 37], bubble closing [3], helix
association/dissociation [49, 52], and three-way strand displacement [52, 77, 44]6. We define
the following two posterior inference targets, which use different combinations of data subsets
and state space approximations.
1. AP target: All 1105 reactions, using state spaces constructed by the AP method.
2. PE target: Only 683 reactions, using all the valid CTMCs that could be constructed

by the existing PE implementation, with a preference over hyperparameter values as
described in Section 3.3.

These inference targets allow us to indirectly compare the state space approximation methods
through their behaviour during inference. For each inference target, the dataset and state
spaces are summarised in Appendix Table 4. The stack and loop half contexts together
account for more than 80% of the half context occurrences in each group of truncated CTMCs.

4.3 Posterior approximation results
We ran RWM for 800 total steps, 200 of which were discarded as burn-in. These choices, which
proved sufficient for an analysis of the current model and its most significant bottlenecks, were
motivated by computational resource constraints and past posterior inference attempts [83].

6 The dataset of reaction rate coefficients was collected by Sedigheh Zolaktaf. A small set of 14 four-way
strand exchange reactions were also collected [15], which we exclude due to computational limitations
of the PE implementation. Small subsets of the collected data have been used for parameter tuning or
Bayesian inference in previous work [82, 84, 83].
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(a) Bubble closing. (b) Hairpin opening. (c) Hairpin closing.

(d) Helix association. (e) Helix dissociation. (f) Strand displacement.

Figure 2 Posterior predictive distributions for each reaction type, using the AP and PE likelihood
approximations and the corresponding posteriors in Figure 1. The horizontal axis is the reaction
index, ordered by decreasing experimental reaction rate. Red and blue solid lines show the mean of
the posterior predicted log-rates, and the shaded regions are the 4-96 percentile ranges. We only
display the 683 reactions that appear in both inference targets. Both predictive distributions were
approximated by taking 100 samples from the likelihood kernel for each posterior sample.

The hyperparameter settings for the RWM sampler were chosen such that approximately the
same number of sparse matrix solves are performed in each posterior inference attempt. We
designated the kinetic parameters in Equation (10), which are in the 2-dimensional subspace
of the Metropolis model, as the seed for all MCMC experiments, expecting that this initial
point will mostly yield CTMCs that are physically possible and numerically stable.

The resulting posterior densities are shown in Figure 1. While distinctly multimodal in
many dimensions, the shapes of the marginal posterior approximations for each ln Ac roughly
mirror the shapes of the corresponding Ec, indicating a strong correlation between the kinetic
parameters associated with the same half context. When comparing posterior results from
different chains, the bimolecular scaling parameter ln α appears to be multimodal, and seems
to correlate with the loop-end and stack-stack half contexts, which are of low frequency in
our CTMCs. There has only been one other reported attempt at Bayesian inference on
the Arrhenius parameters [82], which used a smaller dataset of 376 reactions and AP state
spaces. Despite our different prior, likelihood width, dataset, and inference method, most of
our high density intervals for the ln Ac and Ec dimensions overlap with those reported in
[82]. Furthermore, their posterior correlation matrix reflected a correlation structure between
corresponding ln Ac and Ec dimensions that is qualitatively similar to ours.

In general, the approximation quality of Bayesian inference is determined by a complex
interaction of the inference method and its hyperparameters with the forward model and
the dataset, and each component should be assessed as a potential cause for poor behaviour
in inference [28]. As a first step of sampling diagnostics, the RWM trace plots in Appendix
Figure 7 display varied behaviour across different half contexts. For example, the stack-stack
parameters are consistently explored much more broadly than the stack and loop parameters.
In contrast, predictive checks are useful for understanding a prior or a posterior in terms
of the distribution of predictions it generates [10]. In Figure 2, we compare the posterior
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predictive distributions from RWM using the AP and PE targets. Even though the PE
state spaces often cover more of the energy landscape, their posterior predictive log-rates are
not consistently more accurate than those resulting from the AP state spaces. For further
quantitative analyses of the inference results we refer to [43].

4.4 Discussion

4.4.1 Next steps for the kinetic model
The kinetic parameter dimensions that are least explored in our RWM chains (Appendix
Figure 7, rows 1-3) roughly correspond to the half contexts that occur most frequently. This
might suggest that some of the half contexts are underspecified, and that the multimodalities
in the posterior approximations (Figure 1, rows 1-3) arise from significant differences in
kinetic behaviour based on features that are not made explicit by the current kinetic model.
It would therefore be worth considering kinetic models that partition the transitions into
more fine-grained equivalence classes. For instance, the half contexts could be defined in a
way that accounts for stack and loop sizes, or for base identities. These refinements could
also improve posterior rate predictions, particularly for hairpin closing reactions, whose
rate coefficients are not well-captured in our current model (see Figure 2c), and whose
experimental rate measurements suggest sequence-dependent behavior [32].

4.4.2 Next steps for MCMC inference
Because RWM consistently recovers an expected correlation structure that is not incorporated
into the prior or the proposal, significant sampling effort is spent discovering these correlations.
The sample efficiency could be improved by using Gibbs sampling, in which a single sample
from the target is constructed by iteratively drawing from the conditional distributions
of parameter dimensions, while treating all other parameters as observed. Sampling from
such intractable conditional distributions is often performed via nested Metropolis-Hastings
steps, and the procedure is known as Metropolis within Gibbs. It might also be beneficial to
partition the parameters into Gibbs blocks, containing subsets of mutually highly correlated
parameters which are proposed jointly. In our case, the RWM posteriors suggest grouping
(ln Aθ,c, Eθ,c) for each c ∈ C.

4.4.3 Next steps for the likelihood formulation
Within the high density intervals of our posterior approximations, the posterior rate pre-
dictions are more strongly influenced by the state space approximation than by the kinetic
parameters. This suggests that our current likelihood model cannot further distinguish
between different kinetic parameters on the state spaces considered. Moreover, while the
PE state spaces cover a higher proportion of the full energy landscapes than the AP state
spaces, they do not consistently yield more accurate posterior rate predictions, as indicated
by Figure 2. We attribute this finding primarily to the high proportion of sparse linear solver
failures or non-physical solutions during inference, which arise from ill-conditioned MFPT
equations and for which we apply a constant likelihood close to zero (see Section 3.2). Hence,
while the MFPT equations evaluated at our posterior samples yield valid solutions, we expect
that the truncation-dependent and solver-dependent likelihood term biases the information
extracted during inference from the experimental data. A more detailed quantification of the
numerical issues around PE, MFPT equations and posterior inference can be found in [43].
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This bottleneck cannot easily be resolved by expanding the dataset or by increasing
the approximation quality of the truncated state spaces. The numerical stability of the
MFPT computation could in principle be improved by using an iterative solver with suitable
preconditioning techniques that might render more of the systems solvable. However,
regardless of the preconditioner, the current way of estimating the rate coefficients via the
MFPT is a simple, scalar observation model which conceals some transient kinetic effects
and which ignores the variety of regression techniques used to estimate reaction rates from
experimental observations. Hence, in addition to improved kinetic model features and
state space approximations, a reformulation of the observation model to better incorporate
transient observations appears prudent.

4.4.4 Software
Multistrand is an efficient and general forward simulator, but its implementation is not
amenable to the inverse problem of parameter inference and does not support flexible
parallelism. Any task that would require online updates to the state probabilities or
transition rates cannot be achieved without considerable overhead in software development
and resource usage. This includes forward simulation via replica exchange, Bayesian model
averaging, and kinetic parameter inference methods that sample trajectories in an inner loop.

Python libraries used for the work in Section 4 include PyMC [56], Aesara [17, 70], ArviZ
[38], Xarray [35], Joblib [71], SciPy, and UMFPACK [72, 16]. At the time of publication
of this manuscript, a new official minor release of Multistrand will port it to Python 3 and
will provide an Apptainer/Singularity container [39], making it simple to run on Linux host
systems including HPC clusters. This will be accompanied by a software release specific to
this work7, consisting of the posterior approximations in Section 4.3 and the post-processing
scripts used for the NUPACK and Multistrand simulations in Section 5.

5 Case study

5.1 Motivation
Among the reaction types in the dataset, the most pronounced difference between the
predictions made by the AP and PE state spaces is on the helix association reactions in
Figure 2d, suggesting that the additional secondary structures in the latter significantly affect
kinetic behavior. Many studies have assessed secondary structure effects on the reaction
rate of hybridization [27, 61, 33], although they typically extrapolate kinetic behaviour from
thermodynamic properties.

This case study focuses on a recent set of 47 hybridization reactions by Hata et al. [33],
which we will assess using PE state spaces and the mode of our new posterior distribution
over kinetic parameters. The examined sequences have equal length and similar melting
temperatures, and were designed to avoid very stable secondary structures as well as stable
misnucleation and mishybridization. Nevertheless, at a fixed temperature of 25° C and
single-strand concentration of 50 nM, the empirically estimated rate constants varied by
more than two orders of magnitude. The authors suggest that decreases in hybridization
rates can be explained by decreases in nucleation rates, caused by intra-molecular base pairs
that, although not necessarily thermodynamically stable, render nucleation sites inaccessible.

7 To be found at: https://github.com/UBC-Mol-Prog/hybridization-profiling
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Figure 3 Samples of the first passage times for the first binding, last unbinding, and hybridization
times for reactions no. 0 and no. 27 from [33]. The x-axis is the simulated ln-time in seconds, and
the blue vertical lines indicate the simulated ln-MFPT. For each event, we attempted to gather
3000 samples using KPS within 24 hours, with 30GB of RAM and 20 CPUs. However, it was only
possible to generate 102 samples for the hybridization of reaction no. 27.

The authors also estimated that mishybridized secondary structures (wherein an unwanted
stack of successive base pairs forms between strands) were unstable and infrequent, and
therefore that their effect on the overall kinetics was negligible.

To assess these hypotheses, we first employed the kinetic path sampling (KPS) imple-
mentation in DISCOTRESS [66, 67] to sample times from the first passage distributions
for forming the first inter-strand bond, for breaking the only inter-strand bond, and for
overall hybridization in the PE CTMCs. KPS is an enhanced sampling technique for rare
event simulation, and requires a partition of states into communities, which we specified
manually8. Results of the simulations on reactions no. 0 and no. 27 are given in Figure 3.
Although the simulated first binding rate is much faster in reaction no. 27, its simulated
total hybridization rate is much slower, which is compatible with experimental estimates.
Furthermore, the rate of dissociating from a state with a single base pair is comparable
between the two reactions. Therefore, although these rates are important in general, they do
not consistently account for experimental differences in hybridization rates. We therefore
expect significant sequence-dependent kinetic behavior to occur between the moments of first
binding and stable nucleation.

5.2 Boltzmann statistics of initial states
Starting from the classical nucleation-zippering model [1, Ch. 8.2], Hata et al. emphasise
the importance of single-strand secondary structures with positive Gibbs free energy of
formation. In particular, they argue that the nucleation phase is rate-limiting, and propose
an empirical model in which the hybridization rate is proportional to the expected effective
nucleation site density of each strand. As a consistency check for this model and similar
metrics over the Boltzmann distribution of single-stranded structures, we show in Figure 4
the average number of free bases per strand, the product over the average relative number of

8 Secondary structures were binned according to the nearest (edit-distance) structure in the AP model.
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nucleation sites in each strand (similar to Hata et al. [33]), and the average number of free
and compatible (mis-)nucleation sites per strand pair. All three metrics demonstrate some
positive correlation with the experimental rate, although the correlations appear too weak
to validate a kinetic model for hybridization based solely on Boltzmann statistics over the
unbound states.

Figure 4 Secondary structure metrics9 over the Boltzmann distribution of single-stranded
structures, estimated from 10k samples of each strand in NUPACK. Reactions are ordered by
decreasing experimental reaction rate and labeled using the same indices as in the reference [33].

5.3 Trajectory statistics after initial binding
Therefore, to assess potential secondary structure effects beyond the first moment at which
the two complementary strands bind, we employ Multistrand’s “first step mode” (FSM),
stopping the trajectory when the strands either fully dissociate or fully hybridize. Simu-
lations are performed at the same strand concentration and temperature as the physical
experiments. To analyze the trajectories, we define 8 different state types, which partition
the secondary structures based on occurrences of hairpins10, correctly hybridized stacks11,
and/or mishybridized stacks12. We label each of these types by three characters, which
indicate whether there is at least one correctly hybridized stack (S) or not (0), at least one
mishybridized stack (M) or not (0), and at least one hairpin (H) or not (0). For instance,
SM0 represents the type of states with at least three consecutive correctly hybridized base
pairs, at least three consecutive mishybridized base pairs, and at most two consecutive
intra-strand base pairs. Using these definitions, results of our kinetic simulations are provided
in Figure 5. The proportion of first step trajectories ending in hybridization varies over
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where for a strand A with complement B, πA
0 is the Boltzmann distribution over secondary structures,
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b is the no. of free bases, nA

s is the no. of free nucleation sites, nA,max
s is the max of nA

s (and analogously
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p is the no. of free and compatible (mis-)nucleation sites for the pair (A, B).
10 3+ consecutive base pairs occurring within a strand
11 3+ consecutive base pairs occurring between the two strands at the desired site
12 3+ consecutive base pairs occurring between the two strands in an undesired site
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Figure 5 Results of FSM simulations in Multistrand. Reactions are ordered by decreasing
experimental reaction rate. For each reaction, we accumulate reactive and non-reactive trajectory
samples until at least 5 million elementary steps (maximum 155 million) and at least 500 hybridization
trajectories (maximum 2305) have been sampled13.

two orders of magnitude, although high hybridization proportions do not always correspond
to fast reaction rates, such as in reaction no. 35. The proportion of different state types
appears relatively consistent across different reactions, with some notable exceptions, such
as reactions no. 39 and no. 46. In most reactions, we observe a high proportion of states
with mishybridized stacks, which is contrary to one of the hypotheses in the experimental
source [33]. Furthermore, the total time spent in conformations with misnucleation and/or
hairpins is often significant, indicating that the mishybridized states, although potentially
thermodynamically unfavourable, behave as kinetic traps. A small number of reactions, such
as no. 1 and no. 3, appear to have folding pathways dominated by desired stacks, which
is the underlying assumption in the AP model, while other reactions, such as no. 42 and
no. 44, appear to have a high proportion of dissociating trajectories caused by simple hairpin
formation after first binding, a phenomenon explored in other studies [27, 61].

13 With the exception of reaction no. 46, whose hybridization trajectories are much longer. Our estimates
therefore only include the 26 successful trajectories that could be stored using 30G of RAM, and
contained 4.5 million secondary structures on average.
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In Figure 6, the time spent in each state type is shown for 20 successful hybridization
trajectories in six different reactions. These trajectories illustrate a high degree of sequence
dependence, as well as a high variance of reactive pathways within reactions. Overall, these
findings suggest that short sequence-level features, such as the nucleation capability proposed
by Hata et al. [33], can be influential both before and after the first binding, and that in
order to reach higher accuracy, simplified kinetic models of hybridization should in general
consider misnucleation and hairpins in their choice of transition states. More generally, while
the state predicates above are useful for assessing the reaction pathways from stochastic
simulation, the correlation between the considered state predicates and the experimental
rates appears too weak, and the relative strength of the considered kinetic effects too varied
across reactions, to motivate or validate simplified mechanistic models for hybridization that
are derived solely from state-based features. This reinforces the need for elementary step
kinetic simulation methods that directly enable the parameterisation and estimation of local
and global transient behaviour.

Figure 6 Examples of successful hybridization trajectories sampled using Multistrand’s FSM.

6 Conclusion and outlook

In this work, we extended a previous Bayesian inference approach to the calibration problem
of an Arrhenius-type model of elementary step DNA kinetics. We introduced a new prior
distribution over the desired kinetic parameters and expanded the training dataset to over 1000
reactions, using truncated state spaces generated with the Assumed Pathway (AP) method for
the full dataset, and the Pathway Elaboration (PE) approach when computationally feasible.
Posterior inference was performed with the random walk Metropolis (RWM) algorithm.

Our posterior distributions, though only preliminary in terms of hyperparameter tuning
and convergence analysis, display expected strong correlations between physically tightly
coupled kinetic parameters, and thus establish compatibility with past work. The behavior
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of our MCMC chains varied significantly across the dimensions of our kinetic parameters,
and correlated with the half context frequency in our truncated state spaces, suggesting
that some half contexts are underspecified. Hence, it would be worth extending the dataset
with new reaction types contributing to the transition classes of currently low frequency,
as well as developing kinetic models that partition the transitions into more fine-grained
equivalence classes. Parameters for transition contexts which are prevalent in the energy
barrier regions, e.g., as suggested by the trajectory analyses in Section 5 for hybridization,
can be expected to be particularly influential for the overall kinetics. Another important
finding is that the posteriors obtained for the AP and PE targets are visibly different in
Figure 1, but still produce remarkably similar predictive distributions over reaction rates
in Figure 2. This suggests that the posterior approximations are concentrated towards a
parameter region in which the rate predictions are more strongly influenced by the state
space approximation than by the kinetic parameters. It would therefore be worth improving
the likelihood approximation method, such that the forward model dynamically regenerates
the state space with different parameters, rather than using a constant state space truncation.

Our results also reveal severe, previously undocumented numerical instability in the
current likelihood model, which predicts the MFPT by solving an often ill-conditioned
linear system. Effectively, this is a truncation-dependent and solver-dependent likelihood
term which penalises parts of the parameter space, influencing in a nontrivial way both the
exact posterior and its numerical approximation. In principle, this issue could be mitigated
by a suitably preconditioned iterative solver. However, this ill-conditioning is intrinsic
for metastable systems, and problem-specific preconditioners have not yet been developed,
beyond rescaling by the equilibrium distribution. Furthermore, the MFPT observation
model might in general be too low-dimensional and even misspecified with respect to various
regression methods used to extract reaction rates from experimental measurements.

Despite these challenges, we were able to use our new Arrhenius parameters to suggest
why rates of helix association reactions vary by two orders of magnitude, even when the
interacting strands have little or no stable intra-strand secondary structure. This shows the
potential of elementary step models for gaining insight into the kinetic behavior of nucleic
acid reactions, once properly calibrated and augmented with effective tools for truncation and
coarse-graining. In future work, it would be valuable to implement a simulator that allows
mathematically separate model components (e.g., experimental conditions, state spaces,
initial distributions, final regions, thermodynamic and kinetic models) to be defined and
parameterised independently, that supports flexible parallelism, and that provides enhanced
path sampling. With such capabilities, the elementary step model could become a standard
tool for designing sequences in a way that accounts for transient behavior, marking a
significant improvement over thermodynamic sequence design techniques.
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A Appendix

A.1 Criteria for initial and final regions of a reaction
A.2 PE method
The PE algorithm has five hyperparameters, b, κ, nb, nκ, and δ (referred to as β, κ, N , K,
and δ in the original reference [83]). For a CTMC with transition rate matrix K, probability
matrix P and final region F , let 1dist : X 2 → {0, 1} be the decreasing-distance indicator
that maps adjacent states x and x′ to 1 if the minimum distance (in steps) from x′ to any
absorbing state xf ∈ F is less than the distance from x to xf , and to 0 otherwise. This
indicator is used to define Pbias, which alters P by only allowing for transitions that decrease
the distance to the final region, and Pb for any b ∈ [0, 1] is taken to be the convex combination
of Pbias and P :

Pbias(x, x′) = K(x, x′)1dist(x, x′)∑
x′′∈X K(x, x′′)1dist(x, x′′) , (11)

Pb = bP + (1 − b)Pbias . (12)

For a given P , we refer to samples from Pb as b-biased. The PE algorithm can be summarised
in four steps:
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Table 1 Criteria for the initial and final regions. Note that, although some of these definitions
allow for endpoint regions containing several secondary structure states, the state spaces constructed
by the AP approximation only include one state satisfying each criterion.

Bubble closing Initial: The microstate where all bases in the scope of the spe-
cified bubble are unpaired, and all other bases are paired as in
the final state
Final: The microstate with the fully formed hairpin

Hairpin opening Initial: The microstate with the fully formed hairpin
Final: The microstate with no base pairs

Hairpin closing Reverse of hairpin opening
Helix association Initial: Any microstate with no base pairs between strands

Final: The microstate with the fully formed helix
Helix dissociation Reverse of helix association
Strand displacement Initial: Any microstate where the incumbent and substrate form

a complex without the invader
Final: Any microstate where the invader and substrate form a
complex without the incumbent

1. Pathway construction. Sample nb distance-biased trajectories from initial region I to
final region F , such that the holding times are sampled according to the diagonal entries
of K, while transitions are sampled according to Pb.

2. State elaboration. For each state x discovered during the construction step, sample nκ

unbiaed paths according to K, starting at x with time limit κ.
3. Transition construction. Construct a new rate matrix K̂ such that for any states x

and x′ discovered during simulations, K̂(x, x′) := K(x, x′).
4. δ-pruning. Group all states that are within a fixed MFPT δ of any xf ∈ F into a single

absorbing state, and update the rate matrix K̂ accordingly.

The hyperparameters κ and b directly improve the approximation quality of the truncated
CTMC, while nκ and nb only increase the approximation quality if κ and b are suitable for
the CTMC in question. In brief, increases in b decrease the degree of bias in the pathway
construction step, increases in κ increase the expected length of each unbiased trajectory
sample, and increases in nb/nκ increase the number of biased/unbiased trajectory samples,
respectively. In particular, when b = 1 and nκ = 0, SSA is recovered as a special case. In
practice, the current implementation of PE is inefficient in time and memory usage, which
strongly limits the practically achievable hyperparameters and approximation quality.

A.3 PE hyperparameter value sets

Table 2 Sets of PE hyperparameter values attempted on each reaction. The ordering of the sets
of values corresponds to decreasing expected state space size. This order was also used to prioritise
which CTMCs to include in our inference targets (Appendix Table 4), for reactions where more than
one set of hyperparameters produced a valid CTMC.

P1B1 P1B2 P2B1 P2B2 P3B1 P3B2 P4B1 P4B2
nb 128 128 64 64 32 32 16 16
nκ 256 256 128 128 64 64 32 32
b 0.4 0.1 0.4 0.1 0.4 0.1 0.4 0.1
κ 16ns 16ns 16ns 16ns 16ns 16ns 16ns 16ns
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A.4 Dataset

Table 3 Dataset of experimentally measured rate coefficients. The sign * next to the number of
reactions indicates that the dataset includes mismatch experiments.

Reaction type no. reactions no. bases °C log10
(
k [M−1s−1]

)
ref.

Bubble closing 18 62 21.9 – 48.7 3.8 – 4.5 [3]
Hairpin opening 63 22 – 40 10.3 – 48.8 1.4 – 4.6 [9]

79 20 – 40 17.8 – 48.7 2.2 – 4.7 [8, 32]
8 40 9.5 – 45.6 0.9 – 3.1 [73]

22 8 9.9 – 60.5 4.6 – 6.0 [37]
Hairpin closing 62 22 – 40 10.0 – 49.4 3.4 – 4.8 [9]

102 18 – 40 14.3 – 48.8 2.8 – 5.3 [8]
8 40 9.8 – 45.6 3.2 – 3.4 [73]

22 8 9.9 – 60.6 4.6 – 6.1 [37]
27 31 14.1 – 41.1 2.7 – 4.0 [2]

Helix association 15 20 – 40 3.4 – 49.3 5.9 – 7.6 [49]
47 46 25.0 4.0 – 6.7 [33]

210 72 28.0 – 55.0 4.2 – 7.4 [78]
39* 18 – 20 23.0 – 37.0 4.2 – 7.4 [14]
9 50 23.0 4.9 – 6.2 [27]

18 16 6.6 – 33.6 6.5 – 7.3 [51]
Helix dissociation 12 20 – 40 24.7 – 68.0 -2.7 – -1.0 [49]

14 42 – 46 30.0 – 55.0 -5.3 – -2.9 [52]
39* 18 – 20 23.0 – 37.0 -1.2 – 0.9 [14]

Strand displacement 30 78 – 96 25.0 0.9 – 7.0 [77]
14 54 – 62 30.0 – 55.0 0.6 – 1.9 [52]
36* 83 – 87 23.0 2.7 – 6.8 [44]

211 89 – 102 28.0 – 55.0 1.3 – 8.2 [79]
Overall 1105 8 – 102 3.4 – 68.0 -5.3 – 8.2

A.5 Inference targets

Table 4 State spaces used in each inference target.

no. reactions avg. no. states
AP target

Bubble closing 18 758
Hairpin opening 221 46
Hairpin closing 172 44
Helix association 338 1843
Helix dissociation 65 275
Strand displacement 291 9626
Total 1105 3143

PE target
Bubble closing 18 2048
Hairpin opening 221 3120
Hairpin closing 172 1268
Helix association 163 26113
Helix dissociation 65 23223
Strand displacement 44 27045
Total 683 11567
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A.6 MCMC trace plots

Figure 7 Trace plots from the RWM sampler for AP and PE inference targets, corresponding to
Figure 1. Burn-in samples are not shown.
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