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Abstract

We present an abstract model of self-assembly of systems composed of “crisscross slats”, which have
been experimentally implemented as a single-stranded piece of DNA [21] or as a complete DNA
origami structure [28]. We then introduce a more physically realistic “kinetic” model and show how
important constants in the model were derived and tuned, and compare simulation-based results
to experimental results [21,28]. Using these models, we show how we can apply optimizations to
designs of slat systems in order to lower the numbers of unique slat types required to build target
structures. In general, we apply two types of techniques to achieve greatly reduced numbers of slat
types. Similar to the experimental work implementing DNA origami-based slats, in our designs the
slats oriented in horizontal and vertical directions are each restricted to their own plane and sets
of them overlap each other in square regions which we refer to as macrotiles. Our first technique
extends their previous work of reusing slat types within macrotiles and requires analyses of binding
domain patterns to determine the potential for errors consisting of incorrect slat types attaching
at undesired translations and reflections. The second technique leverages the power of algorithmic
self-assembly to efficiently reuse entire macrotiles which self-assemble in patterns following designed
algorithms that dictate the dimensions and patterns of growth.

Using these designs, we demonstrate that in kinetic simulations the systems with reduced
numbers of slat types self-assemble more quickly than those with greater numbers. This provides
evidence that such optimizations will also result in greater assembly speeds in experimental systems.
Furthermore, the reduced numbers of slat types required have the potential to vastly reduce the cost
and number of lab steps for crisscross assembly experiments.
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7:2 Accelerating Self-Assembly of Crisscross Slat Systems

Figure 1 An illustration of a crisscross slat ribbon. Growth of the ribbon occurs in two layers
with slats attaching to 4 binding domains presented by previously added slats in the opposite layer.

1 Introduction

In [21,28], the authors introduced a novel scheme for the seeded self-assembly of DNA-based
structures that is extremely resilient to spurious (unseeded) nucleation. In their scheme,
structures are formed from individual components called slats that can be thought of as
long, 1 × n tiles with n binding domains distributed across their lengths. Unlike traditional
DNA-based tiles that generally attach in a single plane to at most 2 adjacent tiles as they
bind into an assembly, slats attach in multiple layers by the matching of binding domains
between the layers. Consequently, whereas traditional tiles typically only coordinate their
growth with at most two others, slats can achieve a much higher coordination by spanning
across and binding with several slats in the other layer, as illustrated in Figure 1. This
increase in coordination (a.k.a., cooperation) makes spontaneous growth away from seeded
assemblies much more difficult, since this would require the entropically unfavorable merging
of n slats simultaneously, an event with probability exponentially small in n.

While the work of [21, 28] was primarily interested in the robust nucleation properties
of this crisscross scheme, here we explore crisscross slats as a means of growing structures
that are robust to erroneous attachments while also using greatly reduced numbers of unique
types of slats. In [28] they focused on systems of crisscross slats in which each slat is a
complete DNA origami structure (depicted in Figure 2), and exhibited growth of structures
that were of two types: (1) repeating patterns of slats forming unbounded 1D ribbons and
2D sheets (periodic structures), and (2) finite structures composed of unique slat types at
each location (hard-coded, a.k.a., fully addressable, structures). They were able to build
hard-coded structures that contained as many as 1,022 unique slat types. Although these
structures had few errors (e.g., missing slats or slats in incorrect locations and/or translations
or reflections), due to the low concentrations resulting from dilution after mixing so many
different structures, the growth was very slow and even needed to be separated into distinct
growth stages. In each stage, only a few hundred slat types were added and growth was
allowed to continue for multiple days before the slat types for the next stage were added.
Additionally, the authors estimated that without automated liquid handlers, manual pipetting
of the many strand combinations to create the large numbers of slat types would require
about one month of manual effort. Our techniques for lowering the numbers of slat types
required to build target structures and patterns are intended to make growth of crisscross slat
systems much faster (removing the need for staging) while experiencing similar error rates,
and having additional benefits of making system designs cheaper and less labor intensive.

In this paper, we first introduce two models of crisscross slat-based self-assembling systems.
These models are based on the abstract Tile Assembly Model (aTAM) and kinetic Tile
Assembly Model (kTAM) introduced in [27]. The model based on the aTAM, which we call
the abstract Slat Assembly Model (aSAM), is a mathematical abstraction suitable for creating
and testing high-level designs, especially those of algorithmic self-assembling systems.
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Figure 2 Schematic depiction of DNA origami slat as a 6-helix bundle. Each cylinder represents
a DNA double helix, and the wavy lines underneath represent single-stranded “handles” (a.k.a.,
“glues”) that serve as binding domains.

In algorithmic systems, the individual components (in this case, slats), can be thought
of as simple program instructions. The binding of each slat effectively uses the domains
available for a slat to bind (i.e. those exposed by slats already in the assembly and in the
necessary geometric arrangement) to discriminate among slat types, allowing exactly one type
to bind. Those initial binding domains can be thought of as the input, and the domains of
the slat that remain exposed to which later slats can bind as the outputs. The design of a slat
and its domains dictates the logic that transforms input into output and thus the function of
the “instruction”. In a computer program, instructions taken from a small number of unique
instruction types can be executed many times each, processing information to determine
which instructions are next and when the computation should end. In an algorithmic self-
assembling system, a small set of slat types do the same thing. Much theoretical work has
been done to show the power of algorithmic self-assembly [2,8,11,14,16–18,20,22,27] and
that structures can be built with optimally small sets of tile types [3–5,7, 23,26] .

The second model we introduce, the kinetic Slat Assembly Model, is based on the kTAM
and intended to capture more physically realistic aspects of the self-assembly of systems. In
this model, slat attachments are modeled as reversible processes, where the forward rates of
attachment are dependent upon slat concentrations and the reverse (i.e. detachment) rates
are dependent upon the number of bonds formed by a slat. In this way, the model is able
to capture a wider spectrum of dynamics and model several types of errors that occur in
experimental implementations.

We present two techniques for reducing the number of slat types used by systems. The
first technique reduces number of unique slat types used within each (potentially repeating)
square region referred to as a macrotile. In a slat system where the cooperativity value is n

(i.e. each slat needs to bind with n others in order to join an assembly), we call each n × n

region where n slats running horizontally overlap with n slats running vertically a macrotile.
We present in Section 4.1 a technique for designing systems making use of multiple slats of
the same type in each macrotile, thus reducing the overall slat type count, and then present
the results from series of kSAM simulations demonstrating that such systems with fewer slat
types can both assemble more quickly and can do so while maintaining low error rates.

Our second method of reducing slat type numbers is algorithmic self-assembly. To
demonstrate this, we present our design for a system in which the slats compute the logical
xor function, resulting in a system producing the discrete self-similar fractal pattern called
the Sierpinski triangle [18, 24]. We present our macrotile and “tile gadget” design that
allows for the type of inter-macrotile cooperativity required for algorithmic growth, then
show the results of kSAM simulations of that system implemented with varying levels of
cooperativity and intra-macrotile slat counts. The results are very promising and show that
growth can be sped up greatly by decreasing slat type counts while also remaining essentially
error-free within relatively broad ranges of parameters in comparison with previously designed
algorithmic systems.

The organization of this paper is as follows. In Section 2 we define the aSAM and
in Section 3 we define the kSAM and discuss various properties of it and how we tuned
parameters for our simulations. In Section 4 we present our first method for reducing slat type
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7:4 Accelerating Self-Assembly of Crisscross Slat Systems

counts and kSAM simulation results for systems designed using that method. In Section 5
we present our general design for algorithmic systems and a specific design of a system to
generate the Sierpinski triangle pattern, then kSAM simulation results of it. Finally, in
Section 6 we summarize our results and discuss future directions.

2 The abstract Slat Assembly Model

In this section we briefly introduce the abstract Slat Assembly Model. The abstract Slat
Assembly Model (aSAM) is a generalization of the aTAM [27] in which the fundamental
components are slats, n × 1 × 1 polyominoes made of cubes in 3D space. Similar to tiles,
slats can have glues (also referred to as handles) on each of their 4n + 2 faces. Each glue is
identified by a label, some string of characters (or sometimes a color), and a non-negative
integer strength. Each glue has a complementary glue which shares its strength. In this paper
we will often denote complementary glues using the same labels but with one appended by
an asterisk (e.g. “label” and “label*”). Furthermore, we make a distinction between slats
and slat types, the latter being just a description of the glues and length of a slat with no
defined position or orientation. The position and orientation of slats is restricted to the
3D integer lattice and two slats which sit incident to one another are said to be attached
or bound with strength s if they share complementary glues of strength s on their abutting
faces. An assembly is simply a set of non-overlapping slats.

A slat assembly system (SAS) consists of a finite set of slat types, an assembly called the
seed assembly which acts as the starting point for growth, and a positive integer called the
binding threshold. The binding threshold describes the minimum cumulative glue strength
needed for a slat to stably attach to a growing assembly. Growth in the aSAM is described
by a sequence of slat attachments. Any slat which could sit on the perimeter of an assembly
so that it would be attached to other slats with a cumulative strength meeting the binding
threshold is a candidate for attachment, and attachments are assumed to happen non-
deterministically. Any assembly which could result from a sequence of slat attachments
beginning with the seed assembly of a SAS S and using only those slat types in the slat set of
S is said to be producible in S. Any assembly which permits no additional slat attachments
is called terminal.

The aSAM is an idealized model intended to abstractly describe the growth of DNA-based
slats under ideal conditions, though it makes no attempt to model realist growth dynamics.
Rather, the aSAM is useful for designing and understanding complex slat systems on a logical
level rather than a physical one. Considering slat systems in the framework of the aSAM
allows us to investigate questions such as how many unique handles/glues are necessary to
perform a desired task or how many handles could an erroneous slat bind with at any given
time. Furthermore, the discrete nature of the aSAM is ideal for computer simulation.

We also consider a restricted version of the aSAM which we call the aSAM− which limits
slat attachments in several ways. These restrictions include slats only being allowed to attach
in the planes z = 0 and z = 1, and the requirement that any two slats sharing the same type
will always attach in the same orientation. These restrictions exist to limit our designs to
those which grow in a similar manner to those slat system in [28], but also allow for more
efficient computer simulation.

2.1 SlatTAS: an aSAM− simulator
We have developed and freely released the source code for a Python-based graphical simulator
for the aSAM− (and kSAM, see Section 3) called SlatTAS. It can be downloaded from
self-assembly.net via a link on the page here [15].

self-assembly.net
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2.2 Slat system design parameters
In this section, we provide an example of a SAS and some related terminology that will be
used throughout the remaining sections.

Figure 3 (left) A portion of an example “ribbon” made by a repeating pattern of 2 square
tiles, “A” and “B”, where one copy of A is used as the seed. (Note that the ribbon would extend
infinitely in both directions.) (middle) An example representation of tiles “A” and “B” as slats
using macrotiles of size 4. The outlines show the macrotile locations occupied by the slats. (right) A
portion of an example system of slats simulating this tile system.

The number of slats to which an incoming slat must bind (since all glues are of strength
1) is equal to the parameter τ and is called the cooperativity of a system (a.k.a., coordination
number, the term used in [21, 28]). Similar to the vast majority of the designs of [28], our
systems will be designed so that slats assemble in arrangements which we refer to as forming
macrotiles. Given a system whose cooperativity is c, a macrotile is simply a c × c square
through which c horizontal slats, and c vertical slats, extend and bind to each other. Multiple
macrotiles may be logically combined to form a tile gadget (or simply gadget) which can be
interpreted as a group of slats that “work together” to perform a logical operation, which
is often analogous to a tile in an aTAM system that we have converted into a functionally
equivalent slat system. For example, the set of four slats in Figure 3 which are shown to
“simulate” tile “A” can be thought of as a (relatively) simple gadget whose slats occupy two
macrotiles. The macrotile in which the slats initially bind can be thought of as providing
the input, and once each slat binds to the four slats in the input macrotile, it extends
into the output macrotile. Once all four slats have bound to the input slats, they provide
enough domains in each of four horizontal rows for the slats of the gadget simulating the “B”
tile attach. This process can alternate between horizontal and vertical gadget attachment
infinitely many times, in both the up-left and down-right directions.

The macrotiles of a gadget can serve as input, output, and connector (to be seen later)
macrotiles. We define the slat count as the count of unique slat types in each layer of a
macrotile. Figures 4a and 4b show example ribbons with cooperativity 8 and slat counts 8
and 2, respectively. We use the term motif to refer to the pattern of slat types in a macrotile.
For instance, in Figure 4a if the white vertical slats are of type w and the green are of type
g, we could denote the motif as wggwwggw.

3 The kinetic Slat Assembly Model

To better understand how crisscross slat assemblies grow, we extend the framework of the
kinetic Tile-Assembly Model (kTAM) to incorporate slats instead of square tiles. In the
kTAM [27], tile attachments are modeled as reversible processes with forward and reverse
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7:6 Accelerating Self-Assembly of Crisscross Slat Systems

(a) Slat count 2 (i.e. each macrotile contains slats
of only two different types in each direction).

(b) Slat count 8 (i.e. each slat of each direction in
a macrotile is unique).

Figure 4 Example slat ribbons with macrotile size 8 (i.e. cooperativity 8) and varying slat count.
Slats running in different directions are of different types, and for each direction each type has a
unique color.

rates. Furthermore, the kTAM models seeded growth, beginning from a predefined seed
assembly which is assumed to exist at lower concentrations than the individual tiles. In the
kTAM, the forward rate of attachment for tile t has the form rf = kf [t], where kf is the
reaction rate constant and [t] is the concentration of t. The kTAM assumes that the rate
of tile detachment depends primarily on the number of glue bonds formed by each tile. A
tile with only 1 bound glue, for instance, should detach much more quickly than a tile with
2 or more bound glues. The reverse rate therefore depends on the free energy of a typical
bond which is denoted ∆G◦

se where se stands for sticky end. Consequently, the reverse rate
describing the detachment of a tile with b glue bonds has the form

rr,b = kf u0 exp
(

b
∆G◦

se

RT
+ α

)
where u0 is a standard reference concentration, T is the temperature in Kelvin, R is the
molar gas constant, and α is a unitless free energy parameter associated with other factors
specific to a particular realization of the tiles. These rates are generally translated into a more
symmetric form [10] by defining k̂f

def= u0kf exp(α), Gmc
def= α − log( [t]

u0
), and Gse

def= − ∆G◦
se

RT .
These can then be substituted into the original rate formula to get the following.

rf = k̂f exp(−Gmc) rr,b = k̂f exp(−bGse)

In this form, the parameter Gmc describes tile concentrations logarithmically with larger
values corresponding to smaller concentrations, and Gse describes the free energy of a strength
1 glue with larger values corresponding to stronger bonds. In the kTAM, the ratio Gmc/Gse

plays an important role, analogous to the binding threshold τ in the aTAM. When this
ratio is slightly less than 2 for instance, growth in the kTAM proceeds much like it would
in a binding threshold 2 aTAM system with the same tiles. This is because at this ratio,
tiles bound with strength 2 dissociate at a rate just barely less than tiles attach to the
assembly while tiles bound with strength 1 or 0 dissociate with a significantly higher rate.
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Consequently, a correctly bound tile (matching 2 glues) is likely to remain attached to the
assembly for long enough for additional tile attachments to occur, matching glues with the
correct tile and subsequently increasing its number of bonds so that it is held stably to the
attachment. Incorrect tiles (matching 1 glue or fewer) on the other hand detach much more
rapidly and very likely before any additional tile attachments occur. When this ratio is
exactly equal to 2, or more generally the cooperativity of the tile system, then the kTAM
describes how the system behaves at the melting temperature, i.e. even the strongest bound
tiles detach just as often as tiles attach to the assembly. In general, the ratio of Gmc to Gse

is often more pertinent when describing the expected dynamics of a system than the values
of the individual parameters, though the parameters themselves are necessary for computer
simulation of the kTAM. For a more detailed description of the kTAM and subsequent
analyses for square tiles, see [10,27].

Despite making several simplifying assumptions, the kTAM has been broadly successful
in realistically describing growth and error phenomena in a variety of tile-based schemes of
DNA self-asssembly [6, 9]. The model captures many critical features of physical tiles while
remaining simple enough for meaningful mathematical manipulation and efficient computer
simulation using the Gillespie algorithm [12]. Generalizing the kTAM to incorporate slats
rather than square tiles is, in principle, as straightforward as it sounds. Instead of square
tiles which occupy only a single grid location and contain at most 4 glues, we consider slats
which can occupy several adjacent grid locations and have a number of glues proportional to
their length. For purposes of brevity and clarity, we will refer to this generalization as the
kinetic Slat Assembly Model or kSAM to distinguish it from the kTAM for square tiles.

3.1 Finding appropriate parameter values for physical slats
While many important properties of a kSAM system can be inferred from the ratio Gmc/Gse,
it’s useful to find specific values for these individual parameters which yield simulations with
accurate growth rates. Other than α which describes an entropic cost associated with a
specific implementation of slats, all of the factors defining the parameters Gmc, Gse, and k̂f

such as temperature and slat concentrations are generally known. We can roughly estimate
the value of α by noting that, for slat systems with cooperativity c, the melting temperature
should correspond to values for Gmc and Gse such that Gmc = cGse. Consequently, by
substituting Gmc and Gse with their definitions we find that

α − log
(

[s]
u0

)
= −c

∆G◦
se

RT
.

Furthermore, ∆G◦
se = ∆H◦

se − T∆S◦
se where ∆H◦

se and ∆S◦
se are the enthalpy and entropy

associated with a single sticky end bond whose values can be approximated using the nearest
neighbor model. Rearranging the above equation, thus yields the following expression for α

which assumes that T is the melting temperature of the system.

α = c

R

(
∆S◦

se − ∆H◦
se

T

)
+ log

(
[s]
u0

)
In [28], the authors determined the melting temperature for origami slat ribbons using

cooperativity values of 8 and 16 and using handle lengths of 6, 7, and 8 nucleotides. Using
their values for melting temperature and the corresponding slat concentrations, and applying
the nearest neighbor model to their handle sequences therefore allows us to find a value for
α. Using the handle sequences from [28] we calculated typical values for 7nt handles to be
about ∆H◦

se ≈ −47kcal mol−1 and ∆S◦
se ≈ −142cal mol−1 K−1. For their slat concentration
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7:8 Accelerating Self-Assembly of Crisscross Slat Systems

Figure 5 Error rates for kinetic simulations of cooperativity 16 ribbons at Gmc and Gse values
ranging from 10 to 200. The general shape of the error curve matches the trends predicted by the
kinetic trapping model with sharp jumps as the ratio Gmc/Gse crosses an integer value. Furthermore,
when Gmc < Gse the error probability is 1.

of 20nM and melting temperature of 42.1◦C = 315.25K, these values yield a value for α of
around 39. Admittedly, this approximation isn’t perfect; for one, the formula for α is quite
sensitive to the values of ∆H◦

se and ∆S◦
se which can vary a bit for the same glue sequence

depending on the specific duplex table used in the nearest neighbor model calculations. For
our simulations we chose to use α = 40, though we note that for our purposes the specific
value for α makes little difference in the error dynamics of our simulated slat systems.

3.2 A kSAM simulator

We have developed and freely released the source code for a C++ based stochastic simulator
for both the aSAM and kSAM, which has been highly optimized for faster simulation than the
existing SlatTAS [15]. It can be downloaded from self-assembly.net via a link on the page
here [13]. More generally, our simulator is capable of handling arbitrary 3D polyomino-shaped
tiles (including square/cube tiles) and can be configured to simulate 2D and almost-3D (with
only 2 layers in the z-axis) systems as well by use of a dimension restriction which allows
for specifying minimum and maximum allowed coordinates in all 3 dimensions if desired.
The simulator can also use multiple threads to simulate a system ensemble. All kinetic
simulations in this paper were performed using our simulator in kinetic mode and our error
metrics were calculated using reference assemblies generated by our simulator in abstract
mode.

4 Optimized implementation of crisscross ribbons via slat type reuse

In this section, we describe our first technique for reducing slat type counts, which involves
slat type reuse within macrotiles. We then describe the range of systems with varying
amounts of such intra-macrotile slat reuse that we designed and then tested via kSAM
simulations, and discuss the results of those simulations.

self-assembly.net
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Figure 6 Example using two types of slats in each direction for 8 × 8 macrotiles. (left): Two types of
vertical slats, w and x, with four copies of each used for the eight total vertical slats used in the input and
output macrotiles. (right): Two types of horizontal slats, y and z, where input glues of w and x bind to
output glues of y and z. This illustrates how slat re-use within a macrotile forces re-use of glues. Where
slats w and y overlap, they must have a complementary glue (a on w and a∗ on y, latter not depicted
since the output glues of the y slat are underneath the w and x slats). By symmetry, that same glue a
is forced to be used wherever slats w and y intersect. In this situation, the maximum number of glues
that can possibly be used is only four: a, b, c, d, increasing the potential for misaligned slats to have
complementary glues in adjacent locations over systems which use larger numbers of glues.

4.1 Slat layout in macrotile designs

Most assembly schemes in [28] consider slat assembly in a modular way, by partitioning
the integer lattice Z2 into n × n macrotiles. The n slats that assemble to fill in an n × n

macrotile can be considered as “simulating” a square tile in the abstract and kinetic Tile
Assembly Models [27]. In [28], a unique slat type was used in every one of the n relative
positions within a macrotile (even for periodic structures such as infinite 1D ribbons and 2D
sheets that used the rectangular macrotile growth pattern and repeated the same set of slats
in different macrotiles). However, we have analyzed patterns of possible slat reuse within
macrotiles and developed a technique for greatly reducing how many are required in each
while seeking to maintain (mostly) error-free growth, which we now describe.

Figure 6 shows an example of using only two types of slats in each direction when we use
cooperativity 8 to have 8 × 8 macrotiles. Its caption explains how this slat reuse forces the
reuse of glues. This reuse of glues in turn means we must confront the possibility that slats
can bind “strongly” somewhere that they should not (perhaps flipped and/or translated such
that they are not in alignment with macrotile boundaries) due to complementarity of a partial
subset of glues. Figure 7 shows some potential scenarios with erroneous binding. Although
we declare in the abstract aSAM model that no binding occurs if the number of matching
glues is less than the cooperativity value n, in the kSAM and in actual experiments it is
possible for such situations to allow for slat bindings with “close” to n bonds (although with
expected duration of attachment to diminish as the distance from n increases). Therefore,
we strive to ensure that slat and glue patterns are designed so that the maximum strength
of any such incorrect slat binding is minimized. We analyze motif patterns to detect and
minimize a property we call auto-correlation in order to minimize the errors that occur
during self-assembly.
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c* c* c* d* c* d* d* d*a* a* a* b* a* b* b* b*

a a a b a b b b c c c d c d d d

a* a* a* b* a* b* b* b*

a a a b a b b b
(a) (b)

a a a b a b b b c c c d c d d d

a* a* a* x* a* x* x* x* c* c* c* z* c* z* z* z*
(c)

(d)

a* a* a* b* a* b* b* b*

aaababbb

Figure 7 Design of slat arrangement to minimize overlap of complementary glues in unintended slat
bindings. (a): The input glues of a horizontal slat (aaababbb; output glues on right not depicted) binding
with incorrect translation to the output glues of eight vertical slats presenting glues a∗a∗a∗b∗a∗b∗b∗b∗.
This arrangement of input glues has auto-correlation 4: this translation makes 4 of the glues bind, and
every other nonzero translation also has at most 4 matching glues. This means the slat could erroneously
bind with strength 4 in the incorrect x position. (b): A string of input glues for a slat with reversed
auto-correlation 3. Such a slat could bind with incorrect 180 degree rotation with strength 3. (c): Two full
slats binding erroneously to each other. A horizontal slat (on top; input glues a, b on left, output glues
c, d on right) and a vertical slat (on bottom; output glues a∗, x∗ on left, input glues c∗, z∗ on right) bind.
The potential for such binding occurs in situations such as the repeating ribbon of Figure 4a, where (in
the normal expected binding) a horizontal slat type binds to a vertical slat type, then the same vertical
slat type binds to the horizontal slat. By our glue design; in this scenario at most one glue can be shared
on each side, e.g., since they share a on the left, they have different glues (b vs. x) for the other type on
the left. This check was done in [28]. (d): Similar to part (a), but considers output glues of a slat also. In
this example, the left-side block are input glues for the horizontal slat, and the right-side block are the
outputs. This describes the scenario where, after vertical slats begin binding on the right (with less than
total cooperativity) to horizontal slats (not shown), before the block is complete with horizontal slats, a
correct horizontal slat with incorrect x-translation “backfills” in the block.

4.2 Testing slat reuse via kinetic simulations
In [28], the authors, among several other experiments, grew a variety of ribbons using
DNA-origami crisscross slats and investigated how their growth was affected by the number
of unique slat types used. Specifically, these ribbons, all of which used a cooperativity value
of 16, were designed to use either 8, 16, 32, or 64 unique slat types in each of the two layers
of growth, attaching periodically. They evaluated the growth of these ribbons both in the
situation where the concentration of individual slats was kept constant, and where the total
concentration of all slats was held constant (i.e. smaller slat counts having higher per-slat
concentrations). While the growth of these ribbons was generally similar when individual
slat concentrations were maintained, they did observe a significant decrease in growth as slat
count increased when total slat concentrations were fixed.

Here we explore the effects of slat count on ribbon growth conversely, to determine
the extent to which we can expect to decrease slat counts while preserving rapid correct
growth of the ribbons. To do this, we designed several cooperativity 16 ribbon systems with
decreasing slat count and evaluated their growth dynamics within the framework of the
kSAM. Our systems included ribbons with 2, 4, 8, and 16 unique slat types for each layer and
we performed kSAM simulations of these systems both with individual slat concentrations
held constant and with total slat concentrations held constant. The ribbon systems we
used are illustrated in Figure 8 and additional info can be seen in Table 1. We chose to
implement zig-zag ribbons which more closely match our motif for algorithmic growth than
the “staggered” ribbons of some of the designs in [28].

We simulated each of these systems at a fixed value of Gmc and varied Gse. In principle,
this corresponds to growing the slat systems with fixed slat concentrations at a variety of
temperatures. The specific value of Gmc used was 58 which corresponds to a slat concentration
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Figure 8 The cooperativity 16 ribbons simulated in the kSAM with various slat counts. Slat
counts from left to right: 16, 8, 4, 2.

Table 1 For the cooperativity 16 ribbon systems tested via kSAM simulations with given slat
counts, the motifs, auto-correlations and cross-correlations.

Slat count Motif Auto-correlation Cross-correlation
16 abcdefghijklmnop 1 2
8 chfgacbaheefddgb 2 4
4 bccababbddcdcaad 4 4
2 ababbbbaaabaabba 8 8

of 15nM using the value for α derived in Section 3.1. Values of Gse were chosen so that
Gmc/Gse values spanned the range from 1 to 16. For each ribbon, we wanted to simulate 2
situations: (1) with individual slat counts kept constant at 15nM for all ribbons, and (2)
with total slat concentrations held constant at 480nM across all ribbons. To keep total slat
concentrations fixed, systems with smaller slat counts had their slat concentrations adjusted1.
Note that for both the fixed individual slat concentrations and fixed total concentrations,
concentrations are identical for the slat count 16 ribbons, so those were only simulated once.

To estimate the rate of erroneous slat attachment, we additionally simulated each system
in the error-free aSAM with a binding threshold of 16. This resulted in a reference assembly
containing only correctly attached slats to which our kinetic simulations could be compared.
We then consider a slat to be correct in the kinetic simulation when a corresponding slat,
of the same type in the same translation, exists in the reference assembly. To estimate
growth rates in our simulated systems, we note that the time between events during a kinetic
simulation can be determined by sampling a value of ∆t from an exponential distribution
whose rate parameter is the net rate of any event (attachment or detachment) occurring [27].
The growth time of a simulation can thus be calculated by summing the sampled ∆t values
for each event which occurs in the simulation. Growth rate is then simply estimated as the
number of slats which attached by the total growth time.

4.3 Results for ribbons simulated with fixed individual slat
concentrations

Figures 9a and 9b describe the estimated error and growth rates of the various ribbons
with a fixed individual slat concentration. Note that Gmc/Gse = 16 corresponds to the
melting temperature since with those parameters, the rate of slat attachment is equal to
the rate of detachment of slats with 16 bound glues. Consequently, the growth rate beyond
that point will be 0. Near the melting temperature, all ribbons exhibit very few erroneous

1 In our simulation code, this is implemented as a multiplier to the forward rate, rather than adjusting
Gmc, though the effect is the same.
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(a) Simulated error rates of our cooperativity 16
ribbons when individual slat concentrations are held
constant.

(b) Simulated growth rates of our cooperativity 16
ribbons on a log scale when individual slat concen-
trations are held constant.

Figure 9 Results for kinetic simulations of cooperativity 16 ribbons with fixed individual slat
concentrations. Results represent averages over 100 simulations.

slat attachments. Interestingly, the error rate for all ribbons remain essentially at 0 for
Gmc/Gse > 12. Additionally, growth rates for all ribbons in this range are essentially
equivalent between the differening slat counts. Together these results suggest that there
exists a range of temperatures in which the slat count 2 ribbons grow just as well as the
slat count 4 and 8 ribbons. As discussed further in Section 7.1 of the appendix, the growth
rate of the slat count 2 ribbons interestingly decreases when Gmc/Gse drows below around
9. This seems to be due to a high frequency of erroneous slat attachments which quickly
occupy most available stable attachment sites preventing further growth.

In general, the error rates for the systems drastically increase as the Gmc/Gse ratio drops
to the value corresponding to the auto-correlation values of the systems. This is because
for each system there exist one or more slats that can bind while in an incorrect/misaligned
location with a number of glues equal to that system’s auto-correlation value, and when that
is near or equal Gmc/Gse, those attachments are relatively stable. Thus, the prevalence of
errors rapidly increases near those values. Due to space constraints, more details of the types
of errors observed can be found in Section 7.1 of the appendix.

The results of these kSAM simulations imply that there are ranges of Gmc and Gse where
ribbon growth can remain almost entirely error-free even when the slat counts are reduced to
the nearly optimal value of 2. (Note that any system using cooperativity n with a slat count
of 1 would necessarily have auto-correlation value of n − 1, and thus a very narrow possible
range for Gmc/Gse with low errors.) Additionally, even with individual slat concentrations
held constant across systems, the growth rates were roughly equivalent across wide ranges of
Gmc/Gse, meaning that the lower absolute concentrations of slats (and thus lower arrival
rates of slats at frontier locations) was balanced by the higher likelihood of a slat type being
the correct type for a location in which it randomly arrives.

4.4 Results for ribbons simulated with fixed total slat concentrations
In addition to simulating the ribbons with fixed individual slat concentrations, we also
simulated the ribbons with total concentrations fixed. That is, systems using fewer unique
slats had higher concentrations for each slat. For these experiments, we used the same
slat designs as in the previous section (with details shown in Table 1), changing only slat
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(a) Error rates for cooperativity 16 ribbons using
slat counts of 2, 4, 8, and 16 using a fixed total
concentration of all slats in each system. Notice that
despite having different concentrations, the results
are near identical to those in Figure 9a.

(b) Growth rates for cooperativity 16 ribbons using
slat counts of 2, 4, 8, and 16 with fixed total con-
centration of all tiles in each system. Results are
plotted on a log scale. Growth rates are larger for
smaller slat counts suggesting that decreasing slat
counts allows for faster growth of ribbons.

Figure 10 Results for kinetic simulations of cooperativity 16 ribbons with fixed total slat
concentrations. Results are averaged over 100 simulations.

concentrations. This is in line with the ribbon experiments performed in [28]. Error rates
and growth rates are calculated using the same method for the analogous results with fixed
individual slat counts. Our results are summarized in Figure 10a and Figure 10b. While
decreasing slat counts caused ribbons to have narrower regions of correct growth, our results
show that under the right conditions, all ribbons were able to grow essentially error free.
Moreover, in our simulations, halving slat counts lead to growth rates increasing by an
average factor of 2.35 at Gmc/Gse = 11. In fact over the range of Gmc/Gse values where
all ribbons grew with little error, (i.e. above 11), the ratio of growth rates between ribbons
whose slat counts differed by a factor of 2 was consistently greater than 2 as illustrated
in Figure 19. In other words, halving slat counts more than doubled growth rates in our
simulations. Whether these results would translate into the lab is unclear, but regardless our
results suggest that decreasing slat counts can be a powerful tool for improving growth rates
without sacrificing much error. Importantly, this technique for reducing slat type counts
is applicable in general, to all designs using macrotiles. (For more detailed examination of
some of the errors observed, please see Section 7.2.)

5 Algorithmic self-assembly using crisscross slats

An n × n square composed of square tiles in the aTAM can self-assemble in a system which
uses a unique tile type at each location (a so-called fully-addressable or hard-coded system),
requiring n2 unique tile types. However, an algorithmic system can form a structure of the
exact same shape using an optimal (via an information theoretic argument) log(n)

log(log(n)) tile
types [1, 25], meaning that the hard-coded system uses exponentially more tile types than
the algorithmic system. As previously mentioned, reducing the number of unique component
types has the benefits of making a physical implementation via DNA (1) cheaper, (2) faster,
and (3) require fewer unique domains thus making their individual binding characteristics
more uniform. However, in order to leverage the power of algorithmic self-assembly, a slightly
different notion of cooperativity than previously discussed is necessary. While the previously
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Figure 11 An example of “algorithmic” cooperation, i.e. the inputs of one gadget’s slats are the
outputs of slats from two different gadgets. In this case, the yellow slats belong to one gadget and
the pink to another. They overlap in the location of the central macrotile to provide input to the
green slats. This is often referred to as across-the-gap cooperation. This process is analogous to the
algorithmic cooperation realized by square yellow and pink tiles cooperatively binding to a square
green tile.

Figure 12 An example gadget that receives its input in a macrotile at the bottom, then has slats
which propagate output to macrotiles to the top left and right.

discussed notion of cooperativity concerned the binding of a single slat to multiple other
(orthogonally oriented) slats in order to attach to an assembly, in the examples shown (e.g.
Figure 3) all slats bound to as input for one gadget were acting as output for a single other
gadget. This effectively provides only a single logical input to direct the growth of each
gadget. Algorithmic growth, on the other hand, requires that some gadgets receive input from
at least two distinct gadgets, allowing the combined information from both input gadgets to
direct the growth of the new gadget. (This was shown to be necessary by the requirement of
a minimum temperature value of 2 in the aTAM [19,20].) An example of such algorithmic
cooperativity implemented via slats in 4 × 4 macrotiles can be seen in Figure 11.

Figure 13 Order of growth of a gadget using algorithmic cooperation.
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Figure 14 Example of algorithmic error propagation through a gadget.

5.1 Kinetic simulations and error analyses of algorithmic systems

We hypothesized that our design for algorithmic systems using slats arranged in gadgets
composed of macrotiles should exhibit strong proofreading characteristics. The reasoning
for this is depicted in Figures 12–14 where (1) the input and output regions of a gadget are
depicted (Figure 12), (2) the ordering of correct growth is shown (Figure 13), and (3) the
number of concurrent errors that would need to occur and persist in order for slats to bind
with even half of the designed binding strength in order to propagate algorithmic errors is
exemplified Figure 14. In general, for a macrotile scheme at cooperativity k (i.e. using slats of
length 2k), at least k erroneous half-strength slat attachments are required for at least half of
a macrotile’s outputs to encode the wrong value. While, this is the same number of erroneous
attachments necessary to invalidate a square tile system using k × k block-replacement, our
macrotiles consist of only k slats rather than k2 square tiles. In other words, a square tile
block-replacement scheme requires a quadratic increase in tile complexity, compared to a
linear increase for our slat based macrotiles, to achieve the same amount of proofreading.

The discrete self-similar fractal pattern known as the Sierpinski triangle is a well-studied
pattern in aTAM and kTAM self-assembly, both theoretically [18] and experimentally [24].
This is due to its relatively simple algorithmic logic (each location represents a 0 or 1 bit
value that is the xor of the bits of its two input neighbors) that results in an infinite,
aperiodic pattern known as a discrete self-similar fractal. (See Section 7.3 for depictions
of the Sierpinski triangle.) We designed several macrotile-based algorithmic slat systems
which grow to form a Sierpinski triangle pattern using cooperativity values of 2, 4, and 8. In
total we simulated 6 designs, permuting cooperativity and slat counts. For cooperativity
8 triangles we tested slat counts of 2, 4, and 8; for cooperativity 4 triangles we tested slat
counts of 2 and 4, and our cooperativity 2 triangles used a slat count of 2. Concentrations
of individual slats was kept constant at 15nM per slat. The results of the simulations are
summerized in Figure 15a. Our results show that while decreasing slat counts increased error
rates consistently, there were still ranges of conditions under which all triangles grew with
little error. Interestingly, for the cooperativity 4 triangles, using a slat count of 2, growth
rates slowed significantly below a Gmc/Gse of 3. Much like the slat count 2 ribbons in
Section 4, we suspect that this is due to erroneous slats quickly filling up most of the stable
attachment sites preventing further growth. This is supported by the fact that growth rates
increase below a Gmc/Gse of 2 where stable attachment sites require fewer correct glues.
Regardless, our triangle systems exhibit a remarkable tolerance to infrequent errors as can
be seen in Figure 23 and Figure 24. These results support the idea that even for algorithmic
systems, under ideal conditions, reducing slat counts is possible without sacrificing much in
terms of error.
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(a) Rate of erroneous slat attachment in kinetic sim-
ulations of our algorithmic slat systems as a function
of Gmc/Gse. All systems exibited little error in con-
ditions near their respective melting points, where
Gmc/Gse equals the cooperativity value of the sys-
tem.

(b) Log growth rate during kinetic simulations of our
algorithmic slat systems as a function of Gmc/Gse.
Here growth rate is calculated as the number of slat
additions per unit of simulated time.

Figure 15 Results for kinetic simulations of Sierpinski triangle systems. Each data point represents
the average of 100 simulations.

6 Conclusions and Future Work

In this paper, we have introduced an abstract mathematical model for self-assembling systems
composed of slats that can combine in layers using high levels of cooperativity, and shown
how to design algorithmic self-assembling systems of slats within it. We have also introduced
a more physically realistic “kinetic” model capable of capturing many types of errors that
occur in laboratory implementations of self-assembling systems, and showed that we were able
to tune parameters of simulations within that model to match results of systems from [28].
We then presented a technique for reducing the number of unique slat types required to
build ribbon structures (that generalizes to all macrotile-based designs) and showed via
simulations that growth rates can be greatly accelerated while low error rates are maintained.
Finally, we presented a technique for designing algorithmic self-assembling systems of slats
and demonstrated it by designing a system that generates the Sierpinski triangle pattern,
which we also simulated to show that extremely low error rates can be maintained. Due to
the fact that algorithmic systems are capable of self-assembling structures while utilizing
only a logarithmic number of unique components relative to hard-coded structures, and
combined with the first technique for reducing slat types, our designs result in slat systems
with dramatically fewer slat types than previous designs. Simulations show that these systems
will therefore self-assemble much faster, and they will also be much easier and cheaper to
implement.

We will be implementing these and similar systems using DNA origami slats and comparing
the laboratory results to the results of our simulations, then updating the model (and our
designs) as necessary to refine the designs. Future work could include new designs of
macrotiles so that the inter-macrotile cooperativity needed for algorithmic self-assembly
is achieved through different slat patterns and/or orientations, and then simulations and
laboratory experiments to see which are best. Also, further examination of the types of errors
that occur during simulations and laboratory experiments may result in additional checks and
optimizations to be made for designs. It is our hope that crisscross slat based self-assembling
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systems will achieve high-levels of algorithmic sophistication while maintaining low enough
levels of algorithmic errors to realize much more of the theoretical potential that has been
pursued for so long.
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7 Appendix

This section contains technical details of results omitted from the main body of the paper
due to space constraints.

7.1 Details regarding ribbon systems with fixed individual slat
concentrations

Here we provide more in-depth analysis of the types and causes of errors that we observed in
the simulations of ribbons with varying amount of slat reuse in Section 4.3. We attempt to
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give our intuitions for why we think error and growth rates trend as they do. For example,
the auto-correlation value for the slat count 2 system is 8, and for that system error rates
begin to increase slowly as Gmc/Gse drops below about 12 until around 9.5 where it suddenly
begins to spike. However, and importantly for continued growth of the ribbons, while the
error rate in this region is distinctly larger than 0, we note that the errors present are
generally isolated and do little to affect the overall growth of the ribbon. Figure 16 depicts a
section taken from a typical slat count 2 ribbon at Gmc/Gse = 10. Erroneous slats can be
seen clearly in the assembly as they are generally not aligned with the others, but because
only a small number are present in each block, the further attachment of correct slats is not
impeded significantly.

Figure 16 A typical section from ribbons with slat count 2 at Gmc/Gse = 10.

For both the slat count 4 and 8 ribbons, overall growth rates decrease monotonically
with Gmc/Gse which is to be expected as higher values of Gmc/Gse correspond to higher
temperatures. Surprisingly however, the slat count 2 ribbons seem to exhibit significantly
reduced growth rates as Gmc/Gse decreases below about 9.5. Given that this region corre-
sponds to growth with a significant amount of errors, this suggests, that the erroneous slat
attachments eventually accumulate to the point where no further attachments are possible.
Indeed, when we look at the assemblies resulting from these simulations, we find that this is
the case as depicted in Figure 17a. This behavior is unique to the slat count 2 ribbons; for
ribbons with slat counts 4 and 8, erroneous attachment below the point where errors become
common rarely seems to result in stalled growth and instead typically results in uncontrolled
growth as depicted in Figure 17b. This discrepancy between slat count 2 ribbons and those
using slat counts of 4 or 8 can be explained by considering the point at which errors become
common. For slat count 2, errors become common below Gmc/Gse = 9. At this ratio, slats
still need several bound glues to attach stably and since growth is uncontrolled it’s likely that
all sites in which slats could attach stably quickly fill up. Compare this to the ribbons with
slat counts 4 and 8 where errors are only common when Gmc/Gse is relatively small. Since
only a few matching glues are required for stable attachment at these values of Gmc/Gse,
it’s much more likely that even during uncontrolled growth, there will be numerous sites in
which slats can attach stably.

7.2 Details regarding ribbon systems with fixed total slat concentrations
Here we provide a few additional details regarding what we observed in the simulations of
ribbons with varying amount of slat reuse in Section 4.4. Interestingly, the error rates for these
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(a) A typical assembly from the simulation of
our ribbons with slat count 2 at Gmc/Gse = 7.
Here, errors have accumulated and filled in most
sites surrounding the assembly which could admit
stable attachments.

(b) A typical section from the growing edge
of our simulated ribbons with slat count 8 at
Gmc/Gse = 2.5. Here errors are plentiful and
growth is uncontrolled.

Figure 17 Example assemblies from simulations of two different ribbon systems with cooperativ-
ity 16.

Figure 18 The growth front of a typical ribbon using slat count 2 with total slat concentration
fixed at 480nM.

ribbons didn’t seem to change significantly with the adjusted concentrations. Conversely, as
should be expected, growth rates increased as slat counts decreased. These results agree well
with the observations from [28] and suggest that by reducing slat counts further should be
a viable approach to designing slat systems which grow more quickly. Suprisingly, unlike
with the ribbons keeping individual slat counts fixed, growth of the ribbons using slat count
2 did not drop significantly when Gmc/Gse dropped below about 9. With individual slat
concentrations fixed, the slat count 2 ribbons, reached a point where no further stable
tile attachments were possible, however when total slat concentrations were fixed across
ribbons, the increase to the individual slat concentrations allowed continued growth despite
erroneous attachments being dominant. Figure 18 illustrates the growth front of such a
ribbon when total slat concentrations were fixed which can be contrasted with Figure 17a
for fixed individual slat counts.
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Figure 19 Ratios between growth rates for ribbons with slat counts differing by a factor of 2.
Notice that this ratio never drops below 2 in the illustrated range, representing ideal conditions for
error-free growth.

7.3 The Sierpinski triangle in tiles and slats
An example of a portion of the Sierpinski triangle self-assembled from aTAM tiles is shown
in Figure 20, and (one layer of) our implementation with slats using cooperativity 4 is shown
in Figure 22. This construction uses a gadget for each tile type from Figure 20, which can be
seen in Figure 21.

Figure 20 The Sierpinski triangle pattern. (left) The four “logic” tiles which have their inputs
on the bottom and outputs on the top. The output bits are the logical “exclusive or” (xor) of the
input bits, (middle) A portion of the infinite assembly, (right) The boundary tiles.

Figure 21 The gadgets of the Sierpinski triangle construction with slats using cooperativity 4
analogous to the tiles of the aTAM construction in Figure 20.

DNA 29
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Figure 22 The Sierpinski triangle pattern made from a system of slats with cooperativity 4
(i.e. total length 8 each except for some boundary slats which are length 18). The gadgets of the
construction are shown in Figure 21. Only the layer of vertical slats is shown, for clarity.

Figure 23 Growth errors during growth of a cooperativity 4 Sierpinski triangle using a slat count
of 4 at Gmc/Gse = 2.5. Notice that some erroneous attachments are visible, leaving gaps where
some horizontal slats should be, yet growth of the Sierpinski triangle pattern continues unaffected.
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Figure 24 A zoomed out view of the complete assembly formed by the same simulation as
illustrated in Figure 23. Here, horizontal slats are hidden so that the Sierpinski triangle pattern of
the verical slats is more visible. This system was grown at Gmc/Gse = 2.5 where the probability of
growth errors was distinctly non-zero. Still, the Sierpinski triangle pattern grows flawlessly.
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