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Abstract
The field of chemical computation attempts to model computational behavior that arises when
molecules, typically nucleic acids, are mixed together. By modeling this physical phenomenon at
different levels of specificity, different operative computational behavior is observed. Thermodynamic
binding networks (TBNs) is a highly abstracted model that focuses on which molecules are bound
to each other in a “thermodynamically stable” sense. Stability is measured based only on how many
bonds are formed and how many total complexes are in a configuration, without focusing on how
molecules are binding or how they became bound. By defocusing on kinetic processes, TBNs attempt
to naturally model the long-term behavior of a mixture (i.e., its thermodynamic equilibrium).

We study the problem of signal amplification: detecting a small quantity of some molecule and
amplifying its signal to something more easily detectable. This problem has natural applications
such as disease diagnosis. By focusing on thermodynamically favored outcomes, we seek to design
chemical systems that perform the task of signal amplification robustly without relying on kinetic
pathways that can be error prone and require highly controlled conditions (e.g., PCR amplification).

It might appear that a small change in concentrations can result in only small changes to the
thermodynamic equilibrium of a molecular system. However, we show that it is possible to design a
TBN that can “exponentially amplify” a signal represented by a single copy of a monomer called the
analyte: this TBN has exactly one stable state before adding the analyte and exactly one stable
state afterward, and those two states “look very different” from each other. In particular, their
difference is exponential in the number of types of molecules and their sizes. The system can be
programmed to any desired level of resilience to false positives and false negatives. To prove these
results, we introduce new concepts to the TBN model, particularly the notions of a TBN’s entropy
gap to describe how unlikely it is to be observed in an undesirable state, and feed-forward TBNs
that have a strong upper bound on the number of polymers in a stable configuration.

We also show a corresponding negative result: a doubly exponential upper bound, meaning that
there is no TBN that can amplify a signal by an amount more than doubly exponential in the number
and sizes of different molecules that comprise it. We leave as an open question to close this gap
by either proving an exponential upper bound, or giving a construction with a doubly-exponential
difference between the stable configurations before and after the analyte is added.

Our work informs the fundamental question of how a thermodynamic equilibrium can change
as a result of a small change to the system (adding a single molecule copy). While exponential
amplification is traditionally viewed as inherently a non-equilibrium phenomenon, we find that in a
strong sense exponential amplification can occur at thermodynamic equilibrium as well – where the
“effect” (e.g., fluorescence) is exponential in types and complexity of the chemical components.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases Thermodynamic binding networks, signal amplification, integer programming

Digital Object Identifier 10.4230/LIPIcs.DNA.29.8

Related Version Full Version: https://arxiv.org/abs/2307.01550

Funding Joshua Petrack: NSF grants 1900931 and 1844976.
David Soloveichik: NSF grant 1901025, Sloan Foundation Research Fellowship.
David Doty: NSF grants 2211793, 1900931, and 1844976.

© Joshua Petrack, David Soloveichik, and David Doty;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on DNA Computing and Molecular Programming (DNA 29).
Editors: Ho-Lin Chen and Constantine G. Evans; Article No. 8; pp. 8:1–8:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jgpetrack@ucdavis.edu
https://orcid.org/0009-0000-9088-9437
mailto:david.soloveichik@utexas.edu
https://users.ece.utexas.edu/~soloveichik/
https://orcid.org/0000-0002-2585-4120
mailto:doty@ucdavis.edu
https://web.cs.ucdavis.edu/~doty/
https://orcid.org/0000-0002-3922-172X
https://doi.org/10.4230/LIPIcs.DNA.29.8
https://arxiv.org/abs/2307.01550
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


8:2 Thermodynamically Driven Signal Amplification

1 Introduction

Detecting a small amount of some chemical signal, or analyte, is a fundamental problem
in the field of chemical computation. The current state-of-the-art in nucleic acid signal
amplification is the polymerase chain reaction (PCR)[9]. By using a thermal cycler, PCR
repeatedly doubles the amount of the DNA strand that is present. One downside is the need
for a PCR machine, which is expensive and whose operation can be time-consuming. The
advantages of PCR are that it can reliably detect even a single copy of the analyte if enough
doubling steps are taken, and it is fairly (though not perfectly) robust to incorrect results.
Recent work in DNA nanotechnology achieves “signal amplification” through other kinetic
processes involving pure (enzyme-free) DNA systems, such as hybridization chain reaction
(HCR) [4], classification models implemented with DNA [7], hairpin assembly cascades [10],
and “crisscross” DNA assembly [8].

Although highly efficacious, PCR and these other techniques essentially rely on kinetic
control of chemical events, and the thermodynamic equilibria of these systems are not
consistent with their desired output. Can we design a system so that, if the analyte is
present, the thermodynamically most stable state of the system looks one way, and if the
analyte is absent, the thermodynamically most stable state looks “very different” (e.g.,
many fluorophores have been separated from quenchers)? Besides answering a fundamental
chemistry question, such a system is potentially more robust to false positives and negatives.
It also can be simpler and cheaper to operate: for many systems, heating up the system and
cooling it down slowly reaches the system’s thermodynamic equilibrium.

We tackle this problem of signal detection in the formal model of Thermodynamic
Binding Networks (TBNs) [5, 3]. The TBN model of chemical computation ignores kinetic
and geometric constraints in favor of focusing purely on configurations describing which
molecules are bound to which other molecules. A TBN yields a set of stable configurations,
the ways in which monomers (representing individual molecules, typically strands of DNA)
are likely to be bound together in thermodynamic equilibrium. A TBN performs the task of
signal amplification if its stable configurations, and thus the states in which it is likely to be
observed at equilibrium, change dramatically in response to adding a single monomer. TBNs
capture a notion of what signal amplification can look like for purely thermodynamic chemical
systems, without access to a process like PCR that repeatedly changes the conditions of
what is thermodynamically favorable.

This paper asks the question: if we add a single molecule to a pre-made solution, how
much can that change the solution’s thermodynamic equilibrium? To make the question
quantitative, we define a notion of distance between thermodynamic equilibria, and we
consider scaling with respect to meaningful complexity parameters. First, we require an
upper limit on the size of molecules in the solution and the analyte, as adding a single very
large molecule can trivially affect the entire solution. Large molecules are also expensive to
synthesize, and for natural signal detection the structure of the analyte is not under our
control. Second, we require an upper limit on how many different types of molecules are
in the solution, as it is expensive to synthesize new molecular species (though synthesizing
many copies is more straightforward).

Our main result is the existence of a family of TBNs that amplify signal exponentially.
In these TBNs, there are exponentially many free “reporter” monomers compared to the
number of types of monomers and size of monomers. In the absence of the analyte, this
TBN has a unique stable configuration in which all reporter monomers are bound. When a
single copy of the analyte is added, the resulting TBN has a unique stable configuration in
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Figure 1 A simple thermodynamic binding network T with four monomers. Site types are
differentiated by color. Bonds are shown by juxtaposing monomers so that unstarred sites cover
starred sites. Left: the all-singleton configuration melt(T ) with four polymers. Monomers are labeled
by their formal identities for reference. Middle: a configuration with two polymers. As all starred
sites are covered, the configuration is saturated. Right: a configuration with three polymers. As this
has the most possible polymers for a saturated configuration, it is stable.

which all reporter monomers are unbound. These TBNs are parameterized by two values:
the first is the amplification factor, determining how many total reporter molecules are
freed. The second is a value we call the system’s “entropy gap”, which determines how
thermodynamically unfavorable a configuration of the system would need to be in order for
reporters to be spuriously unbound in the absence of the analyte (false positive) or spuriously
bound in its presence (false negative).

We also show a corresponding doubly exponential upper bound on the signal amplification
problem in TBNs: that given any TBN, adding a single monomer can cause at most a doubly
exponential change in its stable configurations. We leave as an open question to close this
gap: either proving an exponential upper bound, or giving a TBN with a doubly-exponential
amplification factor.

Our work can be compared to prior work on signal amplification that exhibits kinetic
barriers. For example, in reference [8], a detected analyte serves as a seed initiating self-
assembly of an arbitrarily long linear polymer. In the absence of the analyte, an unlikely
kinetic pathway is required for spurious nucleation of the polymer to occur. However, in
that system, false positive configurations are still thermodynamically favorable; if a critical
nucleus is able to overcome the kinetic barrier and assemble, then growth of the infinite
polymer is equally favorable as from the analyte. In contrast, in our system, there are no
kinetic paths, however unlikely, that lead to an undesired yet thermodynamically favored
configuration.

2 Definitions

2.1 General TBN Definitions
A site type is a formal symbol such as a, and has a complementary type, denoted a∗, with the
interpretation that a binds to a∗ (e.g., they could represent complementary DNA sequences).
We also refer to site types as domain types, and sites as domains. We call a site type such as
a an unstarred site type, and a∗ a starred site type. A monomer type is a multiset of site
types (e.g., a DNA strand consisting of several binding domains); for example monomer type
m⃗ = {a, a, a, b, c∗} has three copies of site a, one of site b, and one of site c∗. A TBN [5, 2]
is a multiset of monomer types. We call an instance of a monomer type a monomer and an
instance of a site type a site.

DNA 29



8:4 Thermodynamically Driven Signal Amplification

We take a convention that, unless otherwise specified, TBNs are star-limiting: for each
site type, there are always at least as many sites of the unstarred type as the starred type
among all monomers. Given a TBN, this can always be enforced by renaming site types to
swap unstarred and starred types, which simplifies many of the definitions below.

A configuration of a TBN is a partition of its monomers into submultisets called polymers.
We say that a site type (or a site) on a polymer is uncovered if, among the monomers in that
polymer, there are more copies of the starred version of that site type than the unstarred
version (otherwise covered). A polymer is self-saturated if it has no uncovered site types. A
configuration is saturated if all its polymers are self-saturated. A configuration α of a TBN
T is stable if it is saturated, and no saturated configuration of T has more polymers than α.
Figure 1 shows an example TBN.

An equivalent characterization of stability is in terms of merges rather than polymer
counts. We say that a merge is the process of taking two polymers in a configuration and
making a new configuration by joining them into one polymer; likewise a split is the process
of taking one polymer in a configuration and making a new configuration by splitting it
into two polymers. Maximizing the number of polymers in a saturated configuration is
equivalent to minimizing the number of merges of two polymers necessary to reach a saturated
configuration. To this end, some additional notation:

▶ Definition 2.1. The distance to stability of a saturated configuration σ is the number of
(splits minus merges) necessary to get from σ to a stable configuration.

Note that this number will be the same for any path of splits and merges, as all stable
configurations have the same number of polymers.

Equivalently, distance to stability is the number of polymers in a stable configuration
minus the number of polymers in σ. We only consider this value for saturated configurations
to ensure it is positive and because we may interpret it as a measure of how unlikely we are
to observe the network in a given state under the assumption that enthalpy matters infinitely
more than entropy.

The following definitions are not restricted to saturated configurations.

▶ Definition 2.2. Given a TBN T , we say that the all-melted configuration, denoted melt(T ),
is the configuration in which all monomers are separate.

▶ Definition 2.3. Given a configuration α in a TBN T , its merginess m(α) is the number
of merges required to get from melt(T ) to α (or equivalently, the number of monomers in T

minus the number of polymers in α).

▶ Definition 2.4. Given a configuration α in a TBN T , its starriness s(α) is the number of
polymers in α which contain at least one uncovered starred site.

We observe that α is saturated if and only if s(α) = 0.

▶ Definition 2.5. Given configurations α and β in a TBN T , we say α ⪯ β (equivalently,
β ⪰ α) if it is possible to reach β from α solely by splitting polymers zero or more times.

We read α ⪯ β as “α splits to β”. Observe that if α ⪰ β, then we can reach β from α in
exactly m(β) − m(α) merges. In general, we may order the merges required to go from one
configuration to another in whatever way allows the easiest analysis.
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2.2 Comparing TBNs
We need some notion of how “different” two TBNs are, so that we can quantify how much a
TBN changes after adding a single monomer.

▶ Definition 2.6 (distance between configurations). Let α and β be two configurations of
a TBN, or of two TBNs using the same monomer types. We say that the distance d(α, β)
between them is the L1 distance between the vectors of their polymer counts. That is, it is
the sum over all types of polymers of the difference between how many copies of that polymer
are in α and in β.

▶ Definition 2.7 (distance between TBNs). Given TBNs T and T ′, let C and C′ be their
stable configurations. Define the distance between T and T ′ as

d(T, T ′) = min
α∈C,α′∈C′

d(α, α′). (1)

Note that this distance is not a metric.1 Rather, it is a way to capture how easily we
can distinguish between two TBNs; even the closest stable configurations of T and T ′ have
distance d(T, T ′), so we should be able to distinguish any stable configuration of one of them
from all stable configurations of the other by that amount.

Note that this condition does not directly imply a stronger “experimentally verifiable”
notion of distance, namely that there is some “reporter” monomer which is always bound
in one TBN and always free in the other. However, the system we exhibit in this paper
does also satisfy this stronger condition. We focus on the distance given here, as it is more
theoretically general and our upper bound result in Section 4 apply to it.

We also need a notion of how likely we are to observe a configuration of a TBN that is
not stable, in order to have a notion of the system being robust to random noise. If a TBN
has one stable configuration but many other configurations that are nearly stable, we would
expect to observe it in those configurations frequently, meaning that in practice we may not
be able to discern what the stable configuration is as easily.

We work under the assumption that enthalpy matters infinitely more than entropy, so that
we may assume that only saturated configurations need to be considered. This assumption is
typical for the TBN model, and can be accomplished practically by designing binding sites
to be sufficiently strong. Under this paradigm, a configuration’s distance to stability is a
measure of how unlikely we are to observe it. This motivates the following definition:

▶ Definition 2.8 (entropy gap). Given a TBN T , we say that it has an entropy gap of k if,
for any saturated configuration α of T , one of the following is true:
1. α is stable.
2. There exists some stable configuration β such that α ⪯ β.
3. α has distance to stability at least k.

Note that by this definition, all TBNs trivially have an entropy gap of one. Note as well
that stable configurations are technically also included in the second condition by choosing
β = α, but we list them separately for emphasis.

The second condition is necessary in this definition because any TBN necessarily has some
configurations that have distance to stability one, simply by taking a stable configuration
and arbitrarily merging two polymers together. These configurations are unavoidable but

1 In particular, it fails to satisfy the triangle inequality, since T could have a stable configuration close
to one of T ′, so d(T, T ′) = 1, and T ′ could have a different stable configuration close to one of T ′′, so
d(T ′, T ′′) = 1, but T and T ′′ could have no close stable configurations, so d(T, T ′′) > 2.
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8:6 Thermodynamically Driven Signal Amplification

are not likely to be problematic in a practical implementation, because a polymer in such
a configuration should be able to naturally split itself without needing to interact with
anything else – these configurations will never be local energy minima. Reference [2] discusses
self-stabilizing TBNs in which all saturated configurations have this property, equivalent to
an entropy gap of ∞.

2.3 Feed-Forward TBNs
▶ Definition 2.9. We say that a configuration α of a TBN is feed-forward if there is an
ordering of its polymers such that for each domain type, all polymers with an excess of
unstarred instances of that domain type occur before all polymers with an excess of starred
instances of that domain type.

We say that a TBN T is feed-forward if there is an ordering of its monomer types with
this same property – that is, T is feed-forward if melt(T ) is feed-forward.

For example, the TBN {(ab), (a∗c), (b∗c∗)} is feed-forward with this ordering of monomers
because the a, b and c come strictly before the a∗, b∗ and c∗ respectively. Note that not all
configurations of a feed-forward TBN are necessarily feed-forward; for instance, merging the
first and third monomers in this TBN gives a non-feed-forward configuration.

An equivalent characterization can be obtained by defining a directed graph on the
polymers of a configuration α and drawing an edge between any two polymers that can
bind to each other, from the polymer with an excess unstarred binding site to the polymer
with a matching excess starred binding site (or both directions if both are possible). The
configuration α is feed-forward if and only if this graph is acyclic, and the ordering of
polymers can be obtained by taking a topological ordering of its vertices.

The main benefit of considering feed-forward TBNs is that we can establish a strong
lower bound on the merginess of stable configurations. If any TBN T has n monomers that
have starred sites, it will always take at least n

2 merges to cover all those sites, because each
monomer must be involved in at least one merge and any merge can at most bring a pair of
them together. For instance, the non-feed-forward TBN {{a, b∗}, {a∗, b}} can be stabilized
with a single merge. In feed-forward TBNs, this bound is even stronger, as there is no way
to “make progress” on covering the starred sites of two different monomers at the same time.

▶ Lemma 2.10. If a configuration α is feed-forward, then any saturated configuration σ such
that α ⪰ σ satisfies m(σ) − m(α) ≥ s(α). That is, reaching σ from α requires at least s(α)
additional merges.

Intuitively, in a feed-forward configuration, the best we can possibly do is to cover all of
the starred sites on one polymer at a time. We can never do better than this with a merge
like merging {a, b∗} and {a∗, b} that would let two polymers cover all of each others’ starred
sites.

Proof. Given a feed-forward configuration α, let L be the ordered list of polymers from α

being feed-forward. Partition L into separate lists (keeping the ordering from L) based on
which polymers are merged together in σ. That is, for each fully merged polymer P ∈ σ

create a list LP of the polymers from α that are merged to form P, and order this list based
on the ordering from L. We can order the merges to reach σ from α as follows: repeatedly
(arbitrarily) pick a polymer P from σ and merge all of the polymers in LP together in order
(merge the first two polymers in LP, then merge the third with the resulting polymer, and
so on).
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This sequence of merges gives us a sequence of configurations α = α1, α2, . . . , αℓ = σ. We
observe that for 1 ≤ i ≤ ℓ − 1, we have s(αi) − s(αi+1) ≤ 1. That is, each merge can lower
the starriness by at most one. We know this because each merge is merging a polymer Q ∈ α

with one or more other already-merged polymers from α that all come before Q in L. This
means Q cannot cover any starred sites on any monomers it is merging with. The only way
for the starriness of a configuration to decrease by more than 1 in a single merge is for the
two merging polymers to cover all of each others’ starred sites, so it follows that each merge
in this sequence lowers starriness by at most 1. From this it follows that we need at least
s(α) merges to get to σ, because s(σ) = 0. ◀

Letting α = melt(T ) (note m(α) = 0) gives the following corollary.

▶ Corollary 2.11. Any saturated configuration σ of a feed-forward TBN T satisfies m(σ) ≥
s(melt(T )).

Because stable configurations are saturated configurations with the minimum possible
merginess, this bound gives the following corollary.

▶ Corollary 2.12. If a saturated configuration σ of a feed-forward TBN T satisfies m(σ) =
s(melt(T )), then σ is stable.

3 Signal Amplification TBN

3.1 Amplification Process
In this section, we prove our main theorem. This theorem shows the existence of a TBN
parameterized by two values n (the amplification factor) and k (the entropy gap). Intuitively,
this TBN amplifies the signal of a single monomer by a factor of 2n, with any configurations
that give “incorrect” readings having Ω(k) distance to stability. Our proof will be constructive.

▶ Theorem 3.1. For any integers n ≥ 1, k ≥ 2, there exists a TBN T = Tn,k and monomer
a (the analyte) such that if T a = T a

n,k is the TBN obtained by adding one copy of a to Tn,k,
then
1. T and T a each have exactly one stable configuration, denoted σn,k and σa

n,k respectively,
with d(σn,k, σa

n,k) ≥ 2n. In particular, there are k monomer types with 2n−1 copies each,
with all of these monomers bound in σn,k and unbound in σa

n,k.
2. T and T a each have an entropy gap of ⌊ k

2 ⌋ − 1.
3. T and T a each use O(nk) total monomer types, O(nk2) domain types, and O(k2) domains

per monomer.
The first condition implies that Tn,k can detect a single copy of a with programmable
exponential strength - there is only one stable configuration either with or without a, and
they can be distinguished by an exponential number of distinct polymers. Note that this is
even stronger than saying that d(Tn,k, T a

n,k) ≥ 2n, as that statement would allow each TBN
to have multiple stable configurations. The second condition implies that the system has
a programmable resilience to having incorrect output, because configurations other than
the unique stable ones in each case are “programmably” unstable (based on k), and thus
programmably unlikely to be observed. Note that throughout this paper we will use k

2
instead of ⌊ k

2 ⌋ for simplicity, as we are concerned mainly with asymptotic behavior. The third
condition establishes that the system doesn’t “cheat” - it doesn’t obtain this amplification
by either having an extremely large number of distinct monomers, or by having any single
large monomers.
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Figure 2 The unique stable configuration σ2,3 of T2,3, with 19 polymers. All starred sites are
visually “covered” by unstarred sites on another monomer. The parts of the diagram are numbered
by the order that the signal from the analyte will cascade through them. Parts (1) and (2) form the
“first half”, where the signal is doubled at each step. Parts (3) and (4) form the “second half”, where
the signal converges so that it can get an “entropic payoff” from part (5).
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Figure 3 The unique stable configuration σa
2,3 of T a

2,3. The arrow shows the conceptual order in
which the analyte’s signal has been propagated, with a covering all s1,j , which cover all s2,j , which
cover all s′

2,j , which cover all s′
1,j , which finally cover p∗. This configuration has 21 polymers, 2

more than σ2,3: conceptually, one of these is from adding the analyte and the other is from the
analyte’s signal cascading through the layers to release P1 and P2 at the cost of one merge. As they
have no polymers in common, d(σ2,3, σa

2,3) = 19 + 21 = 40.
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The entire TBN Tn,k is depicted in Figures 2 and 3 with n = 2 and k = 3. The former
shows the unique stable configuration before adding the analyte, and the latter shows the
unique stable configuration after adding the analyte. For comparison, Figure 7 depicting the
pre-analyte configuration with n = 3 and k = 2 is shown in the appendix.

We will start by constructing the first half of Tn,k and describing “how it works”. The
monomers in this first half are the driving force that allows Tn,k and T a

n,k to have exponentially
different stable configurations.

The first half of Tn,k has monomer types ui,j and si,j (named as those with only unstarred
sites, and those with both starred and unstarred sites) for 1 ≤ i ≤ n, 1 ≤ j ≤ k. It has
domain types denoted as triples (i, j, ℓ) for 1 ≤ i ≤ n + 1, 1 ≤ j, ℓ ≤ k. Each ui,j monomer
has k different unstarred domains, one of each (i, j, ℓ) for each 1 ≤ ℓ ≤ k. Each si,j monomer
has a starred copy of each domain in ui,j , and additionally has two copies of each unstarred
domain (i + 1, ℓ, j) for each 1 ≤ ℓ ≤ k (note that here the second domain type parameter
varies instead of the third). For each ui,j and si,j monomer, there are 2i−1 copies. We can
conceptually break these monomers into n “layers”, each consisting of all monomers with the
same value for their first parameter. The analyte we wish to detect, a, is a monomer that
has one copy of each unstarred domain (1, j, ℓ), 1 ≤ j, ℓ ≤ k.

Conceptually, when the analyte is absent, the most efficient way for all starred sites on
each si,j to be covered is by the unstarred sites on a corresponding ui,j , as seen in Figure 2.
Although the TBN model is purely thermodynamic, we can conceptualize that when the
analyte is added, its signal can propagate “kinetically” through each layer. In the first layer,
it can “displace” the k different u1,j monomers and bind to all of the s1,j monomers. In
doing so, it brings together all the unstarred sites on all of the s1,j monomers. Having been
brought together, these sites “look like” two copies of the analyte, but with the domains from
layer 2 instead of layer 1. Thus, this polymer is then able to displace two copies of each u2,j

from their corresponding s2,j monomers, thus bringing all of the s2,j together. This in turn
now looks like four copies of the analyte for the domains in the third layer, and so on. Each
layer allows this polymer to assimilate exponentially more si,j , thus freeing exponentially
many ui,j . Each of these displacement steps involves an equal number of splits and merges.

3.2 Convergence Process
So far, the TBN described has exactly one stable configuration before adding the analyte,
and it performs the task of amplifying signal by having the potential to change its state
exponentially when the analyte is added. However, there is also a stable configuration after
adding the analyte in which nothing else changes, and many others in which only a small
amount of change occurs. We must guaranteed that the analyte’s signal “propagates” through
all of the layers.

To design the system to meet this requirement, we observe that all exponentially many
monomers that have been brought together must contribute to some singular change in the
system that gains some entropy, to spur the signal into propagating. The typical way to
accomplish this in a TBN is by having monomers that have been brought together displace a
larger number of monomers from some complex at the cost of a smaller number of merges.
Because the pre-analyte TBN has an entropy gap of k − 1 in this design so far, we can afford
to give the TBN with the analyte an “entropic payoff” of k

2 . When the analyte is absent,
this payoff is weak enough that there will still be an entropy gap of k

2 − 1; when the analyte
is present, the existence of this payoff will force the signal to fully propagate, and will give
the TBN with the analyte an entropy gap of k

2 − 1 by making it so that any configurations
in which this payoff is not achieved are also far away from stable.
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Another challenge is that we cannot simply detect all our exponentially many conjoined
monomers by binding them all to a single exponentially large monomer, because we need to
bound the size of the largest monomer in the system. Our conceptual strategy for overcoming
this is as follows: the signal will converge in much the same way as it was amplified. In the
amplification step, one set of domains coming together in one layer was enough to cause two
of them to come together in the next layer. In this convergence step, two sets of domains in
one layer will have to converge together to activate one set in the next layer. This convergence
ends in bringing together a set of binding sites that is of the same size as the analyte, which
can then directly displace some monomers to gain k

2 total polymers.
We now fully define Tn,k. We start with the already described ui,j and si,j . To these,

we first add monomer types u′
i,j and s′

i,j for 1 ≤ i ≤ n, 1 ≤ j ≤ k. These monomers are the
“converging” equivalents of ui,j and si,j . Conceptually, they will activate in the reverse order:
two copies of each s′

i,j for 1 ≤ j ≤ k, when brought together, will be able to bring together
one copy of each s′

i−1,j for 1 ≤ j ≤ k.
Each u′

i,j monomer has 2k unstarred domains: two copies each of domains (i + 1, j, ℓ)′

for each 1 ≤ ℓ ≤ k. Each s′
i,j has a starred copy of each of the 2k domains in u′

i,j and
additionally has one unstarred domain (i, ℓ, j)′ for 1 ≤ ℓ ≤ k (note again here that the second
domain type parameter varies instead of the third). One exception is the monomers u′

n,j

and s′
n,j (the first ones to activate) which use domains (n + 1, j, ℓ) and (n + 1, ℓ, j) instead of

(n + 1, j, ℓ)′ and (n + 1, ℓ, j)′ respectively so that they can interact with sn,j monomers that
have been brought together. Each monomer u′

i,j and s′
i,j has 2i−1 copies.

Finally, we add “payoff” monomers that will yield an entropic gain of k
2 when the signal

from the analyte has cascaded through every layer. This choice of k
2 is arbitrary – a similar

design works for any integer between 1 and k. Choosing a higher value leads to a higher
entropy gap after adding the analyte and a lower entropy gap before adding it, and vice
versa choosing a lower value. For simplicity of definitions we will assume k is even (though
figures are shown with k = 3, which shows how to generalize to odd k).

We add one monomer p∗, which contains the k2 sites (1, ℓ1, ℓ2)′∗ for 1 ≤ ℓ1, ℓ2 ≤ k. Note
that this monomer can be replaced with k monomers of size k (in which case a would be the
only monomer with more than 3k domains), but doing so makes the proof more complex.
The idea is that when all s′

1,j monomers are already together (as they can be “for free” when
a is present), they can cover p∗ in one merge; if they are apart, this requires k merges.
In order to make this favorable to happen when they’re already together but unfavorable
when they’re initially apart, we add another way to cover p∗ that takes k

2 merges. This is
accomplished via monomers pj for 1 ≤ j ≤ k

2 . Each pj contains the 2k sites (1, 2j − 1, ℓ)
and (1, 2j, ℓ) for 1 ≤ ℓ ≤ k. We can interpret this geometrically as p∗ being a square, the
s′

1,j covering it by rows, and the pj covering it by two columns at a time. This completes
the definition of Tn,k. Recall T a

n,k is Tn,k with one added copy of a.

▶ Lemma 3.2. Tn,k has exactly one stable configuration σn,k.

▶ Corollary 3.3. Tn,k has an entropy gap of k
2 − 1.

▶ Lemma 3.4. T a
n,k has exactly one stable configuration σa

n,k, and T a
n,k has an entropy gap

of k
2 − 1.

Proofs of these results are left to the appendix.
These results together complete the proof of Theorem 3.1: each of the more than 2n u

and u′ monomers (which serve as reporters) are bound in σn,k and unbound in σa
n,k, implying

their distance is more than 2n. The largest monomer is a with k2 domains, and there are
(2n + 1)k2 domain types and 4nk monomer types for the si,j , ui,j , s′

i,j , and u′
i,j , plus 2 + k

2
more for a, p∗, and pj .



J. Petrack, D. Soloveichik, and D. Doty 8:11

3.3 Avoiding Large Polymer Formation

The TBN T a
n,k will, in the process of amplifying the signal of the analyte, form a single

polymer of exponential size. This isn’t an issue in the theoretical TBN model, but it is a
practical issue because there is no way to design these monomers so that this large polymer
would form.2

This can be solved by adding “translator gadgets”. These gadgets’ job is to mediate
between consecutive layers. Instead of monomers from one layer directly binding to monomers
from the next layer, they can split apart these translator gadgets with half of the gadget going
to each layer. In exchange, the TBN will no longer have exactly one stable configuration
when the analyte is present, as in the TBN model, the use of these translator gates will be
purely “optional”.

We define a new TBN T̃n,k (as well as T̃ a
n,k, which is obtained by adding the analyte a).

We start with the TBN Tn,k. To assist with the amplification step, we add monomer types
gi and g∗

i for each 2 ≤ i ≤ n. Each gi consists of one copy of each unstarred domain (i, j, ℓ)
for each 1 ≤ j, ℓ ≤ k. Each g∗

i consists of the same domains but all starred. Each of these
monomers has 2i−1 copies. The use of these gadgets can be seen in Figure 4.

To assist with the convergence step, we add monomer types hi and h∗
i for each 2 ≤ i ≤ n+1.

Each hi has two copies of each unstarred domain (i, j, ℓ)′ for each 1 ≤ j, ℓ ≤ k. Each h∗
i has

only one copy of each of the corresponding starred domains. There are 2i−1 copies of each
hi and 2i copies of each h∗

i . The use of these gadgets can be seen in Figure 5.

▶ Theorem 3.5. Let T̃ = T̃n,k and T̃ a = T̃ a
n,k be as described. Then:

1. T̃ has exactly one stable configuration σ̃n,k, and d(T̃ , T̃ a) > 2n.
2. T̃ has an entropy gap of k

2 , and T̃ a has the property that all of its configurations α that
are within distance to stability k

2 satisfy d(σ̃n,k, α) > 2n.
3. T̃ = T̃n,k uses O(nk) total monomer types, O(nk2) domain types, and O(k2) domains

per monomer.
4. The unique stable configuration of T̃ has O(k) monomers in its largest polymer. There is

a stable configuration of T̃ a sharing this property.

Compared to Theorem 3.1, this theorem trades away the condition that both TBNs have
only a single stable configuration in exchange for the post-analyte TBN having a configuration
with O(k) monomers per polymer, whereas the previous construction has roughly k · 2n

monomers in a single polymer.
The second condition is somewhat complex. This complexity’s necessity is explained

by Figure 5. In that figure, if we propagate signal without using the translator gadget, we
arrive at a configuration that is saturated but has only one fewer complex than a stable
configuration. However, such near-stable configurations are still very different from the stable
configuration of T̃n,k, so it is still possible to distinguish the two TBNs with an amplification
factor proportional to 2n and a resilience to false positives and negatives proportional to k.

The proof of this theorem is very similar to that of Theorem 3.1, and is also left to the
appendix.

2 The binding graph of the monomers within this giant polymer contains many complete k-ary trees of
depth n as subgraphs. If each of the nodes of this graph is a real molecule that takes up some volume,
it will be impossible to embed the whole graph within 3-dimensional space as n grows.
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Figure 4 The amplifying translator gadget, before and after it is triggered to propagate the
signal forward by one layer. When s1,1, s1,2 and s1,3 have been brought together, instead of directly
replacing all the u2,j monomers, they can split two {g2, g∗

2} complexes, and the g2 monomers can
replace the u2,j monomers.

s’2,1 s’2,2 s’2,3 s’2,1 s’2,2 s’2,3

u’1,1

u’1,2

u’1,3

s’1,1

s’1,2

s’1,3

h2 (top)

h3h3

h2* (bottom) h2* (bottom)

s’2,1 s’2,2 s’2,3 s’2,1 s’2,2 s’2,3

u’1,1

u’1,2

u’1,3

s’1,1

s’1,2

s’1,3

h3h3
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Figure 5 The converging translator gadget, before and after it is triggered to propagate the
signal forward by one layer. When two copies each of s′

2,1, s′
2,2 and s′

2,3 have been brought together
into two complexes, instead of directly replacing all the u′

1,j monomers, they can split a {h2, h∗
2, h∗

2}
complex, and the h2 monomer can replace the u′

1,j monomers.
Note that in this image, the only way to propagate the signal efficiently would be to use the translator
gadget; not using it will be one unit of entropy less efficient, requiring 3 splits and 4 merges, showing
that this TBN no longer has an entropy gap. If instead we hadn’t used the translator gadgets in
the previous layer, then all six s′

2,j monomers in this image would be together in a single complex
rather than on two separate complexes, in which case it would be equally efficient to either use this
translator gadget or directly displace the u′

1,j .
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4 Upper Limit on TBN Signal Amplification

In this section, we show the following theorem providing an upper bound on the distance
between a TBN before and after adding a single copy of a monomer, showing that the
distance is at most double-exponential in the “size” of the system:

▶ Theorem 4.1. Let T be a TBN with d domain types, m monomer types, and at most a

domains on each monomer. Let n = max{d, m, a}. Let T ′ be T with one extra copy of some
monomer. Then d(T, T ′) ≤ n8n7n2

.

Recall Definition 2.7 for the distance between TBNs. Essentially, this theorem is saying
that adding a single copy of some monomer can only impact doubly exponentially many
total polymers, no matter how many total copies of each monomer are in the TBN.

Our strategy for proving this theorem is to fix some ordering on polymer types, and
bound the distance between the lexicographically earliest stable configuration of an arbitrary
TBN under that ordering before and after adding a single copy of some monomer. To bound
this distance, we cast the problem of finding stable configurations of a TBN as an integer
program (IP), and use methods from the theory of integer programming value functions to
give a bound on how much the solution to this IP can change given a small change in the
underlying TBN.

Proof. A complete proof including all technical details can found in the full version of this
paper on arxiv. Here we present only the main ideas of the proof. ◀

We first introduce a definition from [6] and some notation that was unnecessary in
previous sections.

▶ Definition 4.2. Given a (star-limiting) TBN T , the polymer basis of T , denoted B(T ), is
the set of polymers P such that both of the following hold:

P appears in some saturated configuration of a star-limiting TBN using the same monomer
types as T .
P cannot be split into two or more self-saturated polymers.

The polymer basis is a useful construction because it is known to describe exactly those
polymer types that may appear in stable configurations of T . It is always finite, and we will
bound its size later.

Given a TBN T , let M(T ) denote its monomer types, and let T (m) denote the count of
monomer m in T . Given a polymer P and a monomer type m ∈ M(T ), let P(m) represent
the count of monomer m in polymer P.

Suppose for the rest of this section that we have a TBN T to which we wish to add a
single copy of some monomer a (which may or may not exist in T ). Let T ′ be T with a
added.

4.1 Finding Stable Configurations via Integer Programming
Prior work [6] has shown that the problem of finding the stable configurations of a TBN can
be cast as an IP. There are multiple different formulations; we will use a formulation that is
better for the purpose of reasoning theoretically about TBN behavior.

Let {xP : P ∈ B(T )} be variables each representing the count of polymer P in a
configuration of T . Then consider the following integer programming problem:
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max
∑

P∈B(T )

xP

s.t.
∑

P∈B(T )

P(m)xP = T (m) ∀m ∈ M(T )

xP ∈ N ∀P ∈ B(T ) (2)

Intuitively, the linear equality constraints above express “monomer conservation”: the
total count of each monomer in T should equal the total number of times it appears among
all polymers.

The following was shown in [6]; for the sake of self-containment, we show it here as well

▶ Proposition 4.3. The optimal solutions to the IP (2) correspond exactly to stable configur-
ations of T .

Proof. If the variables xP form a feasible solution, then those counts of polymers are a valid
configuration because they exactly use up all monomers. If the solution is optimal, then there
is no saturated configuration with more polymers (as only polymers from B(T ) can show
up in stable configurations), so the configuration is stable. Conversely, if a configuration
σ is stable then it can be translated into a feasible solution to the IP because it only uses
polymers from B(T ) and obeys monomer conservation. If there were a solution with a greater
objective function, then this would translate to a configuration with more complexes that is
still saturated (because all polymers in the polymer basis are self-saturated), contradicting
the assumption of σ’s stability. ◀

We observe that adding an extra copy of some monomer to a TBN corresponds to changing
the right-hand side of one of the constraints of this IP by one. Note that this is true even
if we add a copy of some monomer for which there were 0 copies, as we may still include
variables for polymers that contain that monomer in the former IP and simply consider there
to be 0 copies of the monomer. Therefore, we are interested in sensitivity analysis of how
quickly a solution to an IP can change as the right-hand sides of constraints change.

However, there is one edge case we must account for first. It is possible that T and
T ′ have different polymer bases. This is because of the first requirement in Definition 4.2
requiring that the polymer basis respects that starred sites are limiting. If we add a single
copy of a monomer, this may change which sites are limiting, if a has more copies of a starred
site than T had excess copies of the unstarred site. We cannot include variables for such
polymers in the IP formulation without taking extra precautions, as if we do there may be
optimal solutions that don’t correspond to saturated configurations. Therefore, we will first
account for how many copies of such a polymer T and T ′ may differ by:

▶ Lemma 4.4. Suppose that some polymer P is exactly one of B(T ′) and B(T ). Then any
saturated configuration of T ′ contains at most |a| copies of P, where |a| denotes the number
of sites on a.

Note that this result is slightly surprising – one natural way that one might try to design
a TBN that amplifies signal is by designing the analyte so that it intentionally flips which
sites are limiting. This result shows that this is an ineffective strategy: going from 5 excess
copies of some site a to 5 excess copies of a∗ is seemingly no more helpful in instigating a
large change than going from 60 excess copies of a to 50.
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Proof. If P is in B(T ′) but not B(T ), it must contain an excess of a starred site that was
limiting in T , but is no longer limiting in T ′. We see this because P necessarily occurs in a
saturated configuration of the TBN containing precisely the monomers that it is composed
of; therefore, in order to not be in B(T ), by definition of the polymer basis, it must be the
case that this TBN has different limiting sites than T ′.

Let a denote some such site type, so that a∗ is limiting in T and a is limiting in T ′, and
P contains an excess of a∗. Then a must contain an excess of a∗, but it cannot contain more
than |a| excess copies. Therefore, there are at most this many total excess copies of a∗ in
T ′. It follows that if there are more than |a| copies of P in a configuration of T ′, then those
copies of P collectively have more excess copies of a∗ than T ′ does, so some other polymer in
that configuration would have to have an excess of a. This implies that such a configuration
is not saturated (and therefore also cannot be stable). An identical argument shows that the
same is true for polymers in B(T ) but not B(T ′). ◀

In order to analyze and compare the two IP instances, we need them to have the same
variable set. Therefore, we will include variables for all polymers from both polymer bases
in both IP formulations. Let B(T, T ′) = B(T ) ∪ B(T ′) denote this merged polymer basis,
and let P = |B(T, T ′)| denote the total number of possible polymers we must consider, or
equivalently the number of variables we will have in these IPs. In each IP, we will have a
constraint on each variable representing a polymer not in the relevant polymer basis, that
says that that variable must equal zero.

4.2 Sensitivity Analysis
This sensitivity analysis problem of how IPs change as the right-hand sides of constraints
change was studied by Blair and Jeroslow in [1]. We will not need their full theory, but we
will use some of their results and methods.

In Corollary 4.7 of [1], they show that there is a constant K3, independent of the right-
hand sides of constraints (in our case, independent of how many copies of each monomer
exist) such that:

Rc(v) ≤ Gc(v) ≤ Rc(v) + K3, (3)

where Gc(v) gives the optimal value of the objective function c of a minimization IP as a
function of the vector v of right-hand sides of constraints, and Rc(v) gives the optimal value
of the same problem when relaxing the constraint that variables must have integer values.
The objective function we’ve shown so far is to maximize the sum of polymer counts rather
than minimize, but the same statement applies that the integer and real-valued optimal
solutions differ by at most K3. In defining K3, they also show the existence of a constant
M1 such that

|Rc(v) − Rc(w)| ≤ M1 ||v − w|| , (4)

where v and w are different vectors for the right-hand sides of constraints. Note that we take
all norms as 1-norms. Combining these inequalities, we see that

|Gc(v) − Gc(w)| ≤ M1 ||v − w|| + K3. (5)

For example, if we want to know the difference between the total number of polymers in a
stable configuration before and after adding one copy of a monomer (and if the polymer bases
of T and T ′ are identical), then we care about increasing one element of v by 1, so our bound
on this difference is M1 + K3. This statement applies to maximization and minimization
problems.
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4.3 From Optimal Values to Polymer Counts
For ease of analysis, we order the polymers in B(T, T ′) as follows: first we list all the polymers
that are not in B(T ), then all the polymers that are not in B(T ′), then all the polymers in
B(T ) ∩ B(T ′). We need to show that the number of copies of each individual polymer does
not change too much. We do this using a technique similar to Corollary 5.10 in [1].

Let Ptot be the total number of polymers in a stable configuration (either before or after
adding a, depending on which case we are examining).

We now define a new sequence of integer programs whose optimal values give polymer
counts in the lexicographically earliest stable configuration under this ordering. We do this
by finding the value of each variable xP in order. This sequence of IP problems is defined
separately for both TBNs, before and after adding a.

For those variables representing a polymer that is in one basis but not the other, we do
not need to analyze this IP, so we simply fix such a variable’s value to whatever its value
is in this lexicographically earliest stable configuration, which will be 0 in one TBN and
bounded by |a| by Lemma 4.4 in the other.

Now, to find the value of some particular variable xQ in either of the two TBNs where
Q ∈ B(T ) ∩ B(T ′), suppose we have already found the value yP we wish to fix xP to for each
P < Q under our ordering. Then we define a new IP on all the same variables as follows:

min xQ

s.t.
∑

P∈B(T,T ′)

xP = Ptot

∑
P∈B(T,T ′)

P(m)xP = T (m) ∀m ∈ m(T )

xP = yP ∀P < Q
xP ∈ N ∀P ∈ B(T, T ′) (6)

By construction, this IP gives us the smallest possible value that xQ can take on in
a stable configuration (as all variables must sum to Ptot) in which all previous xP have
fixed values. Then this process gives us a sequence of P (minus however many polymers
were only in one polymer basis) different pairs of IP problems that we can sequentially
compare to bound the differences between the values of the individual polymer counts in
these lexicographically earliest configurations. We can repeatedly apply Equation (5) to each
xP in turn, as each variable’s value before and after adding a will be given by the optimal
value of (6) where the only differences are in the right-hand sides of constraints.

5 Conclusion

In this paper we have defined the signal amplification problem for Thermodynamic Binding
Networks, and we have demonstrated a TBN that achieves exponential signal amplification.
We also showed a doubly-exponential upper bound for the problem. As TBNs model mixtures
of DNA, a TBN that amplifies signal can potentially be implemented as a real system. An
upper bound has implications for how effective a system designed in this way can potentially
be, and shows that there are some limitations for a purely thermodynamic approach to signal
detection and amplification.

One clear direction for future work is to implement such a system. This would involve
creating a design that accounts for the simplifications of the TBN model. In particular,
enthalpy and entropy need to be strong enough with enthalpy sufficiently stronger than



J. Petrack, D. Soloveichik, and D. Doty 8:17

entropy. Further, the polymers formed need to be geometrically feasible. We have done
some work to make this problem geometrically realizable with the inclusion of translator
gadgets in Section 3.3. In principle, the polymers that are formed in this version of the
system are simple enough that they should form if the DNA strands implementing them are
well-designed.

Another goal would be to bridge the gap between our singly exponential amplifier and
doubly exponential upper bound by either describing a TBN that can amplify signal more
than exponentially, or deriving a more precise upper bound. If one wished to construct a
TBN with doubly exponential amplification, an examination of our upper bound proof will
show that such a TBN must have an exponentially sized polymer basis, and most likely
would need to actually use an exponential amount of different polymer types in its stable
configurations either with or without the analyte. Such a design seems relatively unlikely
to come to fruition, and it seems more likely that our proof technique or similar techniques
can be tightened in order to show a stricter upper bound. Thus, we conjecture that the true
upper bound is (singly) exponential.

There are also other types of robustness that we have not discussed in this work that
merit further analysis. One of these is input specificity: the question of how well the system
amplifies signal if the analyte is changed slightly. Another is sensitivity to the number of
copies of each component. Intuitively, our system’s behavior depends on having exactly
equal numbers of complementary strands within each layer; if there are too many copies of
one, it may result in those excess copies spuriously propagating or blocking signal to the
next layer. This issue may be intrinsic to thermodynamic signal amplifiers, or there may
be some system more robust to it. Lastly, it may be experimentally useful to show that
our system achieves its stable states not only in the limit of thermodynamic equilibrium,
but also more practically when annealed. Some systems such as HCR are designed to reach
non-equilibrium, meta-stable states when annealed. We conjecture that our system should
reach equilibrium when annealed, because kinetic traps in the system are far away from
being thermodynamically stable (large entropy gap). Formally studying annealing could be
done by analyzing versions of the TBN model with different tradeoffs between entropy and
enthalpy to model different temperatures.
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A Proofs for Section 3 (Signal Amplification TBN)

▶ Lemma 3.2. Tn,k has exactly one stable configuration σn,k.

Proof. We consider merges to get from the melted configuration to any saturated configura-
tion. We may order these merges such that we first make all the merges necessary to cover
each individual si,j in increasing value of i, then each individual s′

i,j in decreasing value of i.
We see that at each step of this process, we may cover the monomer in question by a single
merge (of its corresponding ui,j or u′

i,j). If we never merge the corresponding u monomer,
the only other monomers that can cover the starred sites on a given si,j are k different si−1,ℓ

monomers. Likewise, the only other way to cover the starred sites on a given s′
i,j is by using

k different s′
i+1,ℓ monomers (except for s′

n,j which needs sn,ℓ monomers).
If an s or s′ monomer is covered in multiple different ways, we order the merges such that

it is first covered by one corresponding u monomer (and then ignore any other merges for
now, as we are still ordering the merges to cover each s monomer sequentially). We see then
that if every s monomer is covered by a u monomer, then no s monomers will be brought
together during this process. Therefore, the first time in this sequence that we choose to cover
an s without its corresponding u will require k total merges to cover that s. The resulting
configuration is feed-forward, so by Corollary 2.11, reaching a stable configuration requires at
least one more merge per remaining s monomer. This results in at least k − 1 extra merges
compared to covering s and s′ monomers by using u and u′ monomers respectively.

Once all s and s′ monomers are covered, the only other monomer with starred sites is
p∗, so we can make all the merges that are needed to cover it. If none of the s′

1,j monomers
have been brought together, then the fewest merges it takes to cover p∗ is k

2 , via the pj

monomers. If any of them have been brought together, then it could potentially take a single
merge to cover p∗. However, this would have required k − 1 extra merges at some point
during the covering of s monomers, resulting in k

2 extra total merges compared to covering
all s monomers with u monomers, then covering p∗ with pj monomers.

Therefore, this latter set of merges covers all starred sites in as few merges as possible,
and therefore gives the unique stable configuration of Tn,k.

◀

▶ Corollary 3.3. Tn,k has an entropy gap of k
2 − 1.

Proof. Recall Definition 2.8 for what we must show. Any saturated configuration that
does not make all the merges in σn,k must either have some s that is not covered by its
corresponding u (resulting in at least k

2 extra merges, as per the above argument), or must
cover p∗ with initially-separate s′

1,j monomers (resulting in k
2 extra merges). Thus, any such

configuration has distance to stability at least k
2 . Any other saturated configuration that

does make all of the merges in this sequence simply makes some extra merges afterward, and
therefore splits to σn,k. It follows that Tn,k has an entropy gap of k

2 (and also of k
2 − 1, for

consistency in the statement of Theorem 3.1). ◀

▶ Lemma 3.4. T a
n,k has exactly one stable configuration σa

n,k, and T a
n,k has an entropy gap

of k
2 − 1.

Proof. We see that T a
n,k (like Tn,k) is feed-forward (recall Definition 2.9) by first ordering a

along with all the ui,j , u′
i,j , and pj monomers (none of which have starred sites), then all

the si,j in increasing order of i, then all the s′
i,j in decreasing order of i, and finally p∗.

Unlike Tn,k, however, we may reach a stable state by merging a together with every single
si,j , every single s′

i,j and p∗ into a single polymer. This covers all starred sites, and requires
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Figure 6 A version of Figure 2 with text labels on domains, for accessibility and allowing
comparison with the domains as defined in the text of the paper. This figure shows the unique
stable configuration of T2,3.
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Figure 7 The unique stable configuration σ3,2 of T3,2. Compared to Figure 2 (or Figure 6
above), which show T2,3, this figure shows one more layer and a smaller entropy gap parameter.
The additional layer means that there are 4 copies of each monomer in the largest parts of the
figure, compared to 2 copies of each monomer in the other figures; if another layer were added, it
would contain 8 copies of each monomer. The smaller entropy gap parameter manifests in this figure
visually having a “2 by 2 grid” design motif, compared to the “3 by 3 grid” motif in the other figures.
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exactly one merge per monomer with starred sites, so by Corollary 2.12, this configuration
σa

n,k is stable.
Now, we examine an arbitrary saturated configuration σ of T a

n,k. We consider merges
in essentially the opposite order of how they were considered when analyzing Tn,k. First,
consider p∗. It must be covered either by all the pj monomers, or by all the s′

1,j monomers.
If we merge all the pj monomers to p∗, we arrive at a configuration that is still feed-forward,
but has only one fewer polymer with uncovered starred sites compared to melt(T a

n,k) in spite
of making k

2 merges. Therefore, by Lemma 2.10, reaching a saturated configuration from
this point requires at least k

2 − 1 extra merges compared to σa
n,k.

Now, we may make a similar argument for all s monomers in the opposite order that we
considered them in Lemma 3.2. First, either we have already made k

2 − 1 extra merges, or
the s′

1,j monomers have all been brought together on a single polymer to cover p∗. If we now
make all the merges necessary to cover all starred sites on this polymer, we must do so either
using all the u′

1,j or by using all the s′
2,j . If we use the former, then this will require k total

merges but will only reduce the count of polymers with starred sites by 1. The resulting
configuration is still feed-forward, so again by Lemma 2.10 any saturated configuration we
reach from this point will require at least k − 1 extra merges compared to σ. Otherwise, we
must bring all the s2,j monomers together to cover these sites. This does not fall victim
to the same argument, because bringing these monomers with starred sites together onto
the same polymer lowers the total number of polymers with uncovered starred sites. Now
that they have been brought together, the same argument shows that we must either cover
all the starred sites on the s′

2,j using all the s′
3,j , or suffer k − 1 extra merges. The same

argument for each layer in the converging part of the TBN also works for each layer in the
amplifying part. Finally, after running through this argument we arrive at all s1,j being
brought together, which can be covered either by a single merge of a or by merging the k

u1,j to it.
Overall, this shows that any saturated configuration of T a

n,k either makes all of the merges
in σa

n,k or it must make at least k
2 − 1 extra merges. It follows that σa

n,k is the unique stable
configuration of T a

n,k, with an entropy gap of k
2 − 1 as desired. ◀

▶ Theorem 3.5. Let T̃ = T̃n,k and T̃ a = T̃ a
n,k be as described. Then:

1. T̃ has exactly one stable configuration σ̃n,k, and d(T̃ , T̃ a) > 2n.
2. T̃ has an entropy gap of k

2 , and T̃ a has the property that all of its configurations α that
are within distance to stability k

2 satisfy d(σ̃n,k, α) > 2n.
3. T̃ = T̃n,k uses O(nk) total monomer types, O(nk2) domain types, and O(k2) domains

per monomer.
4. The unique stable configuration of T̃ has O(k) monomers in its largest polymer. There is

a stable configuration of T̃ a sharing this property.

Proof. Recall the constructions of T̃n,k and T̃ a
n,k from Section 3.3. Our argument will be

very similar to that of Theorem 3.1 (i.e., the above lemmas), except we need to account for
the extra monomer types.

First, consider T̃n,k, where a is absent. We wish to show that its stable configuration
looks like that of Tn,k, with the added g and h monomers only binding to added g∗ and h∗

monomers respectively. We order the merges to get to a saturated configuration in essentially
the same order as we did in analyzing Tn,k: first we will make all merges necessary to cover
all (1, j, ℓ)∗ sites, then (2, j, ℓ)∗, and so on up to (n + 1, j, ℓ)∗, then (n, j, ℓ)′∗, and so on. As
before, at each step, we will see that we cannot make merges in any way other than those in
the desired stable configuration without needing k − 1 extra merges for that step.
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For (i, j, ℓ)∗ sites, at each step, there is exactly one way to cover all starred sites by
making one merge per monomer with these starred sites: we cover each si,j with a ui,j and
each g∗

i with a gi. In particular, we already know from the proof of Lemma 3.2 that this is
true for the si,j if we only use si−1,j and ui,j to cover it, and that we will otherwise need
to make k − 1 extra merges. Clearly we also cannot cover g∗

i with anything other than gi

without making k merges to cover it (and thus k − 1 extra merges), so we cannot use gi to
cover si,j .

Likewise, for (i, j, ℓ)′∗ sites, we only need to observe that each h∗
i monomer can only be

covered in a single merge by hi, so any other way of making merges necessarily involves k − 1
extra merges. So by the same argument as in Lemma 3.2 and Corollary 3.3, T̃n,k has exactly
one stable configuration with an entropy gap of k

2 . This configuration has 1 + k
2 monomers

in the polymer containing p∗ and all the pj , 3 monomers in each {hi, h∗
i , h∗

i } polymer, and
2 monomers in each other polymer.

Now, consider T̃ a
n,k, where a is present. If we take the stable configuration of T a

n,k and
simply put all g monomers into {gi, g∗

i } polymers, and all the h monomers into {hi, h∗
i , h∗

i }
polymers, we have still made exactly one merge per monomer with any starred sites, so by
Corollary 2.12 it is stable. If we then carry out the shifts described in Figure 4 and Figure 5,
an equal number of merges and splits are made at each step, so the resulting saturated
configuration is still stable. Additionally, in this configuration, the largest polymers have
k + 3 monomers (specifically, those containing a set of si,j along with one copy of gi and two
copies of g∗

i+1).
All that remains to show is that all configurations of T̃ a

n,k that are within k
2 distance to

stability have exponentially many different polymers from the stable configuration of T̃n,k.
We will do this by showing that all u and u′ monomers are free in all such configurations.

Again, this argument is very similar to the argument without the translator gadgets in
Lemma 3.4. We consider merges to cover starred sites in the opposite order of the above
argument for T̃n,k. First, consider the merges necessary to cover all the (1, j, ℓ)′ starred
sites (on p∗). Like before, they must be covered by either all the u′

1,j monomers or all the
pj monomers, but using the latter gives a feed-forward configuration in which k

2 − 1 extra
merges have already been made. Thus, to be within k

2 distance to stability, we must use the
s′

1,j . Next, for the (2, j, ℓ)′ starred sites, with the merges already made, there are two copies
of each of these sites all together on the polymer containing all the s′

1,j , and one copy of each
site on each of the two h∗

2 monomers. If we are to merge any u′
1,j monomers to any of these

in such a way that they cannot be split off without the result still being saturated, then we
must merge all of the u′

1,j into one polymer. Like with the argument for T̃ a
n,k, we see that

this results in k − 1 extra merges compared to a stable configuration. Thus, we cannot use
any u′

1,j , and these sites must be covered by the s′
2,j and h2 monomers.

We may do this either by using the h2 to cover both h∗
2 (in effect, not using the translator

gadget) or by using h2 to cover all the s′
1,j . The only difference in terms of the argument is

that in the former case all of the s2,j will be brought together in a single polymer, and in
the latter case they will be split between two polymers. In the former case, it may require
one extra merge to use translator gates in the next layer; however, either way, the same
argument on each other layer in sequence shows that we cannot use any u′

i,j monomers
without suffering k

2 − 1 extra merges. Likewise, the exact same argument shows that the
same thing is true of ui,j monomers, necessitating that in any configuration that makes fewer
than k

2 − 1 extraneous merges, all exponentially many u and u′ monomers must be free, as
desired. ◀
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