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Abstract
Discrete chemical reaction networks formalize the interactions of molecular species in a well-mixed
solution as stochastic events. Given their basic mathematical and physical role, the computational
power of chemical reaction networks has been widely studied in the molecular programming and
distributed computing communities. While for Turing-universal systems there is a universal measure
of optimal information encoding based on Kolmogorov complexity, chemical reaction networks are
not Turing universal unless error and unbounded molecular counts are permitted. Nonetheless, here
we show that the optimal number of reactions to generate a specific count x ∈ N with probability 1
is asymptotically equal to a “space-aware” version of the Kolmogorov complexity of x, defined as
K̃s(x) = minp {|p|/ log|p| + log(space(U(p))) : U(p) = x}, where p is a program for universal Turing
machine U . This version of Kolmogorov complexity incorporates not just the length of the shortest
program for generating x, but also the space usage of that program. Probability 1 computation is
captured by the standard notion of stable computation from distributed computing, but we limit our
consideration to chemical reaction networks obeying a stronger constraint: they “know when they are
done” in the sense that they produce a special species to indicate completion. As part of our results,
we develop a module for encoding and unpacking any b bits of information via O(b/ log b) reactions,
which is information-theoretically optimal for incompressible information. Our work provides one
answer to the question of how succinctly chemical self-organization can be encoded – in the sense of
generating precise molecular counts of species as the desired state.
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1 Introduction

In potential biochemical, nanotechnological, or medical applications, synthetic chemical
computation could allow for the re-programming of biological regulatory networks and
the insertion of control modules where traditional electronic controllers are not feasible.
Understanding the design principles of chemical information processing also may achieve
better understanding of the complex information processing that occurs in biological chemical
interactions.
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9:2 Optimal Information Encoding in Chemical Reaction Networks

Discrete chemical reaction networks, also called stochastic chemical reaction networks, is
a formal model of chemical kinetics in a well-mixed solution. While in continuous chemical
kinetics, continuous concentrations change in time governed by ordinary differential questions,
here the state consists of non-negative integer molecular counts of the species, and reaction
events occur stochastically as a continuous time Markov process. Closely related models
include population protocols in distributed computing [4], as well as models without stochastic
kinetics such as Petri nets [20], vector addition systems [22] and commutative semigroups [11].
The model is particularly relevant when some species are present in small molecular counts,
which are not well-approximated by continuous concentrations [21]; this regime is germane
for small volumes such as that of a cell, natural or artificial. For the rest of this paper, the
acronym CRNs (Chemical Reaction Networks) refers to the discrete model.

Typically the ensuing sequence of reactions can be predicted only stochastically since
multiple reactions compete with each other. Nonetheless certain behaviors are independent
of the order in which reactions happen to occur. Such probability 1 behavior is formalized
using the notion of stable computation. For example the reactions X1 → 2Y and X2 +Y → ∅
compute the function f(x1, x2) = max(2x1 − x2, 0) regardless of the order in which reactions
happen. Below when we say that a CRN computes something, we mean it in the sense of
stable computation. It is known that stably computing CRNs are not Turing-universal [36],
but instead are limited to computing semilinear predicates and functions [5,13]. However,
the scaling of the computational power of CRNs with the number of reactions and species
still lacks a tight and general characterization.

Prior approaches to answering the question of reaction or species complexity – in the
equivalent language of population protocols – have focused largely on predicate computation
and can be divided into two groups. (We should point out that the literature makes the
important distinction between population protocols with and without a “leader,” which
is equivalent to starting with a single copy of a distinguished species in the initial state.
The prior results described here as well as our work correspond to protocols with a leader.)
The first line of work focuses on specific predicates – with the prototypical choice being
the so-called “counting predicates” in which the task is to decide whether the count of the
input species is at least some threshold x ∈ N [8, 17, 26]. In particular, close upper and lower
bounds were developed: for infinitely many x, the predicate can be stably decided with
O(log log x) species [8], and O((log log x)1/2−ϵ) species are required [26].

Other work has focused on the more general characterization of predicate computation.
It is well-known that semilinear predicates can be characterized in terms of Presburger
arithmetic, the first-order theory of addition. It was subsequently shown that a CRN can
decide a semilinear predicate with the number of species scaling polynomially with the size
of the corresponding Presburger formula [7,18]. There are also provable tradeoffs between
the speed of computation and the number of species (e.g., [2, 6, 19]). We do not consider the
time-complexity of CRNs further in this paper.

While the prior work described above involves stably deciding a counting predicate where
the system recognizes if the count of some species is at least x, we investigate the problem of
generating exactly x copies of a particular species Y , starting from a single copy of another
species L. This idea of generation is natural for engineers of these systems who may wish to
prepare a particular configuration to be used in a downstream process, and captures a certain
form of chemical self-organization. (We note the conceptual connection to another type of
self-organization: leader-election, in which we want to end up with exactly one molecule of a
species, starting from many [6].) Our constructions can be adopted to deciding the counting
predicates with only a constant more reactions – giving a novel upper bound on the number
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of reactions (see Open Questions). It is also worth noting that other complexity questions
have been investigated for CRNs, such as “the size of the smallest chemical reaction network
that approximates a desired distribution” [10].

The goal of this paper is to connect the complexity of the most compact CRN for
generating x to the well-known measures of the optimal “description length” of x. Kolmogorov
complexity, a widely recognized concept across various disciplines in computer science and
information theory, serves as a universal, broadly accepted measure of description length [27].
This notion quantifies the complexity of an object, such as a string or a number, by the length
of the shortest program that produces it. While the minimal number of species or reactions
to generate count x cannot be connected to the canonical Kolmogorov complexity, we provide
tight asymptotic bounds to a modification of Kolmogorov complexity K̃s (Equation (1)). As
this quantity incorporates not only the length of the shortest program to produce x, but
also the space (memory) usage of the program, it can be called “space-aware.” Unlike the
canonical Kolmogorov complexity, K̃s is computable.

Our quantity K̃s characterizes the CRN complexity of generating x in the range from
O(log log x) for highly “compressible” x to O(log x/ log log x) for “incompressible” x. The
module we develop for optimally encoding b bits of information with O(b/ log b) reactions
via a permutation code may be of independent interest. The encoded information could be
used for other purposes than for generating a desired amount of some species, which justifies
a more general interpretation of our work as studying the encoding information in CRNs.

2 Preliminaries

We use notation from [12,35] and stable computation definitions from [5,14] for (discrete)
chemical reaction networks. Let N denote the nonnegative integers. For any finite set
S (of species), we write NS to mean the set of functions f : S → N. Equivalently, NS

can be interpreted as the set of vectors indexed by the elements of S, and so c ∈ NS

specifies nonnegative integer counts for all elements of S. For a, b ∈ NS , we write a ≤ b if
a(i) ≤ b(i), ∀i.

2.1 Chemical Reaction Networks
A chemical reaction network (CRN) C = (S, R) is defined by a finite set S of species, and
a finite set R of reactions where each reaction is a pair ⟨r, p⟩ ∈ NS × NS that denotes
the reactant species consumed by the reaction and the product species generated by the
reaction. For example, given S = {A, B, C}, the reaction ⟨(2, 0, 0), (0, 1, 1)⟩ represents
2A → B + C. Although the definition allows for more general stoichiometry, in this paper
we only consider third-order reactions (with at most three reactants and three products).
For reversible reactions, we will use the notation A + B⇄C + D to mean A + B → C + D

and C + D → A + B. We say that the size of a CRN (denoted |C|) is simply the number of
reactions in R.1

A configuration c ∈ NS of a CRN assigns integer counts to every species s ∈ S. When
convenient, we use the notation {n1S1, n2S2, . . . , nkSk} to describe a configuration with
ni ∈ N copies of species Si, ∀i ∈ [1, k]. When using this notation, any species Sj ∈ S that
is not listed is assumed to have a zero count (e.g., given S = {A, B, C}, the configuration
{3A, 2B} has three copies of species A, two copies of species B, and zero of species C). For
two configurations a, b ∈ NS , we say b covers a if a ≤ b; in other words, for all species, b
has at least as many copies as a.

1 When considering systems with third-order reactions it is clear that |R|1/6 ≤ |S| ≤ 6|R|.
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9:4 Optimal Information Encoding in Chemical Reaction Networks

A reaction ⟨r, p⟩ is said to be applicable in configuration c if r ≤ c. If the reaction ⟨r, p⟩
is applicable, it results in configuration c′ = c − r + p if it occurs, and we write c↣ c′. If
there exists a finite sequence of configurations such that c↣ c1↣ . . .↣ cn↣d, then we
say that d is reachable from c and we write c⇝d.

In keeping with established definitions for stable computation, we specify an output
species Y ∈ S and a leader species L ∈ S for stable integer computation.2 We start from
an initial configuration i = {1L}. A configuration c is output-stable if ∀d such that c⇝d,
c(Y ) = d(Y ). CRN C stably computes integer x if, from any configuration c that is reachable
from input configuration i, there is an output-stable configuration o reachable from c with
o(Y ) = x. Note that when considering systems with bounded state spaces like those discussed
in this paper, stable computation is equivalent to probability 1 computing.

We also consider a much stronger constraint on CRN computation that specifies a special
halting species. A species H ∈ S is a halting species if ∀c such that c(H) ≥ 1, c is output
stable and ∀d where c⇝d, d(H) ≥ 1. We say that a CRN C haltingly computes an integer
x if (1) C stably computes x and (2) C has a halting species H. Intuitively, a halting CRN
knows when it is done – the halting species can initiate some downstream process that is
only meant to occur when the computation is finished.

2.2 Kolmogorov Complexity
A focus of this paper is the “optimal description” of integers. As such, we often refer to the
traditional notion of Kolmogorov complexity which we define here.

Let U be a universal Turing machine. The Kolmogorov complexity for an integer x is
the value K(x) = min{|p| : U(p) = x}. In other words, the Kolmogorov complexity of x

is the size of the smallest Turing machine program p that outputs x. This captures the
descriptional complexity of x in the sense that a (smaller) description of x can be given to
some machine that generates x based on the given description.

We use a “space-aware” variant of this quantity which we later connect to the size of the
smallest CRN stably computing x:

K̃s(x) = min
{

|p|
log|p|

+ log(space(U(p))) : U(p) = x

}
. (1)

Note that K̃s(x) does not refer to CRNs in any direct way, so the tight asymptotic connection
(Theorem 12) we establish may be surprising.

K̃s(x) is similar to the Kolmogorov complexity variant defined as Ks(x) = min{|p| +
log(space(U(p))) : U(p, i) = x[i]} by Allender, Kouckỳ, Ronneburger, and Roy [3] in that it
additively mixes program size with the log of the space usage. There are two differences:
(1) The program size component of K̃s is |p|/ log |p| rather than |p|. The intuition is that
a single chemical reaction can encode more than one bit of information; thus, a Turing
machine program p can be converted to a “CRN program” with a number of reactions that
is asymptotically smaller than the number of bits of p. (2) Ks(x) is defined with respect
to programs that, given index i as input, output x[i], the i’th bit of x, while our K̃s(x)
is defined with respect to programs that (taking no input) directly output all of x. Thus
K̃s(x) ≥ log |x|, since the Turing machine must at least store the output integer, while Ks(x)

2 For stable function computation, an ordered subset of input species {X1, X2, . . . , Xn} ⊂ S is also
included; however, stable integer computation would be something along the lines of f(1) = x, so a
single copy of the leader species serves as the “input” here.
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may be smaller in principle. Due to the ability of efficient universal Turing machines to
simulate each other efficiently, K̃s (like Ks) is invariant within multiplicative constants to the
choice of universal Turing machine U , as long as U is space-efficient. Note that if K̃s were
not robust to the choice of U , it could hardly be a universal measure.

It is worth noting that unlike K(x), K̃s(x) is computable. To see this, one can enumerate
all programs for universal Turing machine U and run them in order from smallest to largest,
stopping on the first machine that outputs x. Since the space usage of U(p) is included in K̃s,
we can terminate executions as soon as they start using too much space. This ensures that
no execution will run forever, and so we are guaranteed to find the smallest p that outputs x.

2.3 Overview
Here, we give a high level overview for the constructions and results presented in the
subsequent sections of this paper.

Our constructions rely on the ability of CRNs to “efficiently” simulate space-bounded
Turing machines (in terms of program size and space usage, not time) by “efficiently”
simulating bounded-count register machines. Section 3 details how to use a combination of
previous results to achieve this. The first half of the section describes how to construct a
CRN to faithfully simulate a bounded-count register machine. The second half of the section
shows how to generate a large register machine bound (22n) with very few species/reactions
(n). While the latter result is from previous work [11], we translate their construction from a
commutative semigroup presentation into a chemical reaction network.

In Section 4, we present a method for constructing a CRN Cx which (optimally) haltingly
computes n-bit integer x with |Cx| = O(n/ log n) by using a permutation code (Theorem 6).
The idea of the construction is to generate a specified permutation and convert that permuta-
tion to a mapped target integer x. This construction relies on the “efficient” bounded-count
register machine and space-bounded Turing machine simulations.

We then show how to use our permutation construction to achieve an optimal encoding
(within global multiplicative constants) for algorithmically compressible integers in Section 5.
Here, we use our permutation code technique to “unpack” a Turing machine program
that that outputs x, resulting in a CRN that haltingly computes x with O(K̃s) reactions
(Theorem 7). Afterwards, we use a result from Künnemann et al. [24] to show that the size
of our constructed CRN is within multiplicative constants of the optimal size of a CRN that
stably computes x, denoted Kcrn(x) (Lemma 11). The results of the paper culminate with
us connecting Kcrn(x) and K̃s in Theorem 12 (our main theorem), which is directly implied
by the combination of Theorem 7 and Lemma 11.

Lastly, we present some open questions for future work in Section 6.

3 Efficient Simulation of Bounded Register Machines

3.1 Register machines
A register machine is a finite state machine along with a fixed number of registers, each with
non-negative integer counts. The two fundamental instructions for a register machine are
increment inc(ri, sj) and decrement dec(ri, sj , sk). The first instruction increments register
ri and transitions the machine to state sj . The second instruction decrements register ri if it
is non-zero and transitions the machine to state sj , otherwise the machine just transitions to
state sk. We also consider the more advanced instruction of copy(ri, rj , sk), which adds the
value of register ri to register rj , i.e., it is equivalent to the assignment statement rj := rj +ri
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9:6 Optimal Information Encoding in Chemical Reaction Networks

(note that the value is preserved in ri). It is clear that copy can be constructed with a
constant number of register machine states. In fact, register machines are known to be
Turing-universal with three registers [30].3

In [36], a simple CRN construction was shown to simulate register machines with some
possibility of error (thus not directly compatible with stable computation). The source of the
error is due to the zero-checking in a dec instruction. For the simulation, the CRN has a finite
set of species (one for each register and one for each state of the register machine) and a finite
set of reactions (one for each instruction in the register machine program). Each inc(ri, sj)
instruction corresponds to the reaction Sj′ → Ri + Sj , and each dec(ri, sj , sk) instruction to
two reactions Sj′ + Ri → Sj and Sj′ → Sk. In the chemical reaction network implementation
of a dec instruction, the two reactions are competing for the state species Sj′ . While in
general this is an unavoidable problem, in the special case that the maximum value in our
counters is bounded by a constant, we can remedy this following the idea from [28] as follows.

Let’s consider bounded registers that can contain a value no greater than b ∈ N. For each
register ri, we can use two species RA

i and RI
i as “active” and “inactive” species for register

ri, respectively. The idea is that the total sum of the counts of species RA
i and RI

i is always
equal to b: whenever one is consumed, the other is produced. Now, an inc(ri, sj) instruction
could be implemented with the reaction Sj′ + RI

i → RA
i + Sj , and a dec(ri, sj , sk) instruction

could be implemented with the reactions Sj′ + RA
i → RI

i + Sj and Sj′ + bRI
i → bRI

i + Sk.
With this approach, register ri has a zero count exactly when inactive species RI

i has a count
of b, and so we can zero-check without error. Notice that this approach uses reactions with a
large stoichiometric coefficient b. At this point, there are two issues to be addressed: (1) how
to generate an initial b count of inactive species RI

i , and (2) how to transform the reactions
into a series of third-order reactions (avoiding the large stoichiometric coefficient b).

Let’s first consider a very simple construction which addresses the above concerns, albeit
suboptimally. Suppose b = 2n is a power of two. To handle (1), we can initially produce
count b of RI

i from a single copy of A1 using O(log b) species with reactions

A1 → 2A2

A2 → 2A3

...
An → RI

i .

To handle (2), we can transform the decrement reactions into a series of n bimolecular
reactions by adding reversible versions of the reactions from (1) and “counting down” to
some unique zero count indicator species C1:

RI
i ⇄Cn

2Cn⇄Cn−1

...
2C2⇄C1.

Then C1 is producible if and only if RI
i had count ≥ b, so the reaction Sj + C1 → Sk + C1

implements the “jump to state k if ri = 0” portion of the dec(ri, sj , sk) command. This

3 Turing-universality has also been shown for machines with two registers, but only when a nontrivial
encoding of the input/output is allowed [30,33].
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construction allows an error-free simulation of a register machine with counters with bound
b exponential in the number of species. Now we discuss a more sophisticated construction,
based on previous results [11, 28], that achieves a counter bound b that is doubly exponential
in the number of species.

3.2 Counting to 22n with n species
The CRN constructions in this paper simulate bounded register machines in the manner
discussed previously. Since we are focused on reducing the size of our CRN, we want to
do this simulation with as few species (reactions) as possible. Fortunately, we can rely on
established results from prior work to do this. Lipton provided a construction for which the
largest producible amount of a species is a doubly exponential count [28]. However, this
amount is only produced non-deterministically and (most) paths produce less. Cardoza et al.
went on to present a fully reversible system that can achieve this doubly exponential count
as well [11]. Further, their system is halting in the sense that a new species is produced
precisely when the maximum amount is reached.

While Cardoza et al. [11] describe their construction in the language of commutative
semigroup presentations, we present a modified construction in Figure 1 articulated as a CRN.
In the figure and in the text below, we use the “box” notation to indicate meta-reactions,
which correspond to a set of reactions. Note that in Lemma 4 we will see that the combined
behavior of the reactions in a meta-reaction module faithfully implement the meta-reaction
semantics. By construction, the sets of reactions that meta-reactions expand to overlap, and
we include only one copy of any repeated reaction. Each layer of the construction introduces
O(1) more reactions and species – 9 reactions ((1)–(9)) and 9 species (Sk

i , Hk
i , Xk

i , T 1k
i , T2k

i ,
C1k

i , C2k
i , C3k

i , C4k
i ) for each i ∈ {1, 2, 3, 4}.

The idea of the construction is to produce (or consume) a doubly exponential count
of species X by recursively producing (or consuming) quadratically more X’s than the
previous layer. Each species type performs a different role. X is the counting species to
be generated or consumed. S starts the process to generate/consume many molecules of
species X. T transforms different types of X species into one another. H indicates that the
generation/consumption process has completed. C “cleans up” the H species. Reaction (5)
in the meta-reaction implementation (which converts Xk−1

2 into Xk−1
3 ) changes based on i.

If i ∈ {1, 2}, then Xi appears as a product and is generated by this reaction. If i ∈ {3, 4},
the Xi appears as a reactant and is consumed by this reaction. A high level diagram of a
layer-k meta-reaction is shown in Figure 2, which is helpful in understanding the behavior of
the system.

▶ Definition 1. Let c be a configuration of CRN C given above. We say c is well-led if
c(S∗

∗) + c(H∗
∗ ) + c(T ∗

∗ ) = 1 where the notation S∗
∗ denotes any species with label S, regardless

of the subscript or superscript. In other words, there is only a single leader in the system
and it either has the label S, H, or T . We call species S∗

∗ , H∗
∗ , and T ∗

∗ leader species.

▶ Observation 2. Every reaction has exactly one leader species as a reactant, and exactly
one leader species as a product.

The following is immediate from Observation 2:

▶ Corollary 3. Let c be a well-led configuration of CRN C given above. Then any configuration
d such that c⇝d is also well-led. In other words, the well-led property is forward invariant.

Informally, the observation above together with the well-led condition implies that we
can reason about the meta-reactions in isolation, without fear of cross-talk – because while
one meta-reaction is executing, no reactions outside of it are applicable. This allows us to
inductively prove the main result of this section:
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9:8 Optimal Information Encoding in Chemical Reaction Networks

Base reactions:

S0
1⇄H0

1 + 2X0
1

S0
2⇄H0

2 + 2X0
2

2X0
3 + S0

3⇄H0
3

2X0
4 + S0

4⇄H0
4

Layer-k meta-reactions:

Sk
1 ⇌Hk

1 + 22k

Xk
1

Sk
2 ⇌Hk

2 + 22k

Xk
2

22k

Xk
3 + Sk

3 ⇌Hk
3

22k

Xk
4 + Sk

4 ⇌Hk
4

Implementation of layer-k
meta-reaction:

Sk
i ⇄C1k

i + Sk−1
1 (1)

Sk−1
1 ⇌Hk−1

1 + 22k−1
Xk−1

1

C1k
i + Hk−1

1 ⇄T1k
i (2)

T1k
i + Xk−1

1 ⇄C2k
i + Xk−1

4 + Sk−1
2 (3)

Sk−1
2 ⇌Hk−1

2 + 22k−1
Xk−1

2

C2k
i + Hk−1

2 ⇄T2k
i (4)

Xk
i + T2k

i + Xk−1
2 ⇄T2k

i + Xk−1
3 + Xk

i (5)
T2k

i ⇄C3k
i + Sk−1

3 (6)

22k−1
Xk−1

3 + Sk−1
3 ⇌Hk−1

3

C3k
i + Hk−1

3 ⇄T1k
i (7)

C3k
i + Hk−1

3 ⇄C4k
i + Sk−1

4 (8)

22k−1
Xk−1

4 + Sk−1
4 ⇌Hk−1

4

C4k
i + Hk−1

4 ⇄Hk
i (9)

Figure 1 Doubly exponential counting construction. (Left) The base reactions and layer-k
meta-reactions. We use the box notation to indicate meta-reactions, which correspond to a set of
reactions. Note that the reactions corresponding to the different meta-reactions overlap; when all
the meta-reactions are expanded we include only one reaction copy. (Right) Explicit reactions for
the layer-k meta-reaction in terms of reactions and other meta-reactions. The core functionality
is the same for any i, but reaction (5) either generates Xk

i ’s (if i ∈ {1, 2}) or consumes Xk
i ’s (if

i ∈ {3, 4}).

Figure 2 A visualization of the states for a layer-k meta-reaction. The state transitions effectively
execute a nested loop. In order to iterate the outer loop (transition from V → II), the inner loop IV
must be executed 22k−1

times. And in order to leave state VI and produce an H, the outer loop
must be executed 22k−1

. So, state IV must be executed a total of 22k

times, which either produces
or consumes that many Xk

i ’s depending on the type of meta-reaction.
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▶ Lemma 4 (Production). Consider the CRN implementing Sk
i ⇌Hk

i + 22k
Xk

i . For any

n ∈ N, let s = {nXk
i , 1Sk

i } and h = {(22k + n)Xk
i , 1Hk

i }, and let c be any configuration
reachable from s or h. Then: (a) Both s and h are reachable from c. (b) If c contains Sk

i

then c = s, and if c contains Hk
i then c = h.

▶ Lemma 5 (Consumption). Consider the CRN implementing 22k
Xk

i + Sk
i ⇌Hk

i . For any

n ∈ N, let s = {(22k + n)Xk
i , 1Sk

i } and h = {nXk
i , 1Hk

i }, and let c be any configuration
reachable from s or h. Then: (a) Both s and h are reachable from c. (b) If c contains Sk

i

then c = s, and if c contains Hk
i then c = h.

Proof. (Of Lemma 4 and Lemma 5, Sketch) Both lemmas are proven by induction over the
layers of the construction. The base case (k = 1) can be checked by inspection. Now assume
the lemmas are true for k − 1 layers, and we want to prove them true for k layers.

First we argue that the construction is correct if the k − 1 layer meta-reactions are
“atomic” and occur in one step. As visualized in Figure 2, the CRN iterates through a nested
loop process. Each state transition (states Ik through VIk) is coupled to a conversion of the
leader species; the well-led condition ensures that the CRN is in exactly one state at any
given time. Each net forward traversal of the outer loop converts a Xk−1

1 to Xk−1
4 , and each

forward traversal of the inner loop converts a Xk−1
2 to Xk−1

3 . Step Ik makes 22k−1
Xk−1

1 ,
bounding the net maximum number of times that the outer loop can happen in the forward
direction. Step IIIk makes 22k−1

Xk−1
2 , bounding the net maximum number of times that

the inner loop can happen in the forward direction for every net forward traversal of the
outer loop. This implies that reaction (5) can fire at most a net total 22k times (producing
at most a net total 22k

Xk
i ’s).

Step Vk consumes 22k−1
Xk−1

3 , requiring the net total number of forward traversals of
the inner loop to be at least 22k−1 for every net forward traversal of the outer loop. Step
VIk consumes 22k−1

Xk−1
4 , requiring the net total number of forward traversals of the outer

loop to be at least 22k−1. This implies that reaction (5) must fire at least a net total 22k

times (producing at least a net total 22k
Xk

i ’s).
Thus, reaction (5) must be executed exactly 22k times (producing exactly 22k

Xk
i ’s).

Notice that an excess of Xk
i (as allowed by the statement of the lemma) does not affect the

net total number of times reaction (5) can fire (forward or backward) since Xk−1
2 and Xk−1

3
are the limiting factors.

Now we need to make sure that this behavior is preserved once the meta-reactions are
expanded to their constituent reactions. Each meta-reaction i in Figure 1 expands to some
set Ri of reactions. First we note that for each meta-reaction, Ri overlaps with reactions
not in Ri only over species Sk−1

i , Hk−1
i , and Xk−1

i . We are not worried about cross-talk in
species Sk−1

i and Hk−1
i because of the well-led property. We may still be concerned, however,

that external consumption of Xk−1
i might somehow interfere with the meta-reaction. Luckily,

the well-led property and Observation 2 enforce that unless we have Sk−1
i or Hk−1

i (i.e.,
we are at the beginning or end of the meta-reaction), it is never the case that a reaction
in Ri and a reaction not in Ri are applicable at the same time. Thus nothing outside the
meta-reaction can change Xk−1

i while the meta-reaction is executing. ◀

Note that although we chose to write Lemma 4 and Lemma 5 separately, we could have
just one kind of meta-reaction (production or consumption) and obtain the other kind by
running the meta-reaction backward switching the roles of S and H. We include the two
different versions because it is conceptually easier to just think about the intended execution
being in the forward direction.
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4 Optimal Encoding

4.1 Encoding Information in CRNs
In this section we discuss the encoding of an integer in a chemical reaction network. In the
same sense as Kolmogorov-optimal programs for Turing machines, we consider a similar
measure of optimality for chemical reaction networks. In particular, we ask the question,
“what is the smallest chemical reaction network that can produce a desired count of a
particular chemical species?”

A simple construction shows that x copies of some species can be produced using O(log x)
reactions. The idea is to have a reaction for each bit bi of the binary expansion of x, and
produce a copy of your output species in each reaction where bi = 1. More concretely,
consider log x reactions of the form Xi → 2Xi+1 and Xi → 2Xi+1 + Y . For each bit bi in the
binary expansion of x, use the first reaction if bi = 0 and use the second reaction if bi = 1.
Each species Xi will have a count equal to 2i, and species Y will have a count equal to the
sum of the powers of two that were chosen (which is x). While this simple construction
generates x with log x reactions, it is not immediately clear how to improve upon it.

Our first result shows how to construct a CRN that can generate x copies of an output spe-
cies (from an initial configuration with only a single molecule) yet uses only O(log x/ log log x)
many reactions. This matches the lower bound dictated by Kolmogorov complexity (see
end of Section 4), which suggests that the full power of CRNs is really being used in our
construction. Our construction is achieved through the simulation of (space-bounded) Turing
machines via the simulation of (space-bounded) register machines. A key aspect in this
process is the ability of CRNs to use the previously discussed recursive counting technique
to count very high with very few species (counting to 22k with k species).

4.2 Our Construction
Now, we present an encoding scheme to produce count x of a particular species with
O(n/ log n) CRN reactions, where n = log x. In the simple CRN given in Section 4.1, each
reaction encodes a single bit of x. In the optimized construction with k reactions, each
reaction will encode log k bits instead.4 A sketch of our construction is as follows:

Sketch: We start with a CRN in configuration c1 = {1L} and create a configuration
c2 = {1Si, m1R1, m2R2, . . . , mkRk} that represents a particular permutation of k distinct
elements. We encode this permutation in the count of a species I, transforming configuration
c2 into a configuration c3 = {1Sj , mI}. The count of species I can be interpreted as the
input to a Turing machine, so we simulate a Turing machine that maps the permutation
to a unique integer via Lehmer code/factorial number system [25,34] (by choosing the right
value of k, we can ensure there are sufficiently many permutations to let us map to x). This
Turing machine simulation transforms configuration c3 into configuration c4 = {1H, xY }.

▶ Theorem 6. For any n ∈ N and any n-bit integer x, there exists a chemical reaction
network Cx that haltingly computes x from initial configuration {1L} with |Cx| = O(n/ log n).

Proof. First, we describe how to construct CRN Cx that haltingly computes x from starting
configuration {1L}, then we describe the size of |Cx|. Let k = ⌈n/ log n⌉. We will map a
permutation of k distinct elements to the integer x, and this value of k ensures there are at
least x permutations. We break the construction into three primary steps.

4 Adleman et al. [1] provided a clever base conversion trick for tile assembly programs. Here, we employ a
permutation encoding trick to yield the same effect.
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Step 1: {1L}⇝{1Si, m1R1, m2R2, . . . , mkRk}. We can transform {1L} into a con-
figuration {1Si, m1R1, m2R2, . . . , mkRk} where (m1, m2, . . . , mn) is a permutation of the
integers 1 through k. This can be achieved with k registers and 2k register machine states.
For example, to set the permutation (2, 4, 3, 1), use instructions

s0 : inc(r2, s1)
s1 : copy(r2, r4, s2)
s2 : inc(r2, s3)
s3 : copy(r2, r1, s4)
s4 : inc(r2, s5)
s5 : copy(r2, r3, s6)
s6 : inc(r2, s7)

Step 2: {1Si, m1R1, m2R2, . . . , mkRk}⇝{1Sj, mI}. Now, we can transform configur-
ation {1Si, m1R1, m2R2, . . . , mkRk} into configuration {1Sj , mI}, encoding the permutation
as the integer count m of species I. For each register ri for i from 1 to k in order, we can
decrement the register to 0. On each decrement, we double the count of I and then add 1 to
it, i.e., appending a 1 to m’s binary expansion. After the register reaches 0, before moving
to the next register, we double the count of I again, appending a 0 to m’s binary expansion.
For example, if the permutation configuration was {3R1, 1R2, 2R3}, the resulting count of I

in binary would be

111︸︷︷︸
3

0 1︸︷︷︸
1

0 11︸︷︷︸
2

.

Step 3: {1Sj, mI}⇝{1H, xY }. At this point, we can consider the value in register I,
expressed as a binary string, to be the input tape content for a Turing machine that maps
the permutation to the integer x using a standard Lehmer code/factorial number system
technique [25, 34]. The output of the Turing machine will be the count of Y in configuration
c at the end of the computation (with c(Y ) = x). Our register machine will have a state
species that corresponds to the halted state of the Turing machine – and such a species
serves as our halting species H.

Now we argue the size of CRN |Cx| = O(n/ log n), i.e., it uses O(k) reactions. The
register machine program from Step 1 generates the permutation using k registers and 2k

register machine states, which results in O(k) CRN reactions. The register machine program
from Step 2 encodes the permutation as a binary number in register I using O(k) registers
and O(k) register machine states, which also results in O(k) CRN reactions. Even a naive
algorithm for the Turing machine from Step 3 maps the permutation to an integer using
O(k2 log k) space (O(k2) bits to store the initial permutation, O(k log k) bits to store the
Lehmer code, O(k2 log k) bits to store factorial bases 1! through k!, and O(k log k) bits to
store the integer x). Recall, a Turing machine using space O(k2 log k) can be simulated by a
register machine with count bound O(2k2 log k) on its registers. This can in turn be simulated
by a CRN via the construction of Section 3.2 with O(log log 2k2 log k) = O(log k) reactions.
Thus O(k) reactions suffices to simulate the register machine instructions as well as the
bounded counters for our register machine to simulate this Turing machine. ◀

The above construction is optimal for almost all integers x in the following sense. Any
CRN of |C| reactions, each with O(1) reactants and products, can be encoded in a string
of length O(|C| log |C|). Given an encoded CRN stably computing an integer x, a fixed-size
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program can simulate it and return x. Thus K(x) ≤ O(|C| log |C|). The pigeonhole principle
argument for Kolmogorov complexity implies that K(x) < ⌈log x⌉ − ∆ for at most (1/2)∆ of
all x [27]. Together these observations imply that there is a c such that for most x there
does not exist a CRN C of size smaller than cn/ log n that stably computes x.

5 Algorithmic Compression

The construction in Section 4 is optimal for incompressible integers (integers x where
K(x) ≈ |x|, which is the case for “most” integers). Now we extend the construction
to be optimal within global multiplicative constants for all integers. For algorithmically
compressible integers x, there exists a p such that U(p) = x and |p| < |x|. We discuss the
construction in Section 5.1 and we argue optimality of our construction in Section 5.2.

5.1 Our Construction

We now show how to fully exploit the encoding scheme and doubly exponential counter from
Section 4 to achieve an optimal result for all integers. A sketch of our construction is as
follows:

Sketch: Given a program p for a fixed Universal Turing Machine U such that U(p) = x,
we construct a CRN that simulates running p on U via a register machine simulation. The
idea is to use O(|p|/ log|p|) reactions to encode p, and to use O(log(space(U(p))) reactions
for a counter machine simulation of U(p).

▶ Theorem 7. For any integer x, there exists a CRN Cx that haltingly computes x from
initial configuration {1L} with |Cx| = O(K̃s(x)).

Proof. Let p be a program for a fixed Universal Turing Machine U such that U(p) = x. We
encode p in the manner provided by Theorem 6 using O(|p|/ log|p|) reactions. This results
in p count of species Y (specifically, configuration {1H, pY }). Since haltingly-computing
CRNs are composable via concatenation [12,35], we can consider {1H, pY } to be taken as
the input for another system which simulates running U(p) via the previously described
register machine method with bounded register count (Section 3.2). Again, we need enough
species/reactions to ensure our bounded registers can count high enough. The registers
must be able to store an integer that represents the current configuration of the Turing
machine being simulated (at most this is 2space(U(p))). Since we have doubly exponential
counters, an additional log

(
space(U(p))

)
species are needed to do this. So, the total size of

our CRN is O
(
|p|/ log|p| + log(space(U(p)))

)
and by choosing the program p that minimizes

this expression, we see |Cx| = O(K̃s(x)). ◀

It is interesting to note the appearance of our “space-aware” version of Kolmogorov
complexity. Importantly, this notion is different from space-bounded Kolmogorov complexity
that puts a limit on the space usage of the program that outputs x. This alternate version
allows a trade-off between compact program descriptions and the space required to run those
programs, which seems natural for systems like CRNs. Perhaps it is surprising that this
(computable) measure of complexity shows up here, and at first it may seem like log of this
space usage is a bit arbitrary, but we will show that this is indeed optimal (within global
multiplicative constants) for CRNs.
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5.2 Optimality
Here, we argue that size of CRN Cx from Theorem 7 is optimal. We begin by giving a
definition for the size of the optimal CRN that haltingly computes an integer x.

▶ Definition 8. For any integer x, define Kcrn(x) = min{|C| : CRN C haltingly computes x}.
In other words, Kcrn(x) is the size of the smallest CRN that haltingly computes x.

Our argument relies on a Turing machine that solves the coverability problem for CRNs.
We give the definition for this problem in Definition 9 and discuss its space complexity in
Lemma 10.

▶ Definition 9 (Coverability). Given a CRN C, initial configuration s, and target configuration
u, does there exist a configuration t ≥ u such that s⇝ t?

Using the natural notion of problem size n for the specification of a coverability problem,
Lipton provided a 2Ω(

√
n) space lower bound for coverability [28], which was later improved

to 2Ω(n) by Mayr and Meyer [29]. As for upper bounds, Rackoff provided an algorithm to
decide coverability that uses 2O(n log n) space [31]. Following this, Koppenhagen and Mayr
gave an algorithm that decided coverability in 2O(n) space for reversible systems, closing
the gap for this class of systems [23]. A recent result by Künnemann et al. also closes this
gap [24] for Vector Addition Systems with States. Our work uses this latest result.

▶ Lemma 10 (Implied by Theorem 3.3 from [24]). Let CRN C = (S, R) be a CRN that
haltingly computes x. Then there exists an algorithm which solves coverability for CRN C for
initial configuration {1L} and target configuration {1H} which uses 2O(|C|) space.

Proof. This result follows from Theorem 3.3 from the recent work by Künnemann et al. [24].
There, the authors consider the problem of coverability in Vector Addition Systems with
States (VASS). They show that if the answer to coverability is yes, the length of the longest
path is n2O(d) where n is the maximum value change of any transition and d is the dimension
of the vector. For us, n = 2 since each reaction has at most two reactants/products and
d = |S|. While vector addition systems are not capable of “catalytic” transitions, it is known
that the same effect can be achieved by decomposing transitions into two vector additions.
So the path length would at most double for our systems.

With this bound on the path length, we can consider an algorithm that non-deterministic-
ally explores the state space of C (from starting configuration {1L}) by simulating reactions
on a current configuration of the system until a configuration that covers {1H} is found. By
Savitch’s Theorem [32], this can be converted to a deterministic algorithm using the same
space: O(|R| log|R|) bits to hold a description of C, 2O(|S|) bits for a path length counter,
and 2O(|S|) · log(|S|) bits to store the current configuration of C. All of these values are
absorbed under a 2O(|C|) bound. ◀

With this space bound on the coverability problem established, we can now argue that
the size of our constructed CRN from Theorem 7 is asymptotically equal to the size of the
the smallest CRN that haltingly computes x.

▶ Lemma 11. For all x ∈ N, letting Cx be the CRN from Theorem 7, |Cx| = Θ(Kcrn(x)).

Proof. Clearly |Cx| = Ω(Kcrn(x)), by definition of Kcrn(x) and since Cx from Section 5 is an
instance of a CRN that haltingly computes x. Now, we argue that |Cx| = O(Kcrn(x)). The
big picture is that one of the programs over which K̃s(x) is minimized in the construction of
Cx is the program solving coverability for the optimal CRN for generating x.
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Start with the CRN K = (SK, RK) that haltingly computes x with optimal size |K| =
Kcrn(x) = n. Consider program pK that solves coverability for K with initial configuration
{1L} and target configuration {1H}, and outputs x. Now, with that program pK, build a
CRN K′ by following our construction for Theorem 7. We know |pK| = O(n log n) so our
final CRN needs O(n) reactions to encode pK (by Theorem 6). By Lemma 10, we know that
the space usage of U(pK) is 2O(|K|), so our final CRN needs O(|K|) additional reactions to
have large enough registers for the simulation of U(pK). Thus, the total size of our final CRN
is O(|K| + |K|) = O(Kcrn(x)). ◀

The following theorem, which is the main result of our paper, follows immediately from
Theorem 7 and Lemma 11. It characterizes the optimal number of reactions haltingly
computing a number x using the space-aware Kolmogorov complexity measure K̃s defined in
Section 2.2.

▶ Theorem 12. For all x ∈ N, Kcrn(x) = Θ(K̃s(x)).

Although, as mentioned above, CRN stable computation is not Turing universal, the theorem
underlines its essential connection to space-bounded Turing machine computation.

6 Open Questions

Our results rely on the fact that we consider CRNs that perform halting computation – the
end of the computation is indicated by the production of a designated halting species. This
constraint, intuitively that the systems know when they have finished a computation, is
rather strong. It is known that a much larger class of functions can be stably computed
than can be haltingly computed [15]. It remains an open question if lifting this halting
requirement (and allowing just stable computation) reduces the reaction complexity.

It is also worth noting that our approach starts with exactly one copy of a special leader
species. Recently, Czerner showed that leaderless protocols are capable of deciding doubly
exponential thresholds [16]. While starting in some uniform state and converging to a specific
state would be a better expression of “chemical self-organization,” their construction seems
incompatible with our register machine simulation. Leaderless stable integer computation
remains an area for future work.

Making a tight connection between stable integer computation and counting predicate
computation commonly studied in population protocols [16] also remains open. We can easily
follow the halting generation of a specific amount of x by running the “less-than-or-equal-to”
predicate, thereby converting our constructions to compute a counting predicate with only
a constant more reactions. This gives a new general upper bound on the complexity of
counting in terms of K̃s(x). However, it is unclear whether counting predicate constructions
carry over to the generation problem, leaving it open whether counting may be easier.

Our notion of “space-aware” Kolmogorov complexity K̃s is interesting in its own right.
While the similar quantity Ks has been previously studied in the context of computational
complexity theory [3] (see also Section 2.2), it is not clear which properties proven of Ks
carry over to K̃s. Although the robustness to the choice of U carries over, other properties
may not. For example, it is not obvious whether our results still hold if we consider programs
that output a single bit of x at a time (like Ks does).

A core piece of this work is simulating space-bounded Turing machines, so it is very natural
to extend the discussion to Boolean circuits (computing functions ϕ : {0, 1}n → {0, 1}).
When attempting to compute Boolean functions with CRNs, one may be tempted to directly
implement a Boolean circuit by creating O(1) reactions per gate in the circuit. However,
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our results imply that reaction complexity can be improved by doing a space-bounded
Turing machine simulation instead – when the circuit is algorithmically “compressible.” An
important class of such compressible circuits are uniform circuits, i.e., those constructable
by a fixed Turing machine given an input size. Prior work established a quadratically tight
connection between the depth of uniform circuits and Turing machine space [9]. Further
investigation into optimal Boolean function computation is warranted.
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