
Benchmarking Regression Models Under Spatial
Heterogeneity
Nina Wiedemann1 #

Institute of Cartography and Geoinformation, ETH Zürich, Switzerland

Henry Martin #

Institute of Cartography and Geoinformation, ETH Zürich, Switzerland

René Westerholt #

Department of Spatial Planning, TU Dortmund University, Germany

Abstract
Machine learning methods have recently found much application on spatial data, for example in
weather forecasting, traffic prediction, and soil analysis. At the same time, methods from spatial
statistics were developed over the past decades to explicitly account for spatial structuring in
analytical and inference tasks. In the light of this duality of having both types of methods available,
we explore the following question: Under what circumstances are local, spatially-explicit models
preferable over machine learning models that do not incorporate spatial structure explicitly in their
specification? Local models are typically used to capture spatial non-stationarity. Thus, we study the
effect of strength and type of spatial heterogeneity, which may originate from non-stationarity of a
process itself or from heterogeneous noise, on the performance of different linear and non-linear, local
and global machine learning and regression models. The results suggest that it is necessary to assess
the performance of linear local models on an independent hold-out dataset, since models may overfit
under certain conditions. We further show that local models are advantageous in settings with small
sample size and high degrees of spatial heterogeneity. Our findings allow deriving model selection
criteria, which are validated in benchmarking experiments on five well-known spatial datasets.
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1 Introduction

The success of machine learning and artificial intelligence in recent years has sparked
considerable interest in respective methods also in GIScience, and has led to a general
proliferation of spatial data science [24]. While spatial statistics used to carefully address
the special nature of spatial data, spatial data science often involves the direct application
of (global) machine learning models to spatial data without explicitly modeling spatial
properties. Nevertheless, these models oftentimes provide successful inferences on test data.
Yet, spatial data may be subject to complex confounders including spatial heterogeneity,
which is the focus of this paper. Currently, there is no comprehensive review available
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11:2 Benchmarking Regression Models Under Spatial Heterogeneity

that would show when global non-linear machine learning models can or should be used
for interpolation or prediction tasks on spatially heterogeneous data without producing
misleading or wrong results. While there exist analyses on the effectiveness of methods
to deal with spatial autocorrelation [2], no such benchmarking has been done regarding
spatial heterogeneity, either originating from non-stationarity of the actual process or from
spatially heterogeneous exogenous noise. In this work, we benchmark the performance of
global (machine learning) and local spatial regression models for the prediction of unseen
test data that is subject to various kinds of heterogeneity. We simulate spatial heterogeneity
with synthetic data in order to derive recommendations about the suitability of model types
for specific heterogeneity-related scenarios. We finally validate our model selection criteria
through experiments on several real-world datasets. The following two sub-sections briefly
outline the state of the art as well as our contribution in more detail, before we present the
experiments and our results.

1.1 Related work
Statistical learning methods have been adapted to geospatial data since a long time. A major
step towards accounting for spatial heterogeneity has been the proposal of local models, such
as Geographically Weighted Regression (GWR) [3, 9]. Next to variants of GWR [17], the
idea also inspired adaptations of machine learning models, with spatial versions of Random
Forests (RFs) [11, 28] or even Geographically Weighted Artificial Neural Networks [13, 7].
The proposed modifications of machine learning models such as Random Forests include 1)
providing spatial coordinates as input [18], 2) deriving spatial features such as the distance
from points of interest from the coordinates [14] in order to improve spatial generalization [5],
3) including the observations at nearby samples as covariates [28], and 4) fitting RFs on
local subsets of data [11]. While these approaches have been shown advantageous in some
situations, a recent study Zhou et al. [31] compared GWR with geographical RFs on health
data and actually found that GWR provided better predictions than the more complex
RF models, though the generalizability of the results is limited due to the very specific
application context.

A common limitation of existing approaches is that the developed methods are usually
evaluated on a single or few real dataset(s). The results may therefore be subject to unknown
data properties. Synthetic data, in contrast, allows to benchmark methods in a controlled
setting. While this solution is implemented, for example, by Beale et al. [2] and Santibanez
et al. [26] for the purpose of assessing the effect of varying degrees of spatial autocorrelation,
there is a lack of benchmarking with simulated spatial heterogeneity. Fotheringham et al. [10]
and Hagenauer et al. [13] validate their methods on synthetic data that were designed to
be non-stationary in space, and Finley et al. [8] compare GWR and SVC on non-stationary
synthetic data, but they do not systematically vary the non-stationarity. The latter is our
point of departure for the following sections.

1.2 Contribution
We evaluate the ability of different models to deal with varying degrees of spatial heterogeneity.
Inspired by the work conducted by Comber et al. [4] presenting a route map when to use
GWR and two of its variants, we derive model selection criteria from our results on synthetic
data. We extend previous findings in three ways: first, in addition to GWR and other
linear methods, we also consider Random Forests as non-linear models and compare their
performance on non-linear tasks; second, we consider predictive performance instead of
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analysis in order to account for overfitting behavior; third, and most importantly, we provide
a detailed analysis of model adequacy with respect to spatial non-stationarity and signal-
to-noise ratio. To achieve this, we propose a synthetic data-generating process that allows
to systematically vary the degree of spatial heterogeneity due to 1) the non-stationarity
of the process, and 2) noise. We utilize this framework to compare seven models that are
selected to reflect standard approaches that were, to varying degrees, developed to deal with
spatial data. By analyzing the model performances in this controlled synthetic setting, we
derive recommendations what model is appropriate dependent on the sample density, the
spatial heterogeneity and the problem complexity. We validate our model selection criteria
by benchmarking the models also on five real geospatial datasets.

2 Methods

We simulate a spatial regression problem with synthetically generated data that are subject to
spatial heterogeneity. Spatial heterogeneity in our analysis stems from two effects; on the one
hand, the dependence of the dependent variable2 Y on the independent variables X may be
non-stationary, i.e., the same input may lead to different outputs in different spatial regions.
In previous work [10, 13], this was modeled by varying the coefficients β dependent on the
coordinates (u, v); for example, Fotheringham et al. [10] set β1 = 1 + (u+v)

12 and Hagenauer et
al. [13] add coefficients with oscillating spatial distribution based on trigonometric functions.
On the other hand, spatial heterogeneity may be caused by differences in the variance of the
errors (and thus by noise). To understand the effect of the signal-to-noise ratio in spatial
data subject to spatial heterogeneity of both types, we propose to vary the noise and the
level of non-stationarity over space and to compare models on both linear and non-linear
problems on test data.

2.1 Data-generating processes (DGPs)
One of our investigated DGPs represents a linear relationship of Y on k independent variables
xj(j ∈ [1..k]). It is given as

yi =
k∑
j

βj(ui, vi) · xij + ϵ(ui, vi) , (1)

where xij is the j-th feature of the i-th sample, (ui, vi) are the coordinates of the i-th sample,
and βj(ui, vi) is the location-dependent coefficient. ϵ(ui, vi) is the noise that may also be
heterogeneous across space. The definition of β and ϵ will be given in detail in Section 2.1.1
and Section 2.1.2 respectively.

We also implement a non-linear DGP in order to analyze the model performances under
the regime of a more complex phenomenon. The function is constructed such that there are
interactions between variables and non-linear effects of single variables, and the terms are
weighted with the non-stationary coefficients β:

ỹi = β1(ui, vi) · x2
i1 · sin (xi2) + β2(ui, vi) · sin (xi2) · xi4

+β3(ui, vi) · xi5 · log (x2
i3) + β4(ui, vi) · x2

i4 · cos (xi2)
+β5(ui, vi) · x2

i1 · xi4 · xi5 + ϵ(ui, vi).
(2)

2 Throughout this paper, we use capital characters for vectors and matrices and non-capitalized characters
for referring to scalar terms.
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11:4 Benchmarking Regression Models Under Spatial Heterogeneity

In both scenarios, we construct n samples with pairs of geographic coordinates (ui, vi) and
k attribute values xij . The coordinates are drawn from a uniform distribution U(−1, 1). In
contrast to related work, we did not use coordinates on a regular grid in order to better mimic
a realistic situation with irregular local clustering and dispersion patterns of observation sites.
The independent variables X are assumed to be subject to spatial autocorrelation since we
aim to simulate realistic spatial data. This is modeled by left-multiplying a vector of uniform
random data X ′ by the so-called spatial autoregressive (SAR) generating operator3 [16], that
is, as X = (I −ρW )−1X ′, where W is the weight matrix, computed as the inverse distances of
the 20 nearest neighbors. After observing that the average spatial autocorrelation, measured
using Moran’s I, is around 0.3 in the considered real datasets, we calibrate the autoregressive
parameter ρ such that the resulting values yield Moran’s I values of around 0.3 accordingly
(ρ = 0.75).

2.1.1 Non-stationary coefficients β

In contrast to previous work assuming a complete variation of the coefficients [10, 13], we
argue that with many types of real-world processes, it would be more reasonable for the
coefficients to vary around a constant value cj . To simulate this, we frame spatial non-
stationarity as an additive factor to the underlying coefficient cj , and quantify its strength
with a factor λ. The coefficients used are thus composed of the constant coefficient cj and
the spatial variation β̂j(ui, vi):

βj(ui, vi) = cj + λ · β̂j(ui, vi).

The spatial variation β̂, in turn, is modeled based on trigonometric functions and thus in a
similar fashion as presented in [10, 13]:

β̂j(ui, vi) = sin(ui · 2π + j) + cos(vi · 2π + j).

Since the coordinates are drawn from U(−1, 1), this definition of β̂ leads to two cycles of
the sine and cosine functions in x and y direction. Furthermore, the spatial variation is
shifted by j for the j-th coefficient to ensure that the spatial heterogeneities attached to the
coefficients are not all the same. The final coefficients βj(ui, vi) with weak (λ = 0.2) and
strong (λ = 0.5) non-stationarity are shown in Figure 1.

2.1.2 Spatial heterogeneity of the errors ϵ

Not only β-coefficients but also the error terms can vary across space. A heterogeneous
spatial distribution of the noise ϵ increases the difficulty of distinguishing signal from noise.
The spatial distribution may thereby either be similar to one of the coefficients (i.e., also
trigonometric) or different. Let σ be the average noise strength similar to the non-stationarity
effect size λ as defined in Section 2.1.1. Using this, we consider three scenarios for varying
the error terms:

ϵ ∼ N (0, σ), (3a)

ϵ(ui, vi) ∼ N (0, σ̂(ui, vi)) with σ̂(ui, vi) = σ · (sin(ui · 2π) + cos(vi · 2π) + 1), (3b)

ϵ(ui, vi) ∼ N (0, σ̂(ui, vi)) with σ̂(ui, vi) = σ · (0.5 · (ui + vi) + 1). (3c)

3 See also https://r-spatial.github.io/spatialreg/reference/invIrM.html

https://r-spatial.github.io/spatialreg/reference/invIrM.html
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(a) Coefficients with strong spatial heterogeneity (λ = 0.5).

(b) Coefficients with weak spatial heterogeneity (λ = 0.2).

Figure 1 Spatial non-stationarity is simulated as a trigonometric spatial variation of the coefficients
β. The factor λ determines the overall strength of the non-stationarity.

(a) Uniformly distributed
noise.

(b) Heterogeneous
(trigonometric).

(c) Heterogeneous
(linear).

Figure 2 Varying the spatial distribution of the variance of the errors ϵ. We simulate three
scenarios: uniformly distributed noise ϵ, one that follows a similar distribution as the non-stationary
process (i.e., trigonometric), and one that follows a different distribution (linear).

Equation 3a refers to a scenario with uniformly distributed noise. This scenario does not
incorporate spatially varying errors. Equation 3b describes error terms that are heterogeneous
in the sense that their variance oscillates trigonometrically around σ, depending on their
spatial locations. The last scenario presented in equation 3c is also spatially varying but
based on a diagonal linear trend over the map. Respective noise maps created under the
scenarios outlined are illustrated in Figure 2.

2.2 Regression models
We consider linear and non-linear, global and local models suitable for regression tasks.
Figure 3 provides an overview of their properties. In the following, let X ∈ Rn×m denote the
m-dimensional feature matrix of n samples, and let Y ∈ Rn be the dependent variable that
is to be predicted from X.

2.2.1 Ordinary Least Squares and a global spatial model
We employ two linear global types of regression models. One of these is the Ordinary Least
Squares (OLS) model, which assumes a linear dependency of Y on X. It is given as

Y = Xβ + ϵ,

GISc ience 2023



11:6 Benchmarking Regression Models Under Spatial Heterogeneity

Figure 3 Overview of the compared models’ abilities to handle non-linearity, their consideration
of spatial autocorrelation, and their respective suitability for non-stationarity.

with ϵ being the error term and β ∈ Rm denoting the coefficients. In OLS, the coefficients can
be estimated using matrix inverse and multiplication: β = (XT X)−1XT Y . The intercept
can be included in this model through a column vector of ones added to the feature matrix,
which yields X ∈ Rn×m+1 and β ∈ Rm+1. Note that applying OLS on spatial data is not
generally advisable since it assumes that the samples are independent. This is not the
case with (geo)spatial data because these are often taken from shared contexts, originate
from processes with endogenous spatial dispersal mechanisms, or may be driven by spatially
structured covariates. We nevertheless include OLS in our comparison as it is widely used as
a yardstick against which to assess the usefulness of spatially explicit methods.

The second global linear method tested is the Spatial Lag in X model (SLX). This model
takes into account spatially lagged independent variables and is given as

Y = ρWX + Xβ + ϵ,

where W is the spatial weights matrix that is computed as the inverse distance of the 20
nearest neighbors (see DGP), and ρ is the spatial coefficient. The estimation of β and ρ can
be solved by adding the spatially-lagged X as additional covariates, and estimating two sets
of coefficients for X and WX respectively.

2.2.2 Geographically Weighted Regression
Although Geographically Weighted Regression (GWR) was proposed for the analysis (not
prediction) of spatial data, it is a suitable local model to account for non-stationarity in
regression problems. GWR follows the standard linear regression framework but assumes
that the coefficients β are dependent on locations (ui, vi). The model specification is given as

yi =
∑

j

βj(ui, vi)Xij + ϵ.

In GWR, the local coefficients are estimated by building local models around each sample
including only the spatial neighbors within a bandwidth. The latter can either be fixed
(i.e., a pre-set distance) or adaptive (i.e., varying in space). The bandwidth is optimized by
means of the golden-section search algorithm based on the Corrected Akaike Information
Criterion (AICc) or with cross-validation (CV). Here, we tune a fixed bandwidth with the
AICc criterion and use an exponential kernel. Our analysis aims to benchmark established
local and global models on a synthetic (single-scale) task. We, therefore, use the original
GWR specification but do not consider variants of the model such as multi-scale GWR [10].

2.2.3 Random Forest Regression models
Random Forests (RFs) are established machine learning models for regression tasks and
have been shown to be very successful for a wide range of applications. We choose RFs
as the main non-linear model in our experiments since it is arguably most prominent in
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spatial applications and does not require extensive parameter tuning. An RF is formed as an
ensemble of decision trees that can learn arbitrary non-linear relations. The prediction of an
RF is the average over the tree-wise outputs. We use the implementation provided through
the scikit-learn [23] package.

To give RFs the ability to learn spatially non-stationary processes, a simple approach
is to include the geographic coordinates as covariates [18]. We denote this RF-variant by
RF (coordinates) in the following. In general, this approach is not recommended, since such
a model is not applicable to other spatial regions [5]. However, we only regard regression
within the same region here.

2.2.4 Spatial Random Forests
Aside from simply extending non-linear models by adding geographic coordinates or spatial
features as covariates, another option is to fit them locally, as a non-linear counterpart to
GWR. Similar to [11], we implement this approach for RFs. To provide a local yet efficient
approach, we exploit the bootstrapping nature of RFs and fit a fixed number of spatially-
disjoint decision trees. The decision trees are rooted in the cluster centers of K-Means
clustering applied to the dataset. At test time, the prediction for a test sample is given by
the weighted average of tree-wise predictions, where the weights are defined by the inverse
distances of the test sample to the root of each tree respectively. While Georganos et al. [11]
proposed a weighting of the spatial-RF and the global-RF predictions, we set the weight to 1
for a fair comparison between global and local models. Our version of spatial RFs is made
available as an open-source package4. We validated that our spatial RF achieves similar
performance as the implementation by Georganos et al. [11] and found that it is actually
superior in 65.7% of all simulated scenarios and under ceteris paribus conditions.

2.2.5 Kriging
Another method that we employ is Kriging. This method is a well-known approach for
interpolating geospatial data. A suitable variant for regression tasks is so-called Regression
Kriging, which corresponds to universal Kriging with external drift. Regression Kriging
essentially tackles (possibly non-linear) regression problems by fitting an arbitrary (global)
regression model on the data and then applying Kriging on the residuals. Here, we use
an RF as the base regressor in order to achieve maximum comparability to the global RF
models, and employ the Kriging implementation offered in the pykrige package [20]. All
Random Forest-based models are fitted with 100 base estimators and a maximum tree depth
of 30. Increasing the number of estimators to 150 did not yield any significant improvements.
We did not tune other parameters for a fair comparison. For GWR and spatial RFs, the
bandwidth is tuned on validation data.

2.3 Experimental setup
We construct synthetic data following the DGPs described above, and evaluate the seven
regression models in each scenario. The data is thereby randomly split and each model is
trained on 90% of the data and tested on the remaining 10%. To study the effect of the
sample size, we generate four datasets with n = 100, n = 500, n = 1000, and n = 5000
samples respectively, and k = 5 attributes for each sample. Our DGPs allow to compare
model performances subject to varying degrees of non-stationarity (λ) and of the variance of

4 https://github.com/mie-lab/spatial_rf_python
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Figure 4 Results on the synthetic dataset (1000 samples). Performance in general decreases with
noise and with the degree of non-stationarity (lowest performance in the bottom right of each plot).
On linear data, GWR can account for non-stationarity, in contrast to other models. A random
forest is better suited for non-linear phenomena, but spatial (locally fitted) RFs do not provide any
benefits in these scenarios.

error terms (σ). In our experiments, we systematically vary the spatial non-stationarity by
setting the factor λ to values between 0 and 0.5 (see Section 2.1.1). Furthermore, we vary
the signal-to-noise ratio by setting σ to values between 0 and 0.5, where σ = 0.5 corresponds
to a low signal-to-noise ratio (i.e., strong noise).

3 Results and discussion

In the following, we first compare the performances of the models on our synthetic dataset,
then derive recommendations for model selection, and finally validate these recommendations
in experiments on five real-world datasets.

3.1 Results obtained from synthetic data
The model performances in terms of test-data RMSE are visualized in Figure 4, divided by
data generating function (row), spatial non-stationarity (x-axis), and noise level (y-axis).
Only the scenarios with 1000 samples and uniformly distributed noise ϵ are shown. As
expected, the performance generally decreases with higher noise levels or higher degrees of
spatial heterogeneity (see highest RMSE in the bottom right corner of each scenario depicted
in Figure 4). For the linear DGP, one can clearly see the superiority of GWR in dealing with
locally varying spatial data, as it is indeed very robust to the adjusted spatial heterogeneity.
The linear models (GWR, OLS, and SAR) are also clearly better at dealing with noise in
linear regression tasks, whereas non-linear regressors such as Random Forests may struggle
from overfitting. However, the latter picture changes when considering a non-linear function.
The non-linear models yet generally struggle more with spatial non-stationarity than their
linear counterparts. Surprisingly, spatial RFs are consistently outperformed by other models
for the linear case, probably due to overfitting local models on the limited number of samples.
The figure further indicates that a spatial RF is also not the best model when it comes to
non-linear scenarios, though better than GWR. In this case, the problem may be underfitting,
given the lower number of samples that are fed into each local model.

3.1.1 Effect of the spatial heterogeneity of the errors
As explained in Section 2.1.2 we additionally simulate different distributions of the variance
of the errors ϵ (see Figure 2). Figure 5 visualizes the RMSE for GWR and Regression Kriging
by the noise level. The outcomes obtained for degrees of non-stationarity λ ∈ {0.3, 0.4, 0.5}
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Noise level 
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non-linear DGP

uniformly distributed noise heterogeneous (trigonometric) heterogeneous (linear)

Figure 5 The average RMSEs with their 95% confidence intervals for varying noise levels (500
samples, averaged over scenarios with high degrees of non-stationarity). The RMSE is highest if the
noise varies in the same fashion as the coefficients (heterogeneous – trigonometric) for the linear
DGP. For the non-linear DGP the noise pattern has no significant influence.

are thereby averaged for obtaining an easier-to-interpret picture, so the blue lines (uniformly
distributed noise) in Figure 5 correspond to the right part of the squares in Figure 4. In
general, the type of distribution only has a minor effect compared to the average noise level,
in particular for the non-linear GDP. However, at stronger noise levels, the scenario with
trigonometrically varying noise is clearly the most difficult. Additionally, the variance of the
RMSE increases in that case. Since the non-stationarity of the coefficients β is also modeled
trigonmetrically, these findings indicate that the models particularly struggle to distinguish
signal from noise if the variance of the errors is distributed similarly to the non-stationarity.

3.1.2 Comparing training and test errors
GWR and related local models are oftentimes only evaluated in terms of their fit to the
input data, and not by means of inference on unseen data. Since GWR is based on linear
models, the risk of overfitting is considered low, and evaluating the fit on test data is deemed
unnecessary. Here, we make the case for evaluating models in terms of their predictive power,
since even local linear models may overfit due to their higher number of parameters, and
because local sample sizes are often small. To justify this argument empirically, we compare
the RMSE on training and test data in our experiment. We find that Random Forest-based
models (including Regression Kriging as we base it on RF) generally achieve very small
training errors (RMSE < 0.01), which is expected since the individual decision trees overfit
on the training data and only the boosting approach leads to good test performance. In
Figure 6 we therefore only compare the results for SLX and GWR to showcase the danger
of overfitting even linear models when they are local. Here, we consider λ ∈ {0, 0.1, 0.2} as
“weak non-stationarity” and λ ∈ {0.3, 0.4, 0.5} as “strong non-stationarity”, σ ∈ {0, 0.1, 0.2}
as “weak noise” and σ ∈ {0.3, 0.4, 0.5} as “strong noise”. The results are averaged over these
scenarios for n = 1000 samples. Figure 6 shows that SLX as a global linear model hardly
overfits on the data, whereas for GWR, which has considerably more parameters than global
linear models, the training and test errors indeed diverge in some scenarios. For example,
when there is strong non-stationarity but weak noise, the test error of GWR is 31% higher
than its training error. This demonstrates the necessity to validate models on test data when
employing them in predictive instead of purely analytical scenarios.

Additionally, overfitting may even lead to misinterpretations of analytical results of GWR,
such as the visualization of the estimated coefficients on a map. The effect of overfitting
on the spatial interpretation is application-dependent, but we exemplify the problem in

GISc ience 2023
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Figure 6 Comparing training and test errors in different scenarios. Even linear models such
as GWR show overfitting behaviour, i.e., a lower test than train score, if there is either noise or
non-stationarity in the data.

Figure 7 Comparing the GWR-estimated coefficients to the real coefficient for different signal-to-
noise ratio. With noisy data, the spatial interpretation can be distorted.

Figure 7. The figure shows the true spatial variation of one coefficient β1 in synthetic data
(n = 1000) with moderate spatial heterogeneity (λ = 0.3), as well as the distribution of its
estimate obtained with GWR. With decreasing signal-to-noise ratio, the spatial pattern of
the estimated coefficient is perturbed. The pattern for σ = 0.5 indicates a single area with
high β1 on the left side of the region, in contrast to the true trigonometric pattern. This
shows the potential for misinterpreting the results of a model with a bad fit to the data and
calls for validation on test data before spatial analysis and interpretation. Of course, there is
no unequivocal and generally agreed definition for when a model is overfitting, and overfitting
may not be problematic as long as the test performance is sufficiently high. However, the
interpretation of coefficients should be considered with caution in such case. For example,
one could only analyze the coefficients of local models that were fit on a sufficient number of
samples.

3.2 Proposed criteria for model selection
Our experiments on synthetic data allow to derive recommendations for choosing a model,
dependent on the prediction task and on data availability. In general, the results in Figure 4
render linear models such as SLX most suitable for the linear DGP, with clear advantages of
GWR in non-stationary scenarios. In contrast, Random Forest-based models are superior in
the case of a non-linear DGP, while local RFs do not seem to provide many benefits. However,
in real-world scenarios, the DGP is usually expected to be neither perfectly linear nor as
complex as our non-linear scenario. It is therefore worthwhile to consider further factors
such as the sample size. For this purpose, we analyze scenarios with strong non-stationarity
(λ ∈ {0.3, 0.4, 0.5}) and weak noise (σ ∈ {0, 0.1, 0.2}) by sample size in Figure 8. Note that
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Figure 8 Comparing performance by the number of samples. The figure shows the average RMSE
over all scenarios with strong non-stationarity (λ ∈ {0.3, 0.4, 0.5}) and weak noise (σ ∈ {0, 0.1, 0.2}).

the samples are constructed by infill sampling in a fixed spatial region, implying that a
higher n leads to a higher sample density. For n = 1000 samples, the results correspond to
the average over the top-right quadrant of each square in Figure 4.

As Figure 8 shows, RF models perform similarly well on linear data in scenarios with
high sample density, whereas GWR is almost on-par for non-linear data when only 100
samples are provided. This observation leads us to derive the model selection tree presented
in Figure 9: If there is clearly a high sample density over space, RFs should be used, whereas
linear models are advisable in scenarios with very low sample density, or if the phenomenon
is expected to show linear relations. Since the value of a “high” or “low” sampling density is
application-dependent, this criterion must be decided on the basis of an analysis of the local
number of samples, e.g., by the number of samples within the set range in a semivariogram.
In scenarios with high non-stationarity, Kriging or spatial features in the RF are beneficial.
Global RFs should be tested in any case, in order to validate the necessity of local models.
It must be noted, however, that our analysis does not consider big data scenarios, where
RFs may still perform well but would need to be replaced by more memory-efficient methods
such as stochastic gradient descent.

High sampling
density

Strong spatial  
non-stationarity

GWR

SAR /
SLX

RF (+Kriging)

Linear 
 relation

Low sampling
density

Yes
No

RF (+Kriging)Given prediction
problem

Figure 9 Proposed criteria for model selection. The model choices were derived from experiments
with synthetic data of varying non-stationarity, sample size, and DGP (linear vs non-linear).

3.3 Results based on real-world data

We experiment with five benchmark datasets that have been used in previous work on spatial
data analysis and prediction, e.g. [19, 22, 14, 1]. The following sub-section first introduces
these datasets. Afterward, we discuss the results obtained.
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3.3.1 Datasets
There are five real-world, publicly available datasets that we employ for validation:

The California housing dataset5 was generated from the 1990 California census. Our
goal is to predict the median house price from the location and seven other variables,
such as the size and number of rooms, age, income, and population size. The number of
bedrooms is missing for 1% of the houses and we omitted those respective records.
The Atlantic mortality dataset6 captures county-level mortality rates from 2010–2012,
from which we have extracted only one year’s worth of data for our purposes. Rates of
smoking and poverty, as well as PM25, SO2, and NO2 levels provided as annual means
are utilized as covariates.
We further use a dataset on deforestation rates7 that was published by Santos et
al. [27]. The dataset provides annual deforestation rates from 2000 to 2010 for 2418 grid
cells (single values averaged over 10 years). The deforestation rate is to be predicted from
35 further variables about sociodemographics, spatial features, and economic information.
The forestation rate is given as four quantiles, which is problematic for the framing as a
regression problem. The results must therefore be taken with a grain of salt.
The Meuse river dataset8 is another standard dataset for experimental spatial ana-
lysis [25]. It is a rather small collection of soil measurements including copper, cadmium,
and zinc. Usually, this dataset is used to predict zinc concentration from the other soil
measurements as well as from further contextual information. For preprocessing, we omit
the categorical “landuse” variable and two incomplete samples.
Finally, a dataset on plant richness is included that was used for validating spatial
random forests9. Plant species richness is given for 227 ecoregions in America, and there
are 18 covariates with information on topography, land use, human population, and
climate.

3.3.2 Results obtained from real-world data
To validate the model selection tree presented in Figure 9 on real-world data, we first compute
an indicator for the degree of non-stationarity. The LOSH statistic [21] offers a way to
estimate local heterogeneity in terms of a local, spatially-weighted variance estimator. When
applying LOSH with a K-nearest-neighbor (KNN) weights matrix (here 20 neighbors), the
global average of all LOSH values indicates the average heterogeneity with respect to the
sample density. As shown in Table 1, we find LOSH values around 1.0 in the five real-world
datasets, where the California housing and the Meuse datasets show lower local heterogeneity
(øLOSH of 0.88 and 0.89) , and the plants data is subject to stronger local heterogeneity
(øLOSH of 1.06). Table 1 further gives the number of samples and the number of covariates
k as an indicator of the problem complexity. We then quantified the model performances in
terms of RMSE, mean absolute error (MAE), and the R-squared score; however, all metrics
yield the same ranking of methods, and we therefore only report the RMSE in Table 1.

5 We use the public dataset available from Kaggle: https://www.kaggle.com/datasets/camnugent/
california-housing-prices?resource=download.

6 The data is available from https://zia207.github.io/geospatial-r-github.io/geographically-
wighted-random-forest.html.

7 Data downloaded from https://github.com/FSantosCodes/GWRFC/tree/master/data
8 The data is included in the R package sp: https://rsbivand.github.io/sp/reference/meuse.html
9 The data is available from https://blasbenito.github.io/spatialRF/#data-requirements.

https://www.kaggle.com/datasets/camnugent/california-housing-prices?resource=download
https://www.kaggle.com/datasets/camnugent/california-housing-prices?resource=download
https://zia207.github.io/geospatial-r-github.io/geographically-wighted-random-forest.html
https://zia207.github.io/geospatial-r-github.io/geographically-wighted-random-forest.html
https://github.com/FSantosCodes/GWRFC/tree/master/data
https://rsbivand.github.io/sp/reference/meuse.html
https://blasbenito.github.io/spatialRF/#data-requirements
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Table 1 Model benchmarking on real-world data. We find that GWR performs better on the
Atlantic dataset and the Meuse data, whereas non-linear models yield lower RMSE on datasets with
higher sample density as expected (e.g. California housing).

Dataset Samples k ø LOSH RMSE

OLS SLX GWR RF RF
(coord.) spatial RF Kriging

Atlantic 666 7 1.00 8.65 8.64 7.14 7.54 7.34 8.18 7.43
California housing 20433 8 0.88 72244 63532 56156 61234 48209 67493 55173

Deforestation 2418 36 1.00 0.83 0.82 0.80 0.66 0.67 0.71 0.66
Meuse 153 11 0.89 51.65 54.80 48.40 68.13 68.13 88.70 64.16
Plants 227 18 1.06 2349 2334 2226 2216 2288 2507 2120

For validating the results, we compare to previous results reported for these datasets, and
our scores improve over the ones reported in the data-accompanying tutorials6,9, or achieve
comparable results as related work [19].

We confirm previous results that spatial models achieve good results on these spatial
datasets. However, RF-based methods perform better on several datasets, in particular, when
the sample density is sufficiently high (e.g., California housing) or when the process analyzed
is more complex (e.g., predicting quantiles in the deforestation dataset from 36 variables;
or predicting plant richness from 18 covariates). A surprising result is the superiority of
GWR above other model specifications for the Atlantic dataset (mortality rates) despite the
intermediate LOSH value and sample size. This may be due to a rather linear dependency of
Y on X, and is in line with previous findings [31]. Our results on real-world data, therefore,
show the general applicability of our model selection criteria, but call for further efforts on
quantifying spatial non-stationarity and problem complexity in spatial data.

4 Conclusions

While many promising regression methods were developed specifically for spatial data, there is
a lack of analysis about the properties of data that render such models superior. We contribute
to a better understanding of these conditions with an analysis systematically exploring the
effects of non-stationarity, the signal-to-noise ratio, noise heterogeneity, the nature of the
DGP (linear/non-linear), and sample size. Based on the experiments, we recommend using
(local) linear models such as GWR for addressing problems encompassing a small sample size
or strong non-stationarity. Further, we recommend using non-linear models such as Random
Forests for prediction tasks involving larger spatial datasets, whereby locations should be
fed into the model through additional spatial input features. RFs can further be combined
with Kriging to better account for non-stationarity. While the type of data may give some
indication of the non-stationarity and complexity, further work is necessary to assess spatial
stationarity a priori. Promising avenues may be, for example, exploring spatial stationarity
measures as proposed for time series [6], through better understanding localized (and varying)
heterogeneity [30] or, alternatively, by controlling for complex forms of stationarity using
Moran eigenvector filtering and its variants [29, 12]. We further argue that our results call
for an increased significance of prediction for validating model performance. Even if a model
is only used for analysis, the validity of the inferred coefficients should be evaluated via test
data, since even linear local models are prone to overfitting in spatially structured noisy or
non-stationary settings. At the same time, other factors that are not discussed in this work,
such as model interpretability, may be important when it comes to model selection and may
give preference to linear modeling even though non-linear models may be superior in terms
of prediction. Future work could aim to combine the best of both worlds by improving the
spatial interpretability of global models such as RFs.
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Finally, our analysis is limited in scope regarding the considered properties and models.
Follow-up work could put more focus on spatial autocorrelation and its interplay with non-
stationarity, or explore other types of non-stationary non-linear relations. Another interesting
path that some researchers have started venturing on is to integrate better modern machine
learning models such as spatial neural networks with geospatial principles [13, 15]. We hope
that our work inspires further efforts to properly benchmark new methods on both synthetic
and real-world data, thereby improving our understanding of the use cases and advantages
of spatially-explicit models.
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