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Abstract
Bayesian modelling averaging (BMA) allows the results of analysing competing data models to be
combined, and the relative plausibility of the models to be assessed. Here, the potential to apply this
approach to spatial statistical models is considered, using an example of spatially varying coefficient
modelling applied to data from the 2016 UK referendum on leaving the EU.
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1 Overview

Imagine that you are waiting for a taxi and it is already slightly late. You are concerned
that you will miss a train, and want to estimate how long you will need to wait. A number
of scenarios could cause the delay. For example: The taxi is stuck in traffic; There was
an administrative error and the booking service gave the taxi driver the wrong time; The
taxi was involved in a road accident; and so on. In each case a number of factors effect
the expected delay - but the factors are not the same in each scenario. However your main
concern is the delay time, regardless of the scenario. This is a similar problem to those which
Bayesian Model Averaging (BMA) may be used to address.

If you had models encompassing k scenarios based on past data D - say {M1 · · · Mk}
intended to predict the delay time T , and posterior beliefs in each scenario being correct:
{Pr(M1|D) · · · Pr(Mk|D)} you could obtain the predictive distribution of T given D as a
weighted average of the individual predictive distributions obtained from each model as

Pr(T |D) =
∑

i=1,k

Pr(T |Mk, D)Pr(Mk|D).

This in essence is Bayesian Model Averageing (BMA) – if we have a number of competing
models with at least one quantity of interest that all have in common, and relative likelihoods
of each of them being the correct model, we can obtain a posterior distribution of the quantity
of interest by averaging them using the likelihoods as weights.

Up to this point, there is nothing exclusively spatial about this process, but it can be a
powerful tool for assessing and utilising spatial models. For example, the competing models
could be:
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17:2 Bayesian Model Averaging for Spatial Analysis

1. Spatial regression models using different spatial weight matrices.
2. Spatially Varying coefficient regression models where different parameters have fixed or

spatially varying coefficents in each model.
3. Spatial trend models with differing map projections (eg. a cartogram vs. national grid

coordinates)

In general, this approach can be used for any parameter that is common to all models, or a
predicted dependent variable – so if one were interested a particular regression coefficient, its
posterior distributioncould be considered in terms of various models containing this coefficient.
A key advantage of this approach is that while many other approaches (eg stepwise regression,
best AIC, best cross validation score) have a workflow to select a single “best” model, this
averages over all possibilities on the basis of relative evidence. In particular when several
models all perform similarly well, this approach makes use of information from all of them,
rather than discarding all but one.

2 A Brief Description of Computational Methodology

The approach to computing Pr(Mi|D) – a crucial stage in BMA - is to firstly compute
Pr(D|Mi) – then, via Bayes’ Theorem, we have

Pr(Mi|D) = Pr(D|Mi)Pr(Mi)∑
j Pr(D|Mj)Pr(Mj) .

Each model Mi will have its own parameter vector Θi - although the respective Θi may
differ in length and form between models. Standard statistical models typically specify
Pr(D|Θi, Mi) - but here we are interested in the marginal probability of the observed data
D across all possible Θi values for each Mi, weighted by their prior probabilities. That is

Pr(D|Mi) =
∫

Θi

Pr(D|Θi, Mi)Pr(Θi|Mi) dΘi.

This is sometimes referred to as the marginal posterior probability of D given Mi. Although
the right hand side expression cannot usually be derived analytically, two broad approaches
may be taken:
1. Approximation.
2. Monte Carlo Simulation.

Approximation is generally quicker and less “resource hungry” to evaluate, but less
accurate. A usual strategy for approximation is based on the Bayesian Information Criterion
(BIC) [4] for model Mi. If Θ̂i is the maximum likelihood estimate for Θi for Mi, and L̂ is
the value of the likelihood corresponding to Θ̂i, n is the sample size, and k is the dimension
of Θi then

BIC = k log(n) − 2 log(L̂)

and for larger n it can be shown that

Pr(D|Mi) ≈ exp
(

−BIC
2

)
.

Finally, for the parameter(s) of interest, say θi ⊂ Θi for a given model Mi the posterior
distribution can be approximated via Laplace’s approximation [1]. The posterior distribution
for θi may be approximated as having a multivariate normal distribution with a variance-
covariance matrix equal to the Hessian of the posterior likelihood function, with the maximum
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Figure 1 Leave Vote (%) by Parliamentary Constituency.

Table 1 Variables Used in Referendum Outcome Modelling.

Variable Description

Leave Percentage of “Leave” votes for each constituency (Dependent Variable).
Born_uk Percentage of electorate born in the UK.
Age_65_plus Percentage of electorate aged 65 or older.
Turnout Percentage of electorate who voted in the 2015 general election.
Christian Percentage of electorate stating their religion as “Christian”.

likelihood estimators of θi as mean values. For a scalar θi this suggests that the marginal
posterior distribution may be estimated as a normal distribution with the maximum likelihood
estimate θ̂i as its posterior mean, and SE(θ̂i) as its posterior standard deviation. The BMA
may then be approximated as a mixture of the k Normal distributions with Pr(Mi|D) as the
weight for Mi.

In this study, the example will use the BIC-based approach, and so attention will be
focused on this method.

3 Example: The UK’s 2016 Referendum on Leaving the EU

On June 23rd 2016, the United Kingdom held a referendum regarding its then membership
of the European Union. Voters were offered two choices: “Leave the European Union”
(Leave) or “ Remain a member of the European Union” (Remain). The outcome was a
51.9% majority in favour of “Leave”, although a hexagonal cartogram map of voting by
Parliamentary Constituencies in England, Scotland and Wales (Figure 1) suggests this overall
figure conceals notable regional patterns. This leads to a further question: if the voting
patterns themselves show strong regional patterns, do the drivers of these outcomes also
vary geographically?

To investigate this, a number of variables were obtained (from the parlitools R pack-
age) [3], recorded at at the Parliamentary Constituency geographical unit – listed in Table 1.
The UK census-based variables (born_uk, age 65+, and Christian) were recorded in the
2011 UK Census – this being the latest Census held in the UK prior to the referendum.
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The key questions for each variable are whether they influence the leave vote; and if so
then does the direction and magnitude of this influence vary geographically? To investigate
this, for each variable it is possible to include it in a model with a fixed linear coefficient
β × Variable or a geographically varying coefficient β(u, v) × Variable where (u, v) is the
centroid of each parliamentary constituency, or to omit it from the model.

To investigate this, the R package mgcv was used to fit every permutation of these kinds
of model. For each of the four predictor variables there were three possibilities - omit the
variable from a regression model, include with a fixed linear coefficient, or include with
a spatially varying coefficient. In the latter case a thin-plate spline approach was used
(although other options could be chosen). In the R formula notation, an example of a model
might be

Leave ~ s(u,v,by=Born_uk,bs='tp') + Turnout
suggesting a model where the coefficient for Turnout was fixed, that for Born_uk varied,

and the other variables were omitted. This yields 34 = 81 models. In addition to this, each
model was fitted with both fixed and varying intercept terms, and with the coordinates
(u, v) based on location on the cartogram and physical (UK National Grid) location. Thus
there are 4 variants on each model, resulting in 81 × 4 = 324 possible models altogether.
In the marginal likelihood approach, there is no requirement that models be nested, so all
324 models can be considered. Here the mgcv package offers Bayesian Information Criterion
methods (BIC) for gam model objects, and so the BIC based approximation will be used here.
Using this approach, all models with a posterior probability ≥ 0.01 are listed in Table 2.

The most likely model includes all variables with the intercept and the Born_uk coefficient
being modelled as thin plate splines, and the remaining variables having fixed linear coefficients.
The geographical coordinates for the splines are based on the cartogram, rather than physical
space. However, reading the Pr(M |D) column in the table suggests that this model is the
correct one is a little under two thirds. The possibility of one of the “runners up” being
correct is non-trivial. In the next model in the table (probability around one in five) Born_uk
has a fixed coefficient - but also although the intercept term is varying, the coordinates are
now based in physical space.

The Intercept term has a spatially varying coefficient in all of the three most probable
models. These three models dominate the posterior marginal probabilities, totalling around
0.95 of all possibilities. These surfaces are shown in Figure 2. The Bayesian model average
surface (over all possible models) for intercept is given by

β0∗(u, v) =
∑

i=1···324
Pr(Mi|D)β0i(u, v)

where β0i(u, v) is the intercept coeffient for model i. For models where the intercept is
constant, β0i(u, v) is a constant w.r.t. (u, v). This is shown as the fourth map in Figure 2 on
the LHS map quartet.

In these models all variables - as listed in Table 1 - are standardised to have mean zero
and standard deviation 1 prior to analysis. For the intercept term, this gives the standardised
value for the Leave variable assuming all other predictors are at their mean value. It is not
a direct measure of overall tendency to vote “Leave” or otherwise - more of a measure of
geographical effects not accounted for by current variables in the model. On this basis, there
seems to be among other things a “Scotland effect” and a “West London effect” (although
this is not apparent in the second most probable model, which uses physical coordinates
rather than cartogram). Once the models are averaged the West London effect remains,
although muted.
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Table 2 Models with Highest Posterior Probabilities.

Intercept Born_uk Age 65+ Turnout Christian Coords Pr(M|D)

Spline Spline Fixed Fixed Fixed Cartogram 0.637
Spline Fixed Fixed Fixed – Physical 0.205
Spline Fixed Fixed Fixed Fixed Cartogram 0.109
Spline Fixed Fixed Fixed Fixed Physical 0.045
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Figure 2 The intercept and born_uk terms by parliamentary constituency (Great Britian).

The coefficient for born_uk can also be mapped. This is shown in Figure 2 (RHS). The
values are calculated using the formulae above. Of note here is perhaps that in a region to
the west of london, born_uk seems to have little infuence on the outcome than in much of
the country where higher values suggest a Leave majority is more likely.

It is also possible to map the marginal posterior standard deviation for these parameters,
after model averaging. These are computed using the formula

[PSD (β∗(u, v))]2 =
∑

i=1···324
Pr(Mi|D) [PSD (βi(u, v))]2

and are shown in Figure 3. Notable in both cases is the “edge effect” where the PSD is high
near to the coastal areas. Also of note is the raised PSD in the London area.

4 Discussion

The BMA approach provides a number of useful tools. It provides a means of assessing the
viability of competing models, by providing posterior probabilities of each being the correct
model. This can be thought of as similar to hypothesis testing, but it treats hypotheses
symmetrically, and can handle more than two competing hypothesis. It also a provides means
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Figure 3 Posterior Standard Errors for Intercept and born_uk.

of combining competing models to investigate parameters common to all models, in the
presence of uncertainty as to which model is correct. The example here used an approximate
approach that is convenient, as it can be achieved using standard R tools. More accurate
approaches are also possible via techniques such as Bridge Sampling – see [2] for example.
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