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Abstract
The labeling of point features on a map is a well-studied topic. In a static setting, the goal is to
find a non-overlapping label placement for (a subset of) point features. In a dynamic setting, the
set of point features and their corresponding labels change, and the labeling has to adapt to such
changes. To aid the user in tracking these changes, we can use morphs, here called transitions,
to indicate how a labeling changes. Such transitions have not gained much attention yet, and we
investigate different types of transitions for labelings of points, most notably consecutive transitions
and simultaneous transitions. We give (tight) bounds on the number of overlaps that can occur
during these transitions. When each label has a (non-negative) weight associated to it, and each
overlap imposes a penalty proportional to the weight of the overlapping labels, we show that it is
NP-complete to decide whether the penalty during a simultaneous transition has weight at most k.
Finally, in a case study, we consider geotagged Twitter data on a map, by labeling points with
rectangular labels showing tweets. We developed a prototype implementation to evaluate different
transition styles in practice, measuring both number of overlaps and transition duration.
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1 Introduction

Maps are ubiquitous in the modern world: from geographic to political maps, and from
detailed road networks to schematized metro maps, maps are used on a daily basis. Advances
in technology allow us to use digital maps on-the-fly and in a highly interactive fashion, by
means of panning, zooming, and searching for map features. Besides changes induced by the
user, maps can also change passively, for example automated panning during gps routing, or
changing points of interest when visualizing time-varying geospatial (point) data.

Important features on a map are often labeled. Examples of such features are areas
(such as countries and mountain ranges), curves (for example roads and rivers), and most
importantly points (of interest). The aforementioned interactions force map features and their
corresponding labels to change, by appearing, disappearing, or changing position. Instead of
swapping between the map before and after such changes, we can use morphs, here called
transitions, to allow the user to more easily follow changes in map features and labelings.
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2:2 Transitions in Dynamic Point Labeling
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Figure 1 A full visual scan of the individual labels is necessary to identify all changes [20].

Figure 1 shows why such transitions are important: even for two very similar point labelings,
a lot of mental effort can be required to identify the differences.

Automated map labeling is a well-researched topic within the geographic information
science (GIS) and computational geometry community. In recent years, the GIS community
has investigated the labeling of road networks [18], island groups [21], time-varying maps [2,
14], combining labeling with word clouds [5], and using human-in-the-loop approaches for
labeling [13]. Algorithms have mainly focused on (the complexity of) computing labelings, in
various static [1, 11, 22], interactive [3, 4, 12, 15], and dynamic or kinetic [6, 7, 9] settings.

In this paper we study transitions on maps that show point features P and their labels L.
Let P be a finite point set in R2, where each point pi ∈ P has a label li ∈ L associated
to it. Labels are axis-aligned rectangles in the frequently used four-position model, that
is, each point pi has four possible candidate positions to place label li [11] (see Figure 2a).
While labels are often modeled as arbitrary (axis-aligned) rectangles, we use squares with
side length σ = 1 for simplicity. In Appendix A we show how our results extend to arbitrary
rectangles. A labeling L ⊆ L of P consists of a set of pairwise non-overlapping labels, and
can be drawn on a map conflict-free, by drawing only the labels in L with their associated
points. If the label l ∈ L for a point p ∈ P is not contained in L, we do not draw p either.

Furthermore, we work in a dynamic setting, where points appear and disappear at
different moments in time, and the set P changes only through additions and deletions: the
data we consider later consists of geotagged tweets, for which we know only the location at
the moment they are tweeted, and hence data points do not move. Every time changes are
made to P , a new overlap-free labeling must be computed, thus resulting in a change from
labeling L1, before the changes, to labeling L2, afterwards. In this paper we study different
types of transitions from L1 to L2. During such a transition, the individual labels are allowed
to move in the sliding-position model [22] (see Figure 2b). Our aim is to find transitions that
achieve optimization criteria, such as minimizing the number of overlaps during a transition,
or minimizing the time required to perform a transition. To our knowledge, this is the first
time transitions have been studied in this way.

p p

(a) (b)

Figure 2 (a) The four candidate positions for label l of point p, with l placed in the top-right
position. (b) Labels continuously move between candidate positions using the sliding-position model.
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(a) (b)

Figure 3 (a) Minimizing overlaps by moving around the gray stationary label. (b) Minimizing
duration by using a single movement along the green arrow, instead of moving along the red arrows.

Problem description. Given two (overlap-free) labelings L1 and L2, we denote a transition
between them with L1 −→ L2. Such a transition consists of changes of the following types.
Additions If only label li of a feature point pi must be added, we denote this by L1

Ai−→ L2.
Removals If only label li of a feature point pi must be removed, we denote this by L1

Ri−→ L2.
Movements If only label li of a feature point pi must change from its position in L1 to a new

position in L2, we denote this by L1
Mi−−→ L2. Movements are unit speed and axis-aligned,

in the sliding-position model. Note that a diagonal movement, as in Figure 3a (left), is
composed of a horizontal and a vertical movement, and hence takes two units of time.

A label is stationary if it remains unchanged during a transition. Applying multiple transitions
consecutively is indicated by chaining the corresponding transition symbols: L1

MiMj−−−→ L2

denotes that label li moves before label lj . Furthermore, L1
M−→ L2 is a shorthand for

applying all movement-transitions simultaneously. All these notions extend to additions and
removals, using A and R, respectively, instead of M . A transition has no effect if no point
must be transformed with the respective transition, e.g., even if there are no additions, the
transition L1

A−→ L2 is still applicable; it simply does not modify the labeling.
We aim to identify types of transitions that try to achieve the following goals.

G1– Minimize overlaps While the two labelings are overlap-free, overlaps can occur during
the transition from L1 to L2. When too many overlaps happen at the same time, certain
labels may (almost) completely disappear behind others during a transition, which defeats
the purpose of the transition: allowing users to follow changes in the labeling. Thus,
those overlaps should be avoided as much as possible, by, for instance, adjusting the
movement direction of labels, as shown in Figure 3a.

G2– Minimize transition duration Our main goal is to show a map in a (mostly) static state.
However, we do not want to instantly swap L1 for L2, since the user will have difficulties
tracking all changes [20]. Though, a transition that takes too long can also cause users to
lose attention [19]. Hence, we want transitions that can be completed in a short amount
of time. This can be achieved by disallowing detours, as in Figure 3b, or by performing
the changes simultaneously.

Note that ideally, one would also try to minimize the number of moving labels, as studies
have showed that the amount of information humans can process is limited [17]. However, in
this paper, we assume that we are given the new labeling L2, which thus dictates the labels
that have to move. Therefore, we see the task of computing a stable labeling L2, i.e., one
where only a few labels move, as an interesting research question in its own right.

Optimizing both goals G1 and G2 simultaneously is often impossible as there can be a
trade-off: performing the transition as fast as possible to achieve G2 often leads to unnecessary
overlaps, while preventing as many overlaps as possible to achieve G1 may require more time.

GISc ience 2023
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However, to work towards both G1 and G2, we can perform all additions simultaneously, as
well as all removals. Furthermore, if we perform removals before movements, and movements
before the additions, we create free space for the movements, to reduce the number of overlaps
without wasting time. Let X be an arbitrary way of performing all movements required to
change from L1 to L2 (consecutively or simultaneously), then we can observe the following.

▶ Observation 1.1. A transition of the form L1
RXA−−−→ L2 aids in achieving both G1 and G2.

We introduce two overarching transition styles in this paper: consecutive transitions
and simultaneous transitions. Each such transition style is a variant of the style RXA, as
prescribed by Observation 1.1, and fills in the movement described by X in a unique way.
For a consecutive transition the movement X consists of a sequence of label movements,
whereas for a simultaneous transition we have X = M . These transition styles each incur
different transition durations. Since we expect a trade-off between G1 and G2, we specifically
analyze the number of overlaps during transitions of the two styles.

Related work. Our problem description resembles earlier work on point labeling, but it
also has subtle differences. For example, the optimization criteria we care for, minimizing
overlaps and time required for labels to move, were already investigated by de Berg and
Gerrits [9]. They showed that there often is a clear trade-off between these criteria when
dealing with moving labels. However, in their model, points are allowed to move (even
during label movement), while our points are static, and change only through additions and
deletions. Furthermore, in the pspace-hardness framework by Buchin and Gerrits [7] points
are often static and only labels move. Hence, their dynamic labeling instances are similar to
transitions. Though, a distinct difference is that labels must be allowed to move back and
forth in the dynamic labeling instances of the hardness reduction. Since we disallow detours
in transitions (see goal G2), this reduction is not easily transferred to our setting.

Finally, our analysis of the number of overlaps in transitions draws multiple parallels with
the analysis of topological stability, introduced in the framework for algorithm stability [16].
This framework provides various (mathematical) definitions of stability for algorithms on
time-varying data: Intuitively, small changes in the input of an algorithm should lead to small
changes in the output. Topological stability prescribes that the output changes continuously.
The (topological) stability ratio of an algorithm then measures how close to optimum the
stable output is: when an optimal solution undergoes a discrete change, a topologically
stable output has to continuously morph through suboptimal solutions. Similarly, we analyze
transitions with continuous movement of various styles. We then analyze how close to
overlap-free a labeling is during a transition by counting overlaps.

Contributions. In Sections 2 and 3 we analyze the worst-case number of overlaps of
consecutive and simultaneous transitions, respectively. In Section 3 we additionally consider
instances where we associate weights to the labels (and to their overlaps) and prove that it is
NP-hard to minimize the weight of overlaps in simultaneous transitions. Finally, in Section 4
we investigate in a case study how the transition styles perform on the described goals.

2 Consecutive Transitions

Naive transitions. Before we can propose more elaborate transition styles, we first evaluate
the potential overlaps for a single label performing its movement. Figure 4a shows how only
a single stationary square label can interfere with the moving label.



T. Depian, G. Li, M. Nöllenburg, and J. Wulms 2:5

(b)(a)

li

li

lj

Figure 4 (a) Since all labels are squares with side length σ, the moving blue label li can overlap
only a single gray stationary label lj . (b) The blue label li overlaps 14 other labels during the
movement transitions. The green labels move before li, red labels move after li.

▶ Lemma 2.1. In L1
RMiA−−−−→ L2, where only label li moves, at most one overlap can occur.

Proof. As we perform removals before the movement and additions afterwards, we can
guarantee that the start and end positions of label li are free. Thus any overlap can occur
only during diagonal movement of li, when li moves from one candidate position in L1, to a
non-adjacent candidate position in L2. Assume without loss of generality that li traverses
the lower-left label position, when moving from top-left to bottom-right. Only a single other
(stationary) label lj can be positioned such that both L1 and L2 are overlap-free and the
label overlaps with the area traversed by li (see Figure 4a). Any additional label overlapping
the traversed area, without overlapping lj , would overlap the start or end position of li. ◀

Next we consider an arbitrary order of all n moving labels in a transition. We define a
conflict graph, which has a vertex for each moving label, and an edge between overlapping
labels. With a packing argument we locally bound the degree of each of the n moving labels
to 14 by considering the start, intermediate, and end position of such a label (these overlaps
are achieved in Figure 4b). By the handshaking lemma this results in at most 7n overlaps.
For more details on the proof of Lemma 2.2 see the full version [10].

▶ Lemma 2.2. In L1
RM1 ...MnA−−−−−−−→ L2 at most 7n overlaps can occur.

DAG-based transitions. To refine the naive approach, we model dependencies between
movements in a movement graph, and use it to order movements and avoid certain overlaps.

▶ Definition 2.3 (Movement graph). Let M = {M1 , . . . , Mn} be a set of movements. Create
for each movement Mi ∈ M a vertex vi, and create a directed edge from vi to vj , vi → vj , if
some intermediate or end position of Mj overlaps with the start position of Mi, or the end
position of Mj overlaps with some intermediate position of Mi: In both cases movement Mi

should take place before movement Mj . If intermediate positions of Mi and Mj overlap, create
the edge vi → vj, i < j. This results in the movement graph GM (see Figure 5).

A feedback arc set in a movement graph is a subset of edges that, when removed, breaks all
cycles, resulting in a directed acyclic graph (DAG). We order movements using this DAG.

GISc ience 2023
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Figure 5 (a) The blue label is added in this transition and forces n + m inevitable overlaps during
movement (n = 8 and m = 1). Gray labels are stationary. (b) The corresponding movement graph.

▶ Theorem 2.4. Movements in L1
RM1 ...MnA−−−−−−−→ L2 can be rearranged such that at most n + m

overlaps occur, if GM, with M = {M1 , . . . , Mn}, has a feedback arc set of size m.

Proof. By Lemma 2.1, we know that at most one overlap occurs when moving a single label
to a free end position. This leads to at most n overlaps for n consecutively moving labels, if
no label moves to (or through) a position occupied by a label, which starts moving later.

Let GM be a movement graph with M = {M1, . . . , Mn}. There are two cases:
Case (1) If GM is acyclic, then handling all movements according to any topological ordering

of the vertices of GM produces no additional overlaps.
Case (2) If GM contains cycles, then overlaps may be inevitable because each label in such

a cycle wants to move to or through a position that is occupied by another moving label.
Moreover, as the movements happen consecutively, one label in this cycle must move first
and therefore may cause an overlap. Let m be the smallest number of edges that must be
removed to break each cycle in GM, i.e., the size of a minimum feedback arc set S. As
GM is cycle-free after removing S, case (1) applies and m additional overlaps suffice. ◀

We can see in Figure 5 that this bound is tight. Furthermore, it is not always necessary to
perform all movements consecutively. We can observe that movements which are unrelated in
GM can be performed simultaneously: when no overlap is possible, there is no edge in GM.

3 Simultaneous Transitions

Figure 6 shows three timelines of different transition styles, (1) a naive consecutive transition,
(2) a DAG-based transition, and (3) a simultaneous transition. All transition styles start
at some time t0 and the order of the movements of the labels for (1) and (2) is indicated
with gray arrows. While (1) produces four overlaps and takes four units of time, (2) and (3)
produce no overlaps, and (3) only takes a single unit of time. This shows that it is sometimes
unnecessary to perform the movements consecutively to minimize overlaps. In this section,
we investigate both how simultaneous movements influence the number of overlaps, and the
complexity of minimizing overlaps.
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(1) Naive consecutive

(2) DAG-based

(3) Simultaneous

t0

t0

t0

Figure 6 Comparison of possible movement orderings with respect to G1 and G2.

▶ Theorem 3.1. In L1
RMA−−−→ L2 at most 6n overlaps can occur, where n is the number of

labels that must be moved, and all movements are performed at unit speed.

Proof. Let σ = 1 denote the side length of a label. To show that the total number of overlaps
is at most 6n, we model the overlaps in a graph and consider the neighborhood of individual
vertices. Let G be a conflict-graph where each vertex vi corresponds to a label li. If two
labels li and lj overlap during the transition, we create an edge (vi, vj), i.e., each edge
corresponds to an overlap. Observe that each edge is adjacent to at least one moving label
since two stationary labels cannot overlap. We proceed by evaluating in G the maximum
possible degree of a moving label l and restrict ourselves to a σ-wide border around the
bounding box of the movement area of l, that represents the area other labels must touch
(before the transition) to overlap with l. We call this area the overlapping region of l and it
is illustrated in Figure 7. Labels not intersecting the overlapping region of l by construction
cannot overlap with l. We proceed by considering the two possible types of movements for l.

Non-diagonal movement of l. For a label l that performs a non-diagonal movement, the
overlapping region is illustrated in Figure 7a. The light-orange area in the overlapping region
indicates that the start position of a label overlapping l cannot lie solely in this area. If a
labels starts in the area behind l, then such a label would never overlap with l, since labels
move simultaneously. The start position of labels overlapping l can neither overlap only the
σ × σ tiles diagonally adjacent to the end position of l, as the end position of those labels
would overlap the end position of l, for any movement that allows the labels to overlap l.

Next consider the remaining (white) area in the overlapping region, and see Figure 8 for
our construction. Consider first the end position w1 of l and the three σ × σ tiles w2, w3
and w4 adjacent to it. The total height of w1, w2 and w3 combined is 3σ, and hence the

l

σ
w1

w3

w2

w4

w5

w6

(a)

l
σ

w1

w2

w3

w4

w5 w6

w7

(b)

Figure 7 Overlapping regions for (a) non-diagonal and (b) diagonal movement of the blue label l.
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(a) (b)

Figure 8 Labels overlapping with the blue label l that are located on the white tiles (a) w1 − w4

and (b) w5 − w6. The overlapping region of l is indicated in gray.

(a) (b)

Figure 9 Labels overlapping the blue label l that performs a (a) non-diagonal and a (b) diagonal
movement. The overlapping region of l is indicated in gray.

start positions of at most four labels can be stacked vertically to overlap this area (see the
labels with the color in Figure 8a). Similarly, w1 and w4 have a combined width of 2σ

and height σ. Since the end position of l is adjacent to the start position of l we can put at
most two labels horizontally next to each other in this area, while keeping L1 overlap free.
However, as the height is σ we can stack at most two layers of such labels vertically (the

labels in Figure 8a). As a result, w1, w2, w3 and w4 can together overlap with at most
six start positions of other labels. Each label results in at most one overlap, and there is a
movement direction for each label that achieves such an overlap, as shown in Figure 8a.

Now consider the σ×σ tiles w5 and w6 above and below the start position of l, respectively.
We can place two labels, the ones colored in Figure 8b, such that their start positions
overlap either of w5 and w6. For example, for w5 such labels can move diagonally down-left,
to overlap l. In this case, it is impossible for a label overlapping w6 to both overlap l and
have an overlap-free end position. Conversely, we can place one label on w5 and w6 each and
allow them both to move towards l, while ensuring overlap-free end positions (see Figure 8b).
Observe that it is impossible to place two labels on both w5 and w6 in the latter case, as the
vertical positioning that ensures overlap-free end positions of the labels, requires the labels
to start farther from l. Those labels have to move a vertical distance of at least σ/2 to reach
l, and hence also require a horizontal overlap of at least σ/2 with the start position of l, as l

will have moved σ/2 rightwards before the other labels reach the start position of l. Thus,
at most eight labels can overlap with l, and consequently the degree of the corresponding
vertex is bounded by eight. See Figure 9a for the complete situation.
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Diagonal movement of l. For diagonal movements, we consider w.l.o.g. the case where
l performs a diagonal movement from top-left to bottom-right through the bottom-left
corner. The overlapping region enlarges, as shown in Figure 7b. We can again eliminate
the light-orange areas, as they mark areas that the start position of other labels cannot
overlap exclusively, if they should overlap with l. As before, these areas are located behind
the start position of l, and diagonally adjacent to the end position of l. The red areas are
also eliminated, see the full version [10] for more details. We now repeat the process of filling
the remaining (white) σ × σ tiles, w1 to w7, with start positions for labels that can overlap
with l during movement. The analysis is very similar to the non-diagonal case, with one
exception: l can overlap with one stationary label, which can now occupy w6. We again do a
case distinction on the possible label placements, showing that at most nine moving labels
and one stationary label can overlap with l, or at most 12 moving labels can overlap with l.
The upper bound of 12 overlaps for one label is tight (as shown in Figure 9b). See the full
version [10] for the remaining details of this case.

Deriving an upper bound. To find an upper bound on the number of overlaps, consider
the subgraph G[VM ] induced by the set VM of vertices that represent moving labels. The
degree of one such vertex in G[VM ], which represents a label l, is bounded by nine, in case l

moves diagonally and a stationary label is present on the intermediate position of l, or by 12,
otherwise. Both these bounds are higher than in the non-diagonal movement case, which
would result in a degree of at most eight. Hence, in the worst case we have a degree sum
between 9n and 12n, respectively, since |VM | = n. By the handshaking lemma, we then have
between at most ⌈ 9

2 ⌉n and 6n edges in G[VM ], respectively.
If we consider the original graph G, we can observe that it differs from G[VM ], in terms

of edges, only by the edges that are incident to a moving label and a stationary label. This
means that the former case may result in more overlaps: As we have seen in one case of the
above proof, and due to Lemma 2.1, a moving label can overlap with at most one stationary
label. Since each of the edges in E(G) \ E(G[VM ]) is incident to exactly one vertex that
represents a moving label, and we have n of such labels, |E(G) \ E(G[VM ])| is bounded by
n and consequently, we have at most (⌈ 9

2 ⌉ + 1)n overlaps with the stationary label present.
However, in the worst case we still have an upper bound of at most 6n overlaps. ◀

3.1 Complexity of Computing Simultaneous Transitions
In this section, we show that it is NP-complete to minimize the number of overlaps in a
weighted L1

RMA−−−→ L2-transition by choosing the direction of diagonal movements.

▶ Definition 3.2 (Weighted Transition). Let L1
Σ−→ L2 be a transition, where Σ denotes

an arbitrary transition style of additions, movements, and removals, and let w be a weight
function that assigns to each label l ∈ L a non-negative weight w(l) ∈ R+

0 . A weighted
transition L1

Σ−→
w

L2 performs L1
Σ−→ L2, but when two labels li and lj overlap, a penalty of

weight w(li) · w(lj) is introduced. The total penalty W is equal to the sum of penalty weights.

▶ Problem 3.3. Given a weighted transition L1
RMA−−−→

w
L2 and k ∈ R+

0 , can we assign a
movement direction to each diagonal movement such that the total penalty W is at most k?

We sketch the proof of Theorem 3.4 here, details can be found in the full version [10].

▶ Theorem 3.4. It is NP-complete to decide whether W is at most k for L1
RMA−−−→

w
L2.

GISc ience 2023



2:10 Transitions in Dynamic Point Labeling

Proof sketch. Given a movement direction for each label, it is easy to check whether W is
at most k by considering each pair of labels and checking for overlaps. Hence Problem 3.3 is
contained in NP. For NP-hardness, we reduce from an instance F of Planar Monotone
Max 2-Sat [8]. Figure 10 gives an overview of the required gadgets. Clause and variable
gadgets consist of two opposing labels at their core, corresponding, respectively, to the
assignments of the two literals in a clause, or the binary choice for a variable. For an
unsatisfied clause, an overlap occurs inside the clause gadget, whenever both labels move
towards each other (inwards). The corresponding labels have weight one, and hence such
an overlap would incur a penalty of weight one. A variable gadget has two opposing labels
for setting the variable to true or false. Choosing a movement direction outward from the
variable gadget, for example on the “true”-side, will cause a domino effect, propagating
towards the gadgets of clauses with negative occurrences of this variable. There it results in
inward movement, and hence this corresponds to setting the variable to not be false (and thus
be true). Choosing the outward movement for both variable states is never beneficial: that
variable is neither true nor false. The movement directions chosen in the variable gadgets are
propagated to the appropriate clauses using the (planar) embedding of the incidence graph
of F . All labels outside of clause gadgets have weight n + 1 and hence producing an overlap
outside of a clause gadget will result in a large penalty of weight greater than n. As such, we
either have movement directions that produce a total penalty of at most k for some positive
k < n, and overlaps correspond to unsatisfied clauses, or we have a total penalty of at least n,
and no clauses can be satisfied (or the variable assignment is inconsistent). Thus, n − k

clauses are satisfiable in F , if and only if we have k overlaps in our reduced instance. ◀

¬x ∨ ¬z

y z

x ∨ y x ∨ zy ∨ z

¬y ∨ ¬z

¬x
x ¬x

x

x

¬x ∨ ¬y

¬x

¬z

¬x

Figure 10 Reduced instance for the formula F = (¬x ∨ ¬z) ∧ (¬x ∨ ¬y) ∧ (¬y ∨ ¬z) ∧ (x ∨ y) ∧
(y ∨ z) ∧ (x ∨ z). The weight of white and green labels is n + 1 and 1, respectively.

Figure 10 shows an example of the complete setup. There we reduce the formula
F = (¬x ∨ ¬z) ∧ (¬x ∨ ¬y) ∧ (¬y ∨ ¬z) ∧ (x ∨ y) ∧ (y ∨ z) ∧ (x ∨ z) onto our problem. Circles
with solid borders indicate the individual parts of the formula, while the dashed circle shows
part of a transportation gadget. The big empty circles represent the clauses and small empty
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Table 1 The Keywords and #Hashtags we used to query the tweets.

corona #corona covid #covid covid19 #covid19 covid-19
vaccine #vaccine quarantine #quarantine lockdown #lockdown moderna
outbreak #outbreak immune #immune immunity #immunity biontech
who #who desease #desease masks #masks pfizer
pandemic #pandemic mutation #mutation ffp2 #ffp2
#StaySave #StayAtHome #FlattenTheCurve astrazeneca johnson & johnson

circles represent the variables. The arrows outside circles represent the transportation-gadgets
that connect the individual parts according to the direction of the arrows. As there exists no
variable assignment which satisfies F , we cannot achieve W = k = 0 but must encounter at
least one overlap (and hence W ≥ 1). This overlap occurs, for example, in the clause gadget
for (¬x ∨ ¬z) to achieve W = 1. Note that if we would try to resolve this overlap by, for
instance, setting x to true and false at the same time, an overlap with penalty (n + 1)2 = 49
would occur, for example, in the variable-gadget for the variable x.

4 Case Study: Twitter Data

We implemented a prototype to analyze how the transition styles perform in a practical
setting. In this prototype, we show geotagged tweets (Section 4.1) as rectangular labels on an
interactive map (Section 4.3). In order to show an appropriate amount of information inside
the labels, we use uniform-sized axis-aligned rectangles for the labels instead of squares. As
all labels will have the same size, our theoretical results derived for square labels with side
length 1 carry over to this model (by scaling horizontally). Finally, we measure the number
of overlaps and the transition duration of the presented transition styles (Section 4.4).

4.1 Dataset
For our dataset, we queried 100,000 geotagged tweets related to the COVID-19 pandemic
during the month of May 2021, see Table 1. After filtering and cleaning this dataset, 99,982
usable tweets were left. A tweet will be represented as a point p ∈ P , and as its label we
display parts of the Tweet Text in a rectangular box, possibly truncating it if it is too long.
For the spatial and temporal property we use the Tweet Location and Tweet Date and Time
fields, respectively. The former field is a location attached to a tweet, which will determine
the coordinates of the point p ∈ P . This is not necessarily a concrete location, but can be a
(rectangular) area on the map. We choose an arbitrary location inside this area to prevent
artificial cluster creation. The latter field defines the date and time the tweet was posted.

4.2 Dynamic Labeling Model
The dataset described above has spatiotemporal properties: each point p ∈ P has a location
and a time associated to it. Starting from this point in time, we consider p (and its associated
tweet) relevant for three hours. The relevant tweets at a particular time of interest will form
the set P of points that we want to label. Changes to the time of interest (dynamically)
alter the set P of relevant tweets through additions and removals. Furthermore, in our
implementation not all points in P will be in view at all times: For example, when the user
zooms in on a particular part of the map, some points will be outside the view port. In such
cases, we label only the subset S ⊆ P of points that are inside the view port.
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1
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Figure 11 Screenshot of the prototype.

4.3 Implementation Details
The prototype computes a labeling in the four-position model of the relevant points P .
Figure 11 shows a screenshot of our prototype. The main view area ( 1 ), in the center of
the screen, shows a map and a labeling overlay. Furthermore, it contains blue dots ( 2 )
indicating the locations of the subset S ⊆ P . Below the map, the time slider ( 3 ) shows
the currently selected time of interest. The side drawer on the right ( 4 ) shows further
information of a tweet, if the user selects one. The top bar ( 5 ) allows the user to retrieve
additional information about the map ( 6 ) and alter its state using the cogwheel ( 7 ).

The user can interact with the prototype by means of panning and zooming the map, as
well as changing the time of interest by using the time slider. Panning is done by dragging
the map using the mouse, while zooming is controlled using either the mouse wheel or the
zoom indicators in the upper-left corner of the map. Zoom level changes step-wise. The time
of interest is changed by dragging the indicator in the time slider, or using the + and −
buttons on either side of the slider. Panning and zooming change the subset S ⊆ P of points
in view, while changes to the time of interest alter the relevant points P .

Computing a labeling. For a given subset S ⊆ P of tweets that are both relevant and in
view, we compute a labeling as follows. We create a conflict graph of labels for S and use a
simple greedy approximation algorithm for a Maximal Independent Set I in this graph:
iteratively add a minimum-degree vertex to I, that shares no edge with vertices in I.

When the user now interacts with the map, we again perform the same algorithm to find
a new labeling, but we use two simple heuristics to improve the stability of the labeling. The
first heuristic is based on desideratum D1 from [3]. Among other things, it proposes that the
same labels should remain visible when zooming. To achieve this, we remove all neighbors of
the previously shown labels in the conflict graph, to ensure they are picked again.

The second heuristic attempts to prevent unnecessary changes in the labeling: Let I1 be
the subset of labeled points that remained relevant and visible after panning/zooming/time
change, and let I2 be the newly computed set of points to be labeled. If I2 is less than 2%
larger than I1, then we simply keep the labeling of I1 instead of swapping to a labeling of I2.
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When the subset S ⊆ P of relevant tweets in view is changed, through panning or
zooming, or when P is dynamically altered by changes in the time of interest, our prototype
will trigger a transition. Let L1, L2 be the computed labelings before and after the change,
respectively. Our prototype supports naive, DAG-based, and simultaneous transitions for
L1 −→ L2. In each of these transition styles, a removal, an addition, or a movement of a single
label has a duration of one second. A diagonal movement is split up into two non-diagonal
movements with a duration of one second each, starting with the horizontal movement.

Naive transitions. Movements in this transition are performed consecutively in arbitrary
order. Their order is based on the order in which we recognize the need for a movement.

DAG-based transitions. The movements in DAG-based transitions are also performed
consecutively, though ordered according to a topological ordering of the movement graph GM.
If GM contains cycles, we remove the vertex with the lowest in-degree and first move the label
of the removed vertex. Additionally, we perform unrelated movements in GM simultaneously.

Simultaneous transitions. The movements in this transition are all performed simultane-
ously, immediately after the removals. The direction of diagonal movement is not optimized
for minimum overlaps. Instead, we move horizontally first, to create a more uniform transition.

Implementation. The prototype is a three-tier-architecture, consisting of a graph-database
(Neo4j) storing the tweets together with their potential label candidates, an application tier
(Java Play Framework) computing the (new) labeling, and the presentation tier (Vue.js,
Leaflet, and GreenSock) with which the user can interact and which visualizes the transitions.

In our case study we measured the running times of the individual components, which we
report in Appendices B.1 and B.2. We can see that the majority of the time in the back-end
(between 60% and 85%) is spend on querying the database, while the remaining parts run in
less than 150ms in nearly all investigated cases. Computing the transitions in the front-end
takes on average below 10ms, and never more than 20ms, which is negligible.

4.4 Measuring Transition Time and Number of Overlaps
In our case study, we use our prototype to simulate twelve interaction settings in six scenarios.
The different scenarios we use in our case study are described in Table 2. In the first setting,
we use different interactions depending on the scenario we consider. For each interaction
type, we interact with the prototype by applying the following sequence of operations.

Table 2 The different scenario states of the case study.

Map center

Scenario Name Interaction Longitude Latitude Zoom level Time of interest

Italy (a) 14.45 41.30 7 2021-05-29T13:20:00
Lausanne (b) 6.37 46.45 7 2021-05-30T10:30:00
Leeds (b) -1.60 53.44 7 2021-05-29T13:00:00
Los Angeles (c) -117.78 33.84 9 2021-05-30T03:15:00
New Delhi (a) 71.18 30.20 7 2021-05-29T08:30:00
Sao Paolo (c) -45.00 -20.65 7 2021-05-29T02:30:00
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Interaction (a): (1) Increase the time of interest by 30 minutes, (2) zoom in by one zoom
level with the help of the zooming indicators, (3) increase the latitude of the map’s center
by 0.28 using the settings, and (4) increase the time of interest by five minutes with the
+ button next to the time slider.

Interaction (b): Interaction (a) in reverse order: (1) Increase the time of interest by five
minutes with the + button next to the time slider, (2) increase the latitude of the map’s
center by 0.28 using the settings, (3) zoom in by one zoom level with the help of the
zooming indicators, and (4) increase the time of interest by 30 minutes

Interaction (c): (1) Zoom in by one zoom level with the help of the zooming indicators,
decrease the time of interest by five minutes with the − button next to the time slider,
(3) decrease the longitude of the map’s center by 1.7 using the settings, and (4) increase
the time of interest by 20 minutes.

In Table 3, we report an overview of the most important results and refer to Appendix B for
additional measurements. Simultaneous transitions are the fastest, and the naive transitions
the slowest. Noteworthy is that the duration of the DAG-based transitions is close to the
simultaneous transitions. This suggests that there is significant benefit in simultaneously
performing movements that are unrelated in GM. Furthermore, we can see that the DAG-
based transitions produce around half as many overlaps as the other styles, on average less
than one overlap in each setting. Simultaneous transitions cause a similar number of overlaps
as naive transitions, but on average the total number of overlaps is slightly better.

This case study shows that DAG-based transitions find a good compromise between the
number of overlaps (G1) and the duration of the transitions (G2). However, simultaneous
transitions are more appealing, if one favours faster transitions over the number of overlaps.
Hence, we see a clear trade-off between the number of overlaps and transition duration,
similar to previous work [9]. Videos of the different transition styles can be found online1.

1 Link to videos: https://osf.io/hnsvu/?view_only=7703ba40643440f8958a9b0120dc32f0

Table 3 Evaluation results for each transition style in each setting, best scores per row are bold.

Naive transitions DAG-based transitions Simultaneous transitions

#Overlaps Duration [s] #Overlaps Duration [s] #Overlaps Duration [s]

Scenario Avg. Tot. Max Avg. Avg. Tot. Max Avg. Avg. Tot. Max Avg.

Italy, 1 0,40 2 6,50 2,20 0,20 1 4,49 1,40 0,60 3 2,50 1,00
Italy, 2 0,16 6 6,51 1,62 0,05 2 5,50 1,30 0,24 9 2,50 1,08
Lausanne, 1 0,40 2 16,49 6,50 0,40 2 4,51 2,30 0,40 2 2,51 1,50
Lausanne, 2 1,43 53 18,50 5,27 0,78 29 9,49 3,24 1,19 44 2,50 1,78
Leeds, 1 1,40 7 23,50 9,10 0,80 4 5,49 2,09 1,00 5 2,49 1,10
Leeds, 2 1,03 38 16,50 4,81 0,59 22 7,50 2,92 0,65 24 2,51 1,78
Los Angeles, 1 1,00 5 25,49 9,30 0,40 2 4,50 2,30 0,40 2 2,49 1,49
Los Angeles, 2 0,43 16 8,51 2,55 0,30 11 4,50 1,88 0,38 14 2,50 1,53
New Delhi, 1 1,20 6 22,48 10,80 0,60 3 8,49 4,60 1,40 7 2,50 2,00
New Delhi, 2 0,59 22 12,50 3,54 0,27 10 5,50 2,21 0,46 17 2,51 1,65
Sao Paolo, 1 0,20 1 25,50 9,70 0,00 0 8,49 3,30 0,60 3 2,50 1,50
Sao Paolo, 2 0,41 15 13,50 2,28 0,24 9 8,49 1,69 0,38 14 2,50 1,20

Avg. Setting 1 0.77 3.83 19.99 7.93 0.40 2.00 5.99 2.66 0.73 3.67 2.50 1.43
Avg. Setting 2 0.68 25.00 12.67 3.35 0.37 13.83 6.83 2.21 0.55 20.33 2.51 1.50

https://osf.io/hnsvu/?view_only=7703ba40643440f8958a9b0120dc32f0
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5 Conclusion

In this paper we performed a first investigation into the number of overlaps produced by
transitions on labelings of points, and started by proving tight upper bounds for various
transition styles. In addition, we implemented the transition styles in a prototype and
performed a case study that revealed the need for sophisticated transition styles that find a
good compromise between the number of overlaps and the duration of a transition. We see
this paper as a first step towards understanding such transitions in point labeling. Therefore
we have many open questions for future work, such as:

Should we develop new transition styles or improve the existing ones? Can we utilize more
structured movement, like performing all movements in the same direction simultaneously?
Is it sensible to try to formalize more perception-oriented desiderata for transitions, such
as the symmetry of transitions or the traceability of labels?
Is choosing label directions in simultaneous transitions still NP-hard with unit weights?
Can we compute a stable labeling L2, that minimizes the number of moving labels?
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A Arbitrary Rectangle Labels

While in the main text we considered only square labels, point labelings often use arbitrary
rectangles. If we allow our labels to be arbitrary rectangles, then it is no longer guaranteed
that only one (stationary) label can overlap with the area traversed by the moving label. If
we assume that the label with the largest side width (some σxmax) must perform a diagonal
movement, we can align σxmax

σxmin
stationary labels with a width of σxmin , the smallest label

width in our map, on the horizontal edge of the traversed area. As one label can always
extend out of that traversed area without resulting in an invalid labeling L1 or L2, we can
put up to ⌈ σxmax

σxmin
⌉ labels next to each other in the x-direction. The same holds for the y-axis,

with maximum and minimum height σymax and σymin , respectively. As we can put labels
anywhere inside the traverse area, we can place up to ⌈ σxmax

σxmin
⌉ · ⌈ σymax

σymin
⌉ labels intersecting

that area and therefore ⌈ σxmax
σxmin

⌉ · ⌈ σymax
σymin

⌉ overlaps occur during the movement (see Figure 12).
This results in the following corollary, as an extension of Lemma 2.1.

▶ Corollary A.1. When the labels are arbitrary rectangles with side length σxi
and σyi

, with
1 ≤ i ≤ n and n denotes the number of labels, performing transition L1

RMiA−−−−→ L2 for a label
of a point pi can result in at most ⌈ σxmax

σxmin
⌉ · ⌈ σymax

σymin
⌉ overlaps given that the end position of pi

is free, where σxmin = min{σxi
| 1 ≤ i ≤ n} and σxmax , σymin and σymax are defined similarly.

Corollary A.1 shows how upper bounds on the number of overlaps produced by square
labels can be extended to the setting of arbitrary rectangles. This introduces only a constant
factor, depending on the ratio between the largest and smallest side lengths in each dimension.
However, for many transitions adding the constant factor, as suggested by Corollary A.1,
does not yield a tight bound. This stems from the fact that many upper bounds require
overlaps with the start or end position of a label l, not just the traversed area of l. Since
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those positions are solely occupied at respectively the beginning and the end of the transition,
we cannot place ⌈ σxmax

σxmin
⌉ · ⌈ σymax

σymin
⌉ labels in those positions: many of those labels are unable

to move away completely.

3× 3 units each

8× 8 units

Figure 12 The 8 × 8 label wants to perform a counterclockwise diagonal movement and overlaps
with nine stationary 3 × 3 labels. The overlapping region is dotted, while the end position of the
moving label is indicated with the dashed rectangle.

B Detailed Case Study Results

In this case study we measure both the running times of our implementation, as well as
objective metrics (overlaps and transition duration) of the computed transitions. In the next
two sections, we outline these two measurements separately.

For this case study we used a standard laptop with the following specifications and
software versions.

Intel®Core™ i5-8265U CPU @ 1.60GHz with 16 Gigabyte RAM
Windows 11 Pro 21H2 (64 Bit) and Microsoft Edge Browser 109.0.1518.78
Neo4j 4.1.7, Java openjdk 11.0.2, vue 3.0.11, leaflet 1.7.1, and gsap 3.6.1
External 27” monitor with a resolution of 1920×1080px

B.1 Back-end computations
For the measurements of the back-end computations see Table 4.

B.2 Transition measurements
For the results of our measurements on the computed transitions see Table 5.
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