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Abstract
Interaction between individuals within an environment can result in complex patterns that a statistical
analysis is unable to disentangle. The resulting social structure may pose important challenges for
the identification of causal relations between variables using only observational data. In particular,
the estimation of contextual or neighborhood effects will depend on the spatial configuration under
study and the morphology of the areas used to define them. The relevant interpretation of estimates
is hence put into question. I suggest adopting a Agent Based Modeling (ABM) approach to study
the uncertainty of neighborhood effect estimations within complex spatial systems. An Approximate
Bayesian Computing algorithm is used to quantify the uncertainty on the underlying processes that
may lead to such estimations. An ABM model of spatial segregation is implemented to illustrate
this method.
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1 Introduction

The endeavour to generate causal rather than associational claims requires identifying the
sufficient conditions for real effects to be estimated. However, their identification can prove
to be very challenging in the presence of social and spatial complexity. Namely, interaction
between individuals within a geographic environment can result in spatial patterns that a
statistical analysis is unable to disentangle. Causal studies that consider factors of a spatial
nature however rarely question the nature of space or the different ways in which it may
transform the causal analysis [10].

In this paper I consider a category of spatial exposures, the neighborhood effects: the
causal effect on an outcome of living in a given area versus living elsewhere. The underlying
questions that such exposures raise concern the implications of spatial assumptions on the
causal nature of estimated effects. In particular, how does the way we assign neighborhoods to
a delimited area impact our causal claims? This question interrogates the inherent uncertainty
linked to space in worlds where individuals are in constant movement, in interaction with
their peers and with their surroundings. I present some of the challenges linked to the
estimation of area-level effects in observational studies. I propose an Agent Based modeling
(ABM) approach to generate various forms of spatial complexity against which statistical
models may be tested. The exploration of spatial configurations represents an interesting
starting point to analyse the so-called neighborhood effects. In particular, ABM exploration
methods such as Approximate Bayesian Computing (ABC) offer the means to evaluate the
relevance of spatial estimands given complexity assumptions. An illustration of this approach
is presented using a simple Schelling model of segregation.
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2 Challenges of estimating and interpreting neighborhood effects

2.1 What are neighborhood effects?

In the literature, one commonly refers to neighborhood effects as the independent effect of a
neighborhood on one or multiple outcome [8, 4] 1. For instance, epidemiology studies may
compare health outcomes in “poor” versus “rich” areas [17]. Behind this definition lies a
number of strong assumptions: what spatial attributes (shape and scale) best describe the
neighborhood given the research question? Through what mechanisms can this geometric
object be thought to have an independent effect on individual outcome? Finally what are
the conditions for these area-level effects to be interpreted causally?

Multiple causal pathways may generate a dependence between the spatial configuration
and the individual outcome of interest [4]. The social structure can be thought to play an
important role in the shaping of place and the creation of an area identity. Furthermore,
social influence or contagion mechanisms may exacerbate or spread exposure effects within an
area. Other forms of spatial processes may impact individuals locally such as pollution, crime
or the presence of green spaces, etc. The combination of these spatial and social processes
can generate important spatial heterogeneity that is typically approximated by variability
between specific neighborhood attributes.

2.2 Challenges for estimation

Methods have been developed to estimate neighborhood effects and account for spatial
heterogeneity [3]. Namely, multi-level regression models assume some spatial hierarchical
structure and allow for heterogeneity by including both fixed and random area-level effects [8].
Still, the interpretation of results are exposed to serious challenges.

The identification of such effects is threatened for one by spatial confounding and at
times, complete confounding. A selection process may render the comparison of observations
in different areas impossible [1]. This process is further enhanced by social interaction and
the non-independence of observations. In a causal analysis, this is referred to as interference
or spill-over effects [13].

Finally, spatial and social phenomena can rarely be confined within fixed, arbitrary
geographic borders. The choice of spatial areas can lead to the misspecification of neighbor-
hoods that may not reflect any empirical reality. This geographic problem is known as the
Modifiable Areal Unit Problem (MAUP) [6].

The previous challenges suggest that the primary danger with mapping the social onto
fixed spatial boundaries does not pertain so much to the approximation as it does to the
causal interpretation of these so-called neighborhood effects. While accounting for the latter
has proven to be insightful for the study of health outcome, employment or education [16, 9],
very little work has specifically considered the uncertainty introduced by spatial assumptions.
The relation between the misspecification of spatial properties and the bias in results should
be looked into. The potential of ABM to generate and analyse the uncertainty surrounding
estimates is presented below.

1 In this paper, we interchangeably use the terms area effects and neighborhood effects when considering
small scale spatial configurations
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3 A multi-simulation approach

In order to generate artificial complex systems from which granular data may be extracted,
we adopt an Agent Based Model (ABM) approach. These models are particularly adapted to
create emergent properties from the bottom up by allowing the modeler to build heterogeneous
interacting agents while maintaining full control over the micro-level process [12]. The output
of these ABM can be placed under the microscope of the same statistical models typically
used in observational studies, of which: models that include spatial neighborhood effects.

Many validation methods have been developed to evaluate the performance of ABM for
modelling real world systems. Some of these are able to integrate both empirical information
and some level of uncertainty on the underlying process. One such method is Approximate
Bayesian Computing that approaches a posterior distribution for the parameters of the ABM
through typical MCMC algorithms [7]. The general idea is that given information on the
system one is modeling, a distribution over the parameter space can be proposed to reflect
the probable worlds that may have resulted in similar observations. Samples of the input
space are drawn and either selected or rejected according to a proximity criteria, usually
determined by an error threshold ϵ. This threshold represents a level of uncertainty in the
output space: how precise is the information on the real system? A more detailed description
of ABC can be found in [14].

I suggest using ABC, not to evaluate the ABM but to interrogate the relevance of spatial
assumptions in analytical models. The questions that this framework should be able to
answer are: How biased are the estimations of neighborhood effects when obtained from data
generated by the ABM? What other complex systems and mechanisms may be considered as
possible generators of these estimations, given the statistical confidence levels. The notion of
sufficiency of the statistical approach is introduced here as its performance in distinguishing
between multiple causal mechanisms can be analysed. The uncertainty considered here links
the equifinality of complex systems [15] to the epistemic uncertainty of classical models [2].
In the following, I present a simple illustration of the use of this framework on a spatial
segregation model, the Schelling model. This model was chosen as an illustration for it’s
simplicity and its focus on spatial interaction between agents.

Figure 1 Schema of the ABM-ABC framework. Here β represents the objective/estimation and ϵ

the threshold/standard error.

GISc ience 2023



26:4 Uncertainty in Causal Neighborhood Effects

4 Illustration and results

4.1 The Schelling model
The Schelling model [11] can be described in the following way: on a square lattice a number
of blue (exposed) and red pawns (non-exposed) occupy individual cells. These pieces will move
to an empty cell if the percentage of a piece’s same-color neighbors (Moore neighborhood) is
lower than a predetermined threshold H (designating the homophily level). At each step,
the elements on the board will be displaced according to their surrounding composition
until they can no longer move or until all pieces are satisfied. The dynamics of this system
tell a very interesting story as clear segregation patterns emerge without any higher order
intervention. The relationship between the agent’s attributes and their environment can be
simply translated into a linear form for a given step in time.

Yi(H, Ci, CNi
) = H − Ci − 1

di
g(CNi

) + 2Ci

di
g(CNi

) (1)

Where Yi is the outcome for agent i, Ci is their color or the individual “exposure”, g(CNi)
is the aggregated prevalence of blue within i’s ego-neighborhood and finally di is size of i’s
neighborhood. Translated into network terms, di is the degree of i in the regular graph drawn
from the grid structure (for Moore neighborhood, di ≤ 8). Note that there is clear violation
of the no-interference assumption as agents outcome will depend on their own color and the
color of peers. I consider the simple data scenario where the graph (or ego) neighborhood
of pieces is not known but interaction is assumed constrained to fixed predetermined areas.
Neighborhood exposure is then approximated by “blue” prevalence within an area. This
specification of neighborhoods is analysed in light of the approximated posterior distribution
for two of the models’ key parameters: the homophily level (H) and the probability of agents
belonging to the blue group (p). Some of the results obtained for different neighborhood
scales are presented below.

4.2 Results
The 40x40 Schelling torus grids are cut up into 4, 25 and 100 different areas, respectively.
An ABC is run for each choice of scale:

Samples were drawn from a uniform prior over the input space. A linear estimation of
exposure and neighborhood effects are computed on a random simulation output for p = 0.5,
H = 0.5. The estimation at step t = 30 is used as the objective for the ABC algorithm, the
standard error of the estimation serves as the restrictive threshold for the rejection process.
N=1000 particulars are tested against these criteria. Both the ABM model and the ABC
algorithm were run using standard Python packages [5].

The estimation of color and neighborhood effects vary with time as the spatial patterns
converges to a segregated state. It is quite clear that the choice of scale impacts the quality
of the estimation. Larger scales blur the information on micro-level heterogeneity and social
borders are hidden within fixed areas. The problem of total confounding may also arise for
smaller scales as more and more selective neighborhoods appear. The results of the ABC
show that the uncertainty introduced by the spatial approximation does interact with model
parameters in a uniform way. While the true homophily level is relatively well identified, a
wider range of exposure assignment p may lead to similar estimations. The distribution of the
segregation index (as the average similarity of peers) shows that very different spatial patterns
can lead to the same interpretation of neighborhood effects: not only are the estimations
heavily biased, they do not describe the system sufficiently well. What is interesting to note
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Figure 2 Variation in estimation of OLS estimator for color effects (βc) under misspecification of
neighborhood for resp. (2x2), (3x3), (5x5), (6x6), (10x10) area grids.

(a) 2x2 (b) 5x5 (c) 10x10

(d) segregation index

Figure 3 Posterior distributions for H and p approximated from the ABC and the estimation
of color effect for different scales (a-c) ; Distribution of segregation in the selected simulations for
scales 2x2, 5x5 and 10x10 (d).

is the influence of scale on the uncertainty. It appears there exists a scale for which the
possibilities are reduced and the posterior distributions are more concentrated (for instance
see Fig. 3.b))

5 Discussion

This very simple model was used to illustrate the use of ABM pattern oriented methods to
question the uncertainty of causal model estimates. The specific representation of space, here
as neighborhood effects, will have an impact on the meaning of the estimands and ultimately,
on the appropriate interpretation of estimations. Notions of spatial equifinality in complex
systems should be considered to better understand the role of space in social mechanisms.
A relevant road-map for spatial causal inference would consider the specific challenges that
relate to defining this spatial context. Thinking of causality within a spatial context may
imply moving from a paradigm of causal dependence between variables to one of causal
mechanisms in a system of spatially embedded agents.
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