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Abstract
With the new policy aimed at advancing the phase-out date for the sale of new petrol and diesel
cars and vans to 2030, the electric vehicle (EV) market share is expected to rise significantly in
the coming years. This necessitates a deeper understanding of the driving and charging behaviours
of EV drivers to accurately estimate future charging demand distribution and benefit for future
infrastructure development. Traditional data-based approaches are limited in illustrating the granular
spatiotemporal dynamics of individuals. Recent studies that use conventional vehicle trajectory data
also have the sampling bias problem, despite their analyses being conducted at a finer resolution.
Moreover, studies that use simulation approaches are often either based on limited behaviour rules
for EV drivers or implemented in an artificial grid environment, showing limitations in reflecting
real-world situations. To address the challenges, this work introduces an agent-based model (ABM)
with complex behaviour rules for EV drivers, taking into account the drivers’ sensitivities to financial
and time costs, as well as route deviation. By integrating the simulation model with the origin
and destination information of drivers, this work can contribute to a better understanding of the
behaviour patterns of EV drivers.
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1 Introduction

The transition from petrol/diesel-based vehicles to alternative fuel vehicles can play an
important role in reducing global greenhouse gas emissions and air pollution. The UK
government has announced to bring forward the phase-out date for the sale of new petrol
and diesel cars and vans to 2030, and to require all new cars and vans to be completely
zero-emission at the tailpipe from 2035. The new policy targets necessitate a higher electric
vehicle (EV) penetration rate and create opportunities in the market for electric vehicles.
Therefore, it is essential to illustrate the behaviour patterns of EV drivers and provide a
deeper understanding of the spatial distribution of their charging demand.

Data-driven approaches have been used to explore EV driver behaviour and charging
demand in previous research, mostly relying on statistical methods to understand charging
behaviours [7]. However, the use of socio-demographic statistics [5] and travel survey data [2],
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Table 1 The attributes of hypothetical charging stations.

Station name Charger name Charge speed(kW) Charge price (£/kWh)

Station 1 1A 6 0.3
Station 1 1B 2 0.1
Station 2 2 12 0.6

despite their rich attributes, can be limited in demonstrating the granular spatiotemporal
dynamics of individuals and their decision-making processes. Alternatively, recent studies
have used GPS data from conventional vehicles [9] or EV fleets like taxis [12] to understand
EV behaviours. Although these datasets can demonstrate spatiotemporal trajectories of
drivers in a finer resolution, their ability to represent all types of EVs – including private
EVs, ride-hailing EVs, and other commercial EV fleets – can be questionable. As a result,
these datasets could introduce sampling bias and lead to systematic errors in the conclusions.

More importantly, the utilisation of the datasets above cannot fully capture the vari-
ous features of EV drivers’ behaviours, including their sensitivities to charging costs and
psychological preferences. Sensitivities to charging costs can affect a driver’s behaviours in
various ways, such as travel distance [13], the payment for charging [6], and the time spent
waiting and charging [3, 14]. Meanwhile, the psychological factor refers to a driver’s comfort
level with a low State of Charge (SOC) [15]. Given the limited availability of EV trajectory
data, integrating these complex EV driver behaviour rules with the origin and destination
(OD) information of drivers through simulation methods can provide opportunities to explore
detailed EV trajectories and a granular charging demand distribution.

Agent-based modelling (ABM) offers a simulation method to plan, design, and experiment
with micro-agents in an artificial computational environment [11]. Compared to statistical
methods, ABMs can represent a richer and more detailed set of individual agents [4] and
enable interactions both between and within agent types [8]. Previous studies have applied
ABM to simulate the behaviours of EV drivers. However, research gaps exist because
they either captured limited behavioural rules of EV drivers [16], or were implemented in
hypothetical grid environments rather than real-world road networks [1]. Consequently, this
work aims to provide a deeper understanding of the driving and charging behaviours of EV
drivers by creating an ABM with comprehensive behaviour rules and implementing the model
in a real-world road network in Glasgow.

2 Data and methods

2.1 Data and study area

The geographical scale covers the area between Glasgow city centre and the West End in
Glasgow. The study area is shown in Figure 2. As described in Table 1, two hypothetical
charging stations are situated within the area. Station 1 is equipped with two chargers,
while Station 2 has one charger. Each charging station operates at a hypothetical charging
speed and charging price. The origins and destinations of EV drivers are stochastically
selected from the 869 nodes on the road network using a simple random sampling method.
Twenty-two cars are simulated in each iteration.



Z. Feng, Q. Zhao, and A. Heppenstall 29:3

2.2 Model development
In the model, the SOC consumption rate is assumed to be constant, as operating conditions
and environmental influences that can potentially affect the energy usage of vehicles are not
considered. Furthermore, a driver is sensitive to a particular SOC threshold, meaning that
when the SOC falls below this threshold, the driver recognizes that the battery has depleted
to a level where recharging is necessary. The full battery capacity of the vehicles is assumed
to be 100kWh [10]. The starting SOC value of each driver is set at 100%. The SOC threshold
is randomly selected to be either 40% or 50%. This threshold ensures a considerable amount
of charge remains in the battery, thus reducing the likelihood that the driver will be stranded
without power for the simulation purposes. An ABM model is developed using the Mesa
package in Python to integrate the complex behaviours of EV drivers. The model includes
two types of agents: EV drivers and charging stations. The behavioural rules of the model
are demonstrated in Figure 1.

Figure 1 Behavioural rules of EV drivers and charging stations.

Drivers start their journeys from the origins and drive to the destinations following the
Dijkstra’s shortest path on the road network. A driver searches for an optimal charging station
with least cost when the SOC falls below the SOC threshold. The cost of station p is denoted
by equation 1. α represents a driver’s sensitivity to charge payment. β, ϵ and δ represent
the cost in GBP that a driver attributes to each additional unit of travel distance to find a
charging station (GBP/km), each extra unit of time to spend while charging (GBP/minute),
and each decrease in the degree of availability at a station (GBP/%), respectively. Since
the drivers cannot predict the queueing time at the station before their arrival, we use
availability, a value ranging from 0 to 1, to indicate the percentage of available chargers at
the station. This provides an estimate of the likelihood of not encountering a queue upon
arrival at the station.

Coststation_p = α × paymentp + β × distancep + ϵ × charge_timep + δ × availabilityp (1)

If a driver cannot find a station within reach based on the current SOC, the status of
the EV driver changes to ‘fail trip’, and the driver will not be able to continue the journey.
Otherwise, the driver will follow the shortest path to the optimal charging station. Upon
arrival at the station, drivers are updated with the most current availability status of the
chargers. If at least one charger is available, the driver will select the optimally available
charger with the least cost. If all the chargers are occupied and another station is reachable
given the current SOC status, the EV driver will compare the cost of queuing to the cost
of finding another station, choosing the option with the lower cost. Otherwise, the driver
will queue for the optimal charger before beginning to charge. The cost of charger q at the
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selected station is denoted by equation 2. It comprises the charge payment and the cost in
GBP that a driver attributes to the time spent queueing and charging. It should be noted
that the payment and charge time in equation (2) can be different from equation (1) due to
the change of charging circumstances in the charging station when the drivers arrive.

Costcharger_q = α × paymentq + ϵ × charge_timeq + ϵ × queue_timeq (2)

If the SOC drops below the threshold again, the driver will recharge. Upon reaching
the destination, the driver evaluates the total cost incurred during the trip (Total_cost),
which is calculated in equation 4. It is composed of the deviation and the cost spent at all
used chargers. Deviation is calculated in equation 3. It refers to the difference in distance
between the planned route (the shortest path between the origin and destination) and the
actual route taken by the driver. γ represents the cost in GBP that a driver attributes to
each unit of deviation (GBP/km). i is the i-th decision made by the driver while j is the
j-th charger used by the driver. m is the total number of decisions made by a driver and n is
the total number of chargers used by a driver.

Deviation =
m−1∑
i=1

Distancei,i+1 − Distanceplan (3)

Total_cost = γ × Deviation +
n∑

j=1
Costcharger_j (4)

3 Results and discussion

3.1 Simulation Results

Figure 2 EV routes.
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Table 2 Simulation results.

Vehicle ID Final status Deviation (km) Cost(£) Charge time (min) Charger Queue time (min)

1 finish 0 0 - - 0
2 fail trip 0 0 - - 0
3 finish 1.88 9.95 [51.43,150.94] 1B 41.48
4 finish 0.56 8.57 [8.57, 51.43] 1B 0
5 finish 0.24 28.7 [9.58, 25.54] 1A 0

Five samples of the simulation results are presented in Table 2. The visualised routes are
shown in Figure 2. EV-2 fails to complete its journey because it cannot reach any of the
charging stations with the remaining SOC. EV-3, EV-4, and EV-5 charged en route. EV-3
queued behind EV-4 for charger “1B”, resulting in a wait time of 41.48 minutes.

3.2 Model calibration
As shown in Figure 3, the One Factor at a Time (OFAT) and Sobol’ method-based sensitivity
analyses were performed to determine the robustness of the results and guide further
improvements of the model. The confidence interval was calculated at 95%. The results
suggest the presence of higher-order interactions in the function, as the total-order indices
are larger than the first-order indices for all parameters. Furthermore, the OFAT sensitivity
analysis is conducted to explore the sensitivity of total cost to charge payments (α), to
deviation (γ), and to charge and queue time (ϵ). The variations of α, γ, and ϵ can affect the
total cost if a driver charges during the trip, but have no effect on the total cost if a driver
does not charge (Total cost = 0).

(a) Sobol’ Analysis. (b) OFAT Analysis.

Figure 3 Sensitivity analysis results.

4 Conclusion and future works

This work has developed an ABM that integrates the complex behaviours of EV drivers. The
simulation results show that the drivers’ sensitivity to deviation is the strongest determinant
of the total cost. Additionally, the results of the sensitivity analysis show that the cost
function needs to be further modified to include nonlinear terms and interaction terms
between the variables.

The model presented is based on multiple assumptions and is limited in reflecting real-
world situations. In future work, we plan to replace the hypothetical stations with real-world
public charging stations, and substitute the randomly generated OD information with real-
world trajectory data of vehicles. This will enable us to explore how driving patterns might
change when a driver adopts an EV. Based on the trajectory data,we also aim to integrate
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the heterogeneous behavioural rules of different drivers into the model. Charging session
data will also be used to validate the simulation results and ensure that the simulated driving
and charging behaviours accurately represent real-world scenarios.
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