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Abstract
Large-scale datasets of building footprints are a crucial source of information for a variety of efforts.
In 2023, the general public benefits from open access to multiple sources of building footprints at
the country scale or larger, such as those produced by Microsoft and Google. However, none of
the available datasets have attained complete global coverage, and researchers and analysts may
need to combine multiple sources to assemble a complete set of building footprints for their area
of interest or choose between overlapping sources, requiring an understanding of the differences
between different building sources. This paper presents a method to closely examine the quality
of different building footprint sources by matching corresponding buildings across datasets, using
building footprints in Ethiopia published by Microsoft and Google as an example set.
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1 Introduction

Among many data resources characterizing the built environment, building footprints have
proven to be extremely useful for a wide variety of purposes, from general public use mapping
services like OpenStreetMap, to population modeling efforts such as WorldPop and LandScan
[10, 1, 11]. At large scale, these building footprints are typically derived from satellite
imagery via automated machine learning models, e.g. [14, 13, 12, 8, 5], or using volunteers
to manually map out building footprints as in the case of OpenStreetMap [11].

Microsoft and Google have both released expansive datasets of building footprints for
use by the general public, providing researchers and analysts with massive datasets covering
multiple continents and growing. In addition to their 1.2 billion building dataset covering
Europe, much of the Americas, Africa, and Asia, Microsoft has released several independent
country-scale datasets, such as the 2018 dataset for the United States [8]. The Google
Open Buildings dataset began with a near-complete mapping of buildings in Africa, and has
since expanded to parts of Asia and the Americas to include 1.8 billion buildings [5]. Both
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Microsoft and Google identify buildings using convolutional neural network-based semantic
segmentation models to classify pixels in high-resolution satellite imagery as building or
non-building, and then generate building footprint polygons from the positively classified
pixels [8, 5, 12].

Other large-scale datasets exist as well, such as EUBUCCO v0.1, which aggregates
and harmonizes data from 50 sources to build a dataset of over 200 million buildings for
the European Union [9]. OpenStreetMap utilizes a vast number of volunteer analysts to
manually map out buildings, providing a good alternative to machine learning-based datasets,
albeit very labor intensive to develop and ensure quality, and often lacking in completeness
[2, 15, 3, 6].

While all these datasets provide an excellent data resource, they vary in quality and
completeness, sometimes requiring multiple sources to be used to completely cover an area of
interest. In order to effectively use and integrate data from different sources, effort must be
made to understand and account for systemic differences between building footprints from
each source. This study presents a framework for comparing one dataset against the other
based on matching building footprints from Microsoft and Google.

2 Methods

Study area

Two small areas of interest (AOIs) were selected: one from a densely built urban area and
another from a low-density rural area. The urban AOI is in the eastern part of Addis Ababa,
Ethiopia’s capital city, covering roughly 108 hectares and including a good representation of
building types found throughout the city. The rural AOI is located in the Amhara region,
about 175 kilometers northeast of Addis Ababa, and is dominated by agricultural land with
small villages and clusters of buildings scattered about. Examples of the settlement patterns
in the AOIs can be seen in the imagery in Figure 1. Like many areas in the world, these
AOIs are relatively data poor, with little to no data available other than machine-generated
datasets. These two contrasting areas were chosen to evaluate the datasets in a variety of
conditions, since settlement patterns heavily differ between urbanized and rural areas, placing
different demands on building extraction models. Although small, these AOIs provide a good
proof of concept in anticipation of larger-scale comparison efforts.

Data

Building footprints data were sourced from Microsoft’s Global Building Footprints and
Google’s Open Buildings datasets. In addition to footprint geometry, Google provides a
confidence value with each footprint, along with guidelines on suggested confidence thresholds
to achieve 80%, 85%, or 90% precision. This confidence value allows Google to include many
more geometries in their data, many of which may be false detections that can be filtered
out using the prescribed confidence thresholds, especially in areas where natural building
materials are common and buildings can often be confused with rocks and other landscape
features [12]. For this study, we only used those geometries that meet the 90% precision
confidence threshold. Microsoft does not report confidence values, but reports that their
data achieves 94.4% precision in Africa. Microsoft and Google both report roughly 70%
recall [8, 5].
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Figure 1 Typical settlement patterns and building footprints in the two study areas, with the
urban area on the left and the rural area on the right, overlaid on Google Maps satellite imagery [4].

Comparison

This study seeks to compare matching building footprints from both Microsoft and Google.
As such, the initial step is to pair each footprint in one dataset to the foorprint(s) that
represent the same building in the opposite dataset. For each building in one dataset, matches
were identified by identifying all footprints in the opposite dataset that overlap by at least
30% of the area of the smaller geometry, using a similar minimum overlap threshold to Fan
et al. 2014 [3]. Individual building footprints may have multiple matches, especially in
dense urban areas, where the Microsoft and Google models may disagree on where to divide
buildings that are adjacent or have complex, disjointed roofs.

Matched buildings were compared based on area differences and the number of matches
found in the other dataset. The number of matches describes the semantic similarity of
building detection, or the models’ agreement on how to divide complex and adjacent buildings,
and can be expressed as a ratio of the number of building footprints in one dataset to the
number of corresponding footprints in the other. Possible semantic similarity ratios include
1:1 similarity, where a building matches with exactly one footprint footprint in the other
dataset, 1:0 if there is no match, 1:n if one building has multiple matches, m:1 if multiple
buildings match one building, or m:n, where multiple buildings match with multiple other
buildings [3]. In this study, only 1:1 and 1:n similarity ratios were considered, as other ratios
demand a more complex analysis beyond the scope of a short paper, but are important to a
complete and thorough examination of the differences between these two sources.

Area comparison is straightforward, taking the median area difference of corresponding
footprints between the two datasets, as well as the percentage of buildings with a statistically
significant difference from their counterpart in the opposite dataset. A threshold of 1.96
deviations from the median was used to identify values significantly different from the median.
Median absolute deviation (MAD) was used to quantify data dispersion as it provides a
much more intuitive description of data deviation than the traditional standard deviation [7].

In addition to metrics describing matched building footprints, aggregated statistics
describing total number of buildings, percentage of buildings with at least one match, and
total and average building area were used to further compare datasets and contextualize
statistics of matched buildings.
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3 Results

Aggregated statistics

Aggregated statistics shown in Table 1 reveal differing trends for the urban and rural study
areas. In the urban area, Microsoft produced fewer, larger building footprints with greater
total area, while Google produced more, smaller footprints covering less total area. In both
datasets, the majority of buildings had at least one matching footprint.

In the rural area, Microsoft produced far fewer footprints than Google, totalling just 58%
of the total area of Google. However, less than half of Google’s buildings had a match in
Microsoft, whereas 72.5% of Microsoft’s buildings had a match. In addition, both produced
similar sized footprints on average.

Table 1 Aggregated statistics of each sample set in both urban and rural study areas.

Aggregated Statistics
Dataset Total buildings Percent matched Total area (ha) Mean building

area (m2)
Microsoft (Urban) 2,628 66.67 35.03 133.28
Google (Urban) 3,194 72.94 21.68 68.86
Microsoft (Rural) 1,942 72.50 7.02 36.13
Google (Rural) 3,094 46.19 12.11 39.13

Matched building statistics

In the urban area, Google buildings tended to be smaller than their matches in the Microsoft
dataset, with a very high MAD, and very few buildings with more than one match, while
Microsoft buildings had a higher average number of matches. Both datasets contained similar
percentages of buildings with an area significantly different from the median difference.

In the rural area both Microsoft and Google had very similar results, with few buildings
matching with more than one other, and Microsoft buildings running slightly smaller than
their Google counterparts. MAD for both were nearly identical and far lower than in the
urban area. Similar to the urban area, Microsoft buildings had a slightly higher percentage
of buildings with a significant area difference.

Table 2 Statistics comparing buildings with their matched counterparts in the opposite dataset.

Matched Area Statistics
Dataset Median area dif-

ference (m2)
Area Difference
MAD (m2)

Percent signific-
ant difference

Mean number
of matches

Microsoft (Urban) 15.96 42.13 15.60 1.39
Google (Urban) -62.47 131.86 10.48 1.06
Microsoft (Rural) -2.32 6.65 16.48 1.02
Google (Rural) 2.03 6.55 10.63 1.00

4 Discussion and Conclusion

In the rural study area, matched buildings are remarkably similar, however the aggregated
statistics show that Google detected far more buildings, and thus greater total building area.
Although many of these buildings have no match in the Microsoft dataset, both datasets
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report at least 90% precision and roughly 70% recall, indicating that this discrepancy is most
likely predominantly due to different imagery dates and new construction, allowing Google
to detect buildings that simply did not exist in the imagery used by Microsoft [5, 8]. This is
supported by inspection of Google and Bing satellite maps, with Google imagery appearing
to be more recent.

In the urban study area, matched area differences in both datasets show large dispersion,
likely due to difficulty in matching the correct buildings with one another. Correctly matching
buildings becomes very difficult where imagery is misaligned or models disagree on where to
divide and separate buildings. This can be seen on the left side of Figure 1, where overlapping
footprints are often very different, as opposed to the rural area on the left where they are very
similar. Microsoft tends to generate larger footprints that may encapsulate multiple buildings
under a single footprint, while Google tends to break buildings up into smaller polygons,
potentially dividing a single complex building into multiple parts. This led Microsoft to
generate a larger total building area with fewer buildings, which can be seen Table 1. This
discrepancy in polygonization also leads to poor matching results, as small Google footprints
may match with a large Microsoft footprint that may completely envelope several Google
buildings, leading to the large area difference and dispersion shown in Table 2.

Conclusions

By examining individual building footprints, one can gain a much more in depth understanding
of the differences between two data sources that both seek to describe building footprints.
This study demonstrates a framework for evaluating differences between two similar sets
of polygons, which is crucial for integrating data from multiple sources. It is important
to note that neither of these datasets can be considered absolute truth, and rather than
determine accuracy, this workflow is designed to characterize differences to assist analysts
in integrating or choosing between multiple available data sources. Analysis shows that in
the rural area, the Microsoft and Google datasets are very similar where they are able to
detect the same buildings, but it is likely that differences in imagery dates result in Google
containing additional recently constructed buildings [5, 8]. Differences in the urban area
are not likely due to imagery differences, but rather how the models define and separate
buildings, as well as difficulty in matching footprints in dense urban areas.

This paper shows an effective method for comparing buildings datasets based on matched
footprints in less dense areas, but a more refined matching strategy is needed for an appropriate
building-level comparison in highly dense urban areas with complex building patterns. Goals
for future work include further development and improvements on the building matching
strategy, scaling to larger areas such as regions or countries, and incorporating other building
morphology characteristics in addition to area to gain a better understanding of how these
different sources characterize the same buildings.
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