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Abstract
Spatial heterogeneity is a typical and common form of spatial effect. Geographically weighted
regression (GWR) and its extensions are important local modeling techniques for exploring spatial
heterogeneity. However, when dealing with spatial data sampled at a micro-level but the geographical
locations of them are only known at a higher level, GWR-based models encounter several problems,
such as difficulty in establishing the bandwidth. Because data with this characteristic exhibit spatial
hierarchical structures, such data can be suitably handled using hierarchical linear modeling (HLM).
This model calibrates random effects for sample-level variables in each group to address spatial
heterogeneity. However, it does not work when exploring spatial heterogeneity in some group-level
variables when there is insufficient variance in each group. In this study, we therefore propose a
hierarchical and geographically weighted regression (HGWR) model, together with a back-fitting
maximum likelihood estimator, that can be applied to examine spatial heterogeneity in the regression
relationships of data where observations nest into high-order groupings and share the same or very
close coordinates within those groups. The HGWR model divides coefficients into three types:
local fixed effects, global fixed effects, and random effects. Results of a simulation experiment
show that HGWR distinguishes local fixed effects from others and also global effects from random
effects. Spatial heterogeneity is reflected in the estimates of local fixed effects, along with the spatial
hierarchical structure. Compared with GWR and HLM, HGWR produces estimates with the lowest
deviations of coefficient estimates. Thus, the ability of HGWR to tackle both spatial and group-level
heterogeneity simultaneously suggests its potential as a promising data modeling tool for handling
the increasingly common occurrence where data, in secure settings for example, remove the specific
geographic identifiers of individuals and release their locations only at a group level.
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1 Introduction

In statistics and data analysis, regression models are powerful tools in examining relationships
in data. However, the ordinary linear regression, as a model of global relationships, holds many
limitations in dealing with spatial data [5] because the relationship between variables may not
keep constant across the whole area. In spatial statistics, this phenomenon is called “spatial
heterogeneity” [2]. To uncover such an effect, many local-form spatial statistic methods are
proposed to discover underlying spatial heterogeneity in data [5]. The geographically weighted
regression (GWR) [3] model and its extensions are popular ones. These methods calibrate a
unique model at each location to produce spatially varying coefficients by borrowing samples
from its geographical neighbors defined by spatial distances. Shorter distance gives rise to
higher weighting. Among its extensions, the multiscale GWR (MGWR) [6, 9] has many
attractive features. MGWR specifics a unique bandwidth for each coefficient to improve the
goodness of fit and prediction accuracy [9]. The hierarchical linear model [10], is also an
important method for finding spatial heterogeneity in data of hierarchical structure. When
samples are grouped by their locations, HLM calibrates some effects for samples in each
group (called “random effects”) to fit for spatially varying relationships, whereas other effects
are treated as “fixed effects” that are constant for all groups [8].

In recent years, spatially hierarchical data have become increasingly popular in real world
analysis since samples can be naturally nested in different spatial scales. For example, in the
Biobank database [1] which consists of health information from 0.5 million UK participants,
their addresses are nested into 1km-by-1km grid cells to protect their privacy. With the
development of spatial big data and improved access to administrative data through secure
data settings, it is increasingly common to find data sets where the attributes of the sample
are available at a different geographic scale to their geographical identifiers. In spatial data
of hierarchical structures, effects of variables may work in different ways. For example, group-
level variables – that keep constant within groups – may have global or local effects, and
sample-level variables are the same. No matter which variables, the basic GWR model always
treat their effects as local ones, and estimate them by data borrowing from geographical
neighbors. When dealing with group-level variables, the repeated values increase the risk of
singular matrix. MGWR works similarly, only that it assigns variable-specified bandwidth
settings and variables of global effects will be assigned a huge bandwidth up to infinity to
estimate global effects. Fixed effects and random effects in HLM can be used to discover
global and local effects, respectively. Fixed effects can be estimated for both group-level
variables and sample-level variables. However, random effects only work for sample-level
variables, which vary among individuals as opposed to the group-level ones. Because values of
group-level variables are determined by their locations. Thus, there is no sufficient variation
to calibrate random effects for them within each group. We need a special method to properly
estimate effects of the variables with spatial heterogeneity.

In this article, we propose a hierarchical and geographically weighted regression (HGWR)
model and its estimator based on backfitting and maximum likelihood (BFML) algorithms to
solve the above-mentioned issues. This model calibrates two types of fixed effects – local fixed
effects and global fixed effects – and random effects. We conducted a simulation experiment
to ascertain whether HGWR could successfully distinguish local effects from other effects.
We also compared its performance with GWR, MGWR, and HLM.

2 Model

The HGWR model is designed for data with a spatially hierarchical structure. In a data set
with n samples divided in m groups according to their locations, the variance of dependent
variable y can be explained with the following three parts: local-fixed effects γ for variables
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G that vary with location; global-fixed effects β for variables X that are constant across the
whole area; and random effects µ for variables Z that vary from group to group. The model
for sample j in group i can be expressed as Equation 1,

yij = Giγi + Xiβ + Zijµi + ϵij (1)

where γi, βi and µi are coefficients of local fixed effects, global fixed effects, and random
effects respectively; ϵij is the remaining random error. Then this model can be written in a
matrix from as Equation 2,

y = diag {Gγ} + Xβ + Zµ + ϵ (2)

where γ = (γ1, γ2, · · · , γm),

G =


G1
G2
...

Gm

 , X =


X1
X2
...

Xm

 , Z =


Z1

Z2
. . .

Zm

 µ =


µ1
µ2
...

µm

 ,

µ ∼ N(0, σ2D), and ϵ ∼ N(0, σ2I), and Gγ here is regarded as a product of block matrices,
such that

Gγ =


G1γ1 G1γ2 · · · G1γm

G2γ1 G2γ2 · · · G2γm

...
...

. . .
...

Gmγ1 Gmγ2 · · · Gmγm

 , diag {Gγ} =


G1γ1
G2γ2

...
Gmγm

 .

In this model, coefficients γ1, γ2, · · · , γm are estimated group-by-group as for other GWR
models using weighted least squared estimation [3] with a uniform bandwidth.

A back-fitting procedure, shown in Figure 1, can be applied to estimate parameters in
this model following a similar methodical approach to [4]. In this workflow, when calibrating
local fixed effects γ̂(t) in each iteration, the algorithm can optimize the bandwidth value
via golden-selection [7] according to the CV criterion. This algorithm is very efficient and
effective in minimizing univariate functions.

3 Simulation Experiments

To evaluate the performance of HGWR and compare this model with HLM, GWR and
MGWR, some simulation experiments 2 are designed. In particular, the performance was
measured regarding the ability to properly distinguish local fixed effects from global fixed
effects under the circumstance that random effects exist.

A spatial data set of 21,434 random samples was generated that were unevenly spread
across 625 locations. The data generating process was inspired by [6]. For each data
point, four independent variables (g1, g2, x1, z1) were generated according to the standard
multivariate normal distribution. To simulate group-level spatial-related variables, the mean
of g1 and g2 at each location were substituted for the original values. Samples located
together share coefficient values. Values of the generated coefficients are shown in the first
row of Figure 2. Results of the for models are shown in other rows.

2 Please turn to https://hpdell.github.io/GIScience-Materials/posts/HGWR/ for more details.
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Figure 1 Diagram of the BFML estimator for HGWR, where RSS = (y − ŷ)T(y − ŷ) and
ŷ = Gγ̂ + Xβ̂ + Zµ̂.

In the results of GWR, spatial heterogeneity is revealed in estimates for all variables.
Although β̂1 should be constant across the study area, GWR still generate spatially varying
estimates for it. This is a kind of over-fitting from the spatial perspective. However, for
estimates of µ1, they are smoothed compared with actual values, even though the bandwidth
selected is small enough. Because the bandwidth is small, estimates for γ1 and γ2 are too
local. Consequently, there are quite a few outliers disrupting the spatial trend.

MGWR partly gets over issues of GWR by adopting parameter-specified bandwidths,
instead of a uniform bandwidth. It performs better when estimating γ1 and γ2. For global
fixed effects, MGWR still generates spatially varying estimates, but they vary more slightly
than estimates from GWR. For random effects, the results are slightly smoothed as well.
Besides, MGWR it requires a lot of computing time and memory.

In the results of HLM, there is only one estimate for β1 across the whole area as well as
estimates for µ1, the problem lies in estimates for γ1 and γ2. As they are fixed effects in
HLM, their estimates are also constant for all samples. However, spatial heterogeneity is
expected in them.
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Figure 2 Real values and estimated values.

HGWR is the final solution. For global fixed effects, it generates globally constant
estimates for all samples. For random effects, it does not smooth the estimates because they
are not obtained by borrowing points. And for local fixed effects, we can discover spatial
heterogeneity from their estimates. And it does not repeat computation for samples at each
location. Computationally, it is more efficient because it does not repeat geographically
weighted fitting at every sample within a higher-level group where models are the same. On
the dataset used in the experiment, calibrating the HGWR model only took 6.06 seconds,
which reduced the calculation time by 4 minutes compared to GWR (3.55 mins); and reduced
it by nearly 4.4 hours compared to MGWR (4.41 hours) paralleled by 48 threads. These
findings have been double-checked via repeating the experiment 100 times.
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4 Conclusion

In this article we proposed a BFML estimator for a HGWR model. Compared with HLM,
this method divides fixed effects into global and local effects. For local fixed effects, this
model applies a spatial heterogeneity assumption and estimates the effects using the GWR
method. For global fixed effects and random effects, this model adopts a similar method as
in HLM, i.e., maximum likelihood. To facilitate cooperation between the two methods, a
back-fitting procedure was developed. It is demonstrated that HGWR can properly estimate
local fixed effects, global fixed effects, and random effects simultaneously. HGWR can
successfully distinguish local fixed effects from other effect types. For local fixed effects,
spatial heterogeneity is considered as with GWR; moreover, global fixed effects and random
effects are estimated as accurately as when using HLM. Thus, HGWR can be regarded as a
successful combination of GWR and HLM. In this stage, there are some limitations remaining
to be solved, such as convergence conditions and statistical inferences. Nevertheless, with
the popularity of spatiotemporal big data, situations wherein the specific parameters for
which HGWR was optimized are becoming more prevalent, suggesting that HGWR holds
considerable promise as a useful tool for analyzing such data sets.
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