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Abstract
Land use allocation optimization is essential to identify ideal landscape compositions for the future.
However, due to the solution encoding, standard land use allocation algorithms cannot cope with
large land use allocation problems. Solutions are encoded as sequences of elements, in which each
element represents a land unit or a group of land units. As a consequence, computation times
increase with every additional land unit. We present an alternative solution encoding: functions
describing a variable in space. Function encoding yields the potential to evolve solutions detached
from individual land units and evolve fields representing the landscape as a single object. In this
study, we use a genetic programming algorithm to evolve functions representing continuous fields,
which we then map to nominal land use maps. We compare the scalability of the new approach with
the scalability of two state-of-the-art algorithms with standard encoding. We perform the benchmark
on one raster and one vector land use allocation problem with multiple objectives and constraints,
with ten problem sizes each. The results prove that the run times increase exponentially with the
problem size for standard encoding schemes, while the increase is linear with genetic programming.
Genetic programming was up to 722 times faster than the benchmark algorithm. The improvement
in computation time does not reduce the algorithm performance in finding optimal solutions; often,
it even increases. We conclude that evolving functions enables more efficient land use allocation
planning and yields much potential for other spatial optimization applications.
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1 Introduction

Land is scarce, and the competition for land is increasing [4] and continues to increase in
the future. Efficient planning can serve social, economic and ecological needs at the same
time [4]. In contrast, inefficient and inconsiderate planning has much potential to cause
future problems [15]. One aspect of land use planning is the allocation of land use activities.

In order to efficiently allocate land uses, land use planners specify the land use context
by defining the land units, the land use categories, the scale, the benefits and undesired
outcomes associated with the activities of future land use allocation. Land use modellers
can translate these specifications into a solvable model: a land use allocation problem. The
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modeller has to define the decision variable, the constraints, and the objective functions.
The decision variable of the optimization is what land use category is assigned to which land
unit. Land units can vary in their spatial representation, i.e. vector or raster, and in their
encoding scheme.

Currently, the solution scheme in land use allocation optimization is a linear sequence
of elements in which every element is one decision variable and is assigned one land use
category. One encoding scheme is associating one land use category with one element in
the sequence representing one land unit [2, 26]. Another option is to combine multiple
neighbouring land units into patches and associate each patch with one element in the
sequence [22, 29]. Then, benefits and undesired outcomes are formulated as objective and
constraint functions. Constraint functions validate whether a solution violates the defined
constraint(s), and objective function(s) quantify the solution’s expected benefits.

Optimization algorithms identify solutions to the land use allocation problem. The
problem specification determines whether exact algorithms are applicable to solve the
problem or whether heuristic approaches are required. If the effort for solving the problem
increases exponentially with the number of decision variables, the problem is NP-hard, and
heuristic optimization methods are used [27]. Most land use allocation problems fall into
the category of NP-hard problems: The number of land units u and the number of land
uses categories luc defines the number of possible combinations n of the land use allocation
problem: n = lucu. Land use allocation algorithms using the standard encoding are slow
when landscapes are complex [28], and face exponentially increasing computation times with
increasing problem sizes [27].

Another encoding scheme, yet uncommon in spatial optimization, is a tree that organizes
the elements recursively [24]. Since the choice of a suitable encoding has been proven to
improve optimization [12] and land use allocation optimization encounters scaling problems
with increasing numbers of land units, we propose using the recursive tree encoding. Trees
can represent functions, and functions can represent fields [14]: If a function contains two
variables, it is possible to represent continuous fields with longitude, latitude, and a variable.
Therefore, the tree representation offers an alternative solution encoding scheme to represent
spatial objects. Functions describe spatial patterns in the field of geostatistics [23], why
should it not be possible to evolve continuous fields as functions to produce favourable land
use patterns, for example, patterns that involve spatial compactness, or specific shapes of
contiguous land uses?

Much research has been conducted to improve land use allocations with the standard
solution encoding, but none on evolving functions to generate land use maps. This study
aims to fill the research gap by opening the research domain to using functions as solution
encoding. We propose a new method to map functions to nominal land use maps. We
compare the new approach with state-of-the-art allocation algorithms on two multi-objective
land use allocation problems, one raster and one vector land use allocation problem. In the
remainder of this work, we are going to answer the following research questions:

1. How does the computation time of optimizing land use maps represented as functions
scale with an increasing number of land units?

2. How does the function-evolving algorithm perform in comparison to state-of-the-art land
use allocation algorithms in terms of computation time and the optimal solution quality?
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2 Background

Heuristic search algorithms are most often used to solve land use allocation problems [26].
Heuristic search algorithms identify solutions that are not guaranteed to be truly optimal
but help find “good enough solutions” for hard problems in finite time [27]. In contrast to
exact optimization algorithms, heuristic optimization algorithms explore the search space of
possible solutions until reaching a termination criterion [21].

Common heuristic optimization algorithms for solving land use allocation problems are
population-based algorithms, e.g., Genetic Algorithms (GAs) and Particle Swarm Optimiza-
tion (PSO). GAs and single-objective PSO are commonly applied [26] for single-objective
land use allocation problems, and the Non-dominated Sorting Genetic Algorithm II (NSGA 2)
[6] is the most often used algorithm for solving multi-objective land use allocation problems
[26]. Its successor, the NSGA 3 algorithm, leads to better distributed optimal solutions
between conflicting objectives [18]. These algorithms use different search strategies: Genetic
Algorithms mimic evolutionary processes by utilizing fitness proportionate selection and
genetic recombinations of individuals within a population [10]. In PSO, the equivalent of an
individual in a population is a particle in a swarm of particles, moving within the problem
space [17] to find the best positions.

The algorithms evolve solutions by manipulating the solution. In land use allocation
algorithms, the manipulation procedures of the algorithms are either applied on the sequences
containing single land units [1] or of land use patches [16]. One advantage of using patches
in comparison to single land units is the lower number of decision variables [29]. Another
advantage of evolving patches is the higher likelihood of obtaining solutions with innate
spatial relationships like adjacency or connectivity [17], which are often desired characteristics
in land use allocation [26]. Numerous operators have been developed to steer the optimization
process towards patches with certain characteristics such as compactness [17], or validity
[29]. It is important to notice that some manipulations are computationally more demanding
than others, but all manipulations of solutions with the common land use map encoding lead
to an increased computational effort when considering more land units.

On the other hand, genetic programming (GP) is an evolutionary algorithm that evolves
solutions with a different encoding: program trees that build functions [13]. The encoding
yields the potential to evolve solutions detached from single land units by evolving fields that
represent the whole landscape as one object: If the functions incorporate spatial variables,
e.g. the latitude and longitude, the function produces an output variable for any given
position. Other components of the function cans influence the output variable. Combined,
the spatial and non-spatial components define how the variable varies in space. Therefore,
it is possible to optimize the spatial variation of the output variable by manipulating the
non-spatial components. Since the output variable is detached from land units, the number
of land units does not affect the computational effort when manipulating the solutions.

The algorithm has been applied to a wide variety of non-spatial problems [20], but neither
to land use allocation problems nor to spatial optimization problems in general. GP yields
better results than GA in related applications, e.g. for generating grids of a continuous
variable for photomosaics [19]. One identified reason is the higher flexibility due to the
encoding of solutions, where little adaptions of the program trees can lead to many changes in
the produced grid and potentially towards favourable patterns [19]. In addition to producing
optimal grids of a continuous variable, genetic programming also proved to perform well
on discrete variable classification [11]. The promising results of these studies suggest that
genetic programming is applicable to allocating land use.

GISc ience 2023
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Figure 1 Two exemplary individuals with the function, the program tree, and the resulting field.
The primitives are sine, cosine, addition, subtraction, multiplication, and division. The terminals
are 10 and 100, and the x and y inputs range from 1 to 100, resulting in a continuous z value.

3 Methods

3.1 Land use allocation optimization using genetic programming
Generating fields with genetic programming

In genetic programming, every individual of the population is a “hierarchical composition
of primitive functions and terminals” [13]. Typically, arithmetic operations, mathematical
functions, or conditional logical operations constitute the functions [13]. The terminals and
numeric constants are inputs to the problem. In our case, where solutions to the problems
are two-dimensional fields, the inputs are x and y coordinates. The coordinates are two input
variables that can repeatedly appear in the program trees (Fig. 1). When incorporating
the coordinates within into mathematical functions, spatial For illustration purposes, the
individuals are visualized as program trees (Fig. 1).

Mapping continuous fields to nominal land use maps

First, we retrieve the input coordinates from the land units. In the case of a raster representa-
tion of land uses, the row and column IDs serve as the x and y inputs of the program trees. In
the case of a vector land use representation, the centroid coordinates of the land units serve
as x and y inputs. Applying the function on the x and y inputs of the program trees defines
the output variable z (Fig. 1). We use the mean of z per patch for the patch representation.
Then z is min-max normalized to a range that matches the land use categories. Finally,
rounding the normalized z-values to integers generates the desired nominal values.

This mapping procedure suffices to retrieve nominal values per land unit. However, the
continuous variable contains an order, and mapping the continuous variable to a nominal
variable propagates an order. It is not particularly meaningful to define an order between land
uses urban, forest, or pasture. If this order were ignored, then the likelihood of neighbouring
land uses would be influenced by the predefined land use order. To avoid this artifact, we
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Figure 2 A continuous field (a), mapped to two nominal maps (b,c) with different land use
category orders.

actively handle the orders of land use orders categories in the optimization. Every individual
gets assigned a land use order element that contains randomly shuffled land use category
IDs (Fig. 2, b and c). The obtained integer values are re-mapped with each individual’s
land use order (Fig. 2). With this approach, the same function (Fig. 1, b) results in the
same continuous field (Fig. 2, a), but the nominal values differ. Without re-mapping, land
use with id 1 would always have a higher likelihood of neighbouring to land use 2 than to
land use 5. An association of different land use orders to individuals within the population
leaves the potential to find an optimal combination of land use orders and functions in the
optimization.

GP procedure for the multi-objective land use allocation

The algorithm procedure starts with a random initialization of individuals until reaching the
population size. This study uses the standard initialization called ramped half and half. It is
a combination of two tree-generation algorithms grow and full, and in both the primitives
and terminals are generated at random [13]. The grow initialization creates a sub-tree with
a tree depth that is also randomly selected between a minimum and a maximum tree depth
threshold. In contrast, the full algorithm generates a sub-tree with a depth that equals a
depth threshold. Then, until a termination criterion is reached, in every generation, the
algorithm evaluates the individuals with the objective function(s) and constraint(s), selects
individuals for reproduction with a selection operation, generates offspring individuals in a
crossover operation, and mutates the individuals in a mutation operation.

Since the algorithm is applied to multi-objective land use allocation problems, the
selection operation selects individuals based on multiple objective values. We use the
selection procedure from the NSGA 3 algorithm [7] that is based on the principle of Pareto
efficiency and is designed to find individuals close to desired reference points. Reference
points can be user-defined or distributed strategically, for example, using equal distances on
the hyper-plane [5]. We refer to the original paper for a detailed description for details [7].

We use the standard GP operators one-point crossover and one-point mutations for
the crossover and mutation. For example, in the one-point crossover, a common crossover
point in the parent solutions is selected randomly, and then the corresponding sub-trees are
exchanged [25]. In the one-point mutation, a random point of the tree is selected and then
replaced with a newly generated sub-tree.

3.2 Land use allocation test problems
We use two land use allocation problems (Tab. 1) for testing the proposed method. The
first test problem is a synthetic raster land use problem with 8 land use categories, two
constraints, and four maximization objectives. Both problems are multi-class combinatorial

GISc ience 2023



4:6 Genetic Programming for Comp. Efficient Land Use Allocation Optimization

Table 1 Land use problem specifications. The raster problem is re-used; for more details see [29].
The vector problem is designed for this study.

Raster problem Vector problem
Data and spatial representation

Synthetic raster data serves as an initial land
use map. The problem can be approached
with single raster cell representation and raster
patches.

Real-world parcels (vector) serve as spatial
units and for the initial land use map. Six-
teen land use categories associated with the
parcels are mapped into seven land uses.

Land use categories
Cropland 1-5, representing five different levels of
agricultural productivity, pasture, forest, urban

Civil, rural non-forest, industrial, agriculture,
forest, residential, and the last combines trans-
port and water.

Constraints
Land use transition constraint Land use transition constraint
The transition of urban land use is restricted,
forests can only be converted to pasture, and
pasture cannot be converted.

Transitions of civil, and water and transport
land uses are restricted; only rural-non forest
be converted to forest.

Area proportion constraint Area proportion constraint
Permitted ranges of 10-25% for forest, 10-30%
for pasture. No area proportion constraint for
other land uses.

Permitted ranges of 0-50% for industrial, 10-
80% for agriculture, 15-100% for forest, 10-100%
for residential. No area proportion constraint
for other land uses.

Objective functions
Max. species richness (SR) Max. urban compactness (UC)
An empiric value that changes with the total
forest area (unitless)

Count of adjacencies between land units of the
categories civil, residential, and industrial.

Max. habitat heterogeneity (HH) Max. agriculture within water range (AW)
Sum over edges between different land use types,
where low-intensity land uses get higher weights
than high-intensity land uses (unitless)

Area in ha of land use agriculture that intersects
with 500-meter buffers around waters.

Max. water yield (WY) Max. Contiguous agriculture size (AS)
Relative differences in evapotranspiration rates
between land use types (unitless)

Average patch size in ha of contiguous agricul-
ture.

Max. crop yield (CY) Max. distance residential to wind plants (DRW)
Sum of all logarithmic products of cropland in-
tensity and soil fertility over all cells (unitless).

Average distance of residential areas to the
closest wind plant point in km.

problems; the decision variables are elements in a sequence with a length that equals the
number of land units. Each element is associated with one land use category, represented as
an integer value. For more specifications about the problem background and formulation, we
refer to Tab. 1 and [29]. Both problems have initial land use maps. The problem instance
classes and the initial land use maps are available online 2.

The second test problem is a vector land use problem with 7 land use categories, two
constraints and four maximization objectives [30]. We constructed the problem for testing
the algorithm’s performance with parcels located in Germany.

2 https://data.mendeley.com/datasets/4tw223jvjv

https://data.mendeley.com/datasets/4tw223jvjv
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Furthermore, we generate the single objective optimal land use configurations per objective.
For example, we allocated only land use Cropland 5 while not violating the constraints to
generate the optimal solution for the objective Crop Yield, and only the land uses Civil,
Industrial and Residential for the objective Urban Compactness. The only exception is
the objective Habitat Heterogeneity, for which we approximate the single objective optimal
solution. These single objective optima are the extreme ends of the Pareto fronts. Therefore,
they are insufficient to determine whether an algorithm finds the true Pareto front. However,
it serves as an indicator to determine whether or not an algorithm can find optimal solutions
or how far it is off from the known optima.

3.3 Design of simulation experiments and software availability

Table 2 Simulation experiment with a) Run time analysis over 10 problem sizes. b) Single-
objective best solutions found by the algorithms and the known optima.

a) Run time analysis
Problem type Problem size Algorithm Nr. of generations Pop. size
Raster 100 - 22500 GP 10 40

Raster 100 - 22500
NSGA 2
with repair
mutation

10 40

Raster 100 - 22500
NSGA 2
no repair
mutation

10 40

Vector 2075 - 13687 GP 10 40
Vector 2075 - 13687 NSGA 3 10 40
b) Single-objective solution comparison
Problem type Problem size Algorithm Nr. of generations Pop. size
Raster 100 GP 100 200

Raster 100
NSGA 2
with repair
mutation

100 200

Raster 10,000 GP 100 200
Raster 1,000,000 GP 100 200
Vector 13687 GP 100 200
Vector 13687 NSGA3 100 200

In the first experiment, we perform a benchmark between GP and the most commonly
multi-objective land use allocation algorithm NSGA 2 on the multi-objective raster land
use problem (Tab. 3). The NSGA 2 can not be applied without adaptations for solving
land use allocation problems. Therefore, we compare GP to a land use allocation algorithm
that bases on NSGA 2 on the multi-objective raster land use problem defined in [29]. The
authors suggest a multi-objective land use allocation algorithm (CoMOLA) to solve the
land use problem. The algorithm offers the option to use a repair mutation operation for
patches. The spatially explicit repair functions can improve the search for optimal solutions
by repairing infeasible individuals. We perform a run time benchmark on 10 problem sizes
with raster dimensions from 10*10 to 150*150 cells with a step size of 10. Then, to indicate
the algorithm performance of finding optimal solutions, we compare the best solutions of
the single objectives from both algorithms on the 10*10 problem size to the known single
objective optima.

GISc ience 2023
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In the second simulation experiment, we test the algorithm performance on the multi-
objective vector land use problem with features representing land units. We select the
NSGA 3 algorithm, the successor of NSGA 2, as benchmark algorithm for two reasons. First,
we use the same selection procedure [7]. Second, NSGA 3 has proven its ability to find
better-distributed solutions in Pareto fronts and has been successfully applied to solving
land use allocation problems [18]. We perform a run time benchmark on 10 problem sizes
ranging from 2075 to 13687 land units and compare the single objective optimal solutions for
2075 and for 13687 land units to the known single objective optima. The software used is
open source and the results are fully reproducible.

The code, input data, and results files are available at Mendeley Data2.

4 Results

4.1 Raster land use allocation problem
The scaling potential of the run times is promising. While CoMOLA with the patch repair
mutation took 171 minutes to evaluate 200 individuals in 100 generations, GP needed 5
seconds for the same number of evaluations. The larger the problem instances, the larger
the difference between the run times. While the run times of the CoMOLA based on the
NSGA 2 algorithm increase exponentially with increasing raster problem sizes, GP run times
increase linearly (Fig. 3, a).

a b

Figure 3 Total run times of with increasing land use problem sizes. a) Raster land use problem
ranging from 100 (10x10) to 22500 (150x150). b) Vector land use problem with problem sizes from
2075 to 13687 land units.

The highest difference, therefore, was observed on the largest raster problem instance
with 22500 (150 * 150) grid cells: here, NSGA 2 required 325 minutes, whereas GP required
27 seconds, which is 722 times faster. When applying the repair mutation on CoMOLA, the
difference is even higher. The spatially explicit repair function lead to computation times
that exceeded 5 hours at a problem size with 80*80 cells. In comparison: When testing GP
on the problem with 1000*1000 cells leading to one million decision variables, the algorithm
took 742 minutes.

The single-objective optimal solutions derived with GP (Fig. 4 and Tab. 3) prove that
the algorithm can and does find global optima and solutions close to the global optimum.
For obtaining the optimal solution for objective Crop yield, only one pixel (Fig. 4 a, top left
corner) is off, where cropland 4 is allocated instead of cropland 5. All other non-constrained
land uses are set to the optimal land use cropland 5. The same applies to the finer resolution
of 100 * 100 pixels, where 15 out of 10000 pixels are not set to the optimal land use (Fig. 4b,
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Table 3 Single objective extreme values obtained with the algorithms with the known global
optima.

Raster Size CY [-] HH [-] SR [-] WY [-]
NSGA 2 with repair mutation 10*10 125.7 84.2 9.51 97.7
GP 10*10 134.7 282.2 9.51 98.0
Known optimum 10*10 138.2 354 9.51 98.9
NSGA 2 with repair mutation 100*100 - - - -
GP 100*100 13,574 24,903 23.9 9,890
Known optimum 100*100 13,615 34,778 23.9 9891
NSGA 2 with repair mutation 1000*1000 - - - -
GP 1,000*1,000 1,359,403 2,703,280 60.0 989,107
Known optimum 1,000*1,000 1,359,404 3,471,380 60.0 989,108

Vector Size UC [-] AS [ha] DRW [km] AW [ha]
NSGA3 2075 313 755 0.021 725
GP 2075 347 738 0.023 770
Known optimum 2075 372 1144 0.027 982
NSGA3 13,687 1,659 7,074 0.894 2,787
GP 13,687 1907 6,257 1.135 2,731
Known optimum 13,687 2,211 9,321 1.23 3,830

top left corner). The global optimum was obtained on both spatial resolutions for objective
Water yield with Cropland 1 being the best land use. For objective Species Richness, the
global optimum is obtained, but this is comparatively easy to obtain by reaching 25% of
land use forest since it corresponds to the upper area constraint for land use forest. More
remarkable is the produced cluster in optimal solutions for objective Habitat heterogeneity.
For this objective, the perfect land use pattern is produced when the number of neighbours
between the constrained land use forest, pasture and cropland use 1 is maximized, followed
by neighbours to cropland 2 etc. GP found this pattern (Tab. 3) that seems impossible to
find by CoMOLA: The best objective value obtained with GP is 3.35 times higher than the
best objective value obtained by CoMOLA.

Moreover, GP is not negatively affected by larger problem instances; the convergence to
the single objective optima is even better on the larger problem with 100*100 cells compared
to the small problem with 10*10 cells. Even on the largest problem with 1000*1000 cells,
GP found one single objective global optima and two solutions that deviate 0.001% and
0.00001% from the global optima (Tab. 3). This observation indicates the scaling potential
of the algorithm’s performance on a finer spatial resolution.

The single objective optima show that GP can find optimal spatial patterns for objective
functions based on adjacency and connectivity for small and large land use allocation problem
instances.

4.2 Vector land use allocation problem
The optimization of the vector problem requires more computation time compared to the raster
problem. The computationally more expensive fitness evaluations, in which intersections,
distance, and adjacency operations on features are used, are the reason for the longer run
times. However, the field-evolving GP is considerably faster than the NSGA 3, and the
difference increases with more land units (Fig. 3, b). On average, GP is 138% faster regardless

GISc ience 2023
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a b
Max. crop yield

Max. habitat heterogeneity

Max. species richness

Max. water yield

c

d

Figure 4 Single objective optimal solutions for raster land use problems with problem sizes 10x10
cells (a), 100x100 cells (b), and 1000*1000 cells (c). Close-ups (d) show produced patterns from
selected regions of the 1000*1000 cell maps: The red frame shows the close-up for objective Max.
habitat heterogeneity, the blue frame shows the close-up for objective Max. species richness and the
purple frame shows the close-up for the objective Max. water yield.

of the problem size. However, the run time of the GP also scales well on larger problems. On
the larger problem size with 13687 land units, GP took, on average, 61% less computation
time per land unit than on the problem with 2075 land units.

GP did not find the global optima for the objectives in the vector problem (Tab. 3).
However, GP also outperforms the NSGA 3 algorithm on the land use problem with 2075
land units (Tab. 3). The single objective optimal values of Urban Compactness (UC), and
Agriculture in water range (AW) are 9.2%, 9.5%, and 6.2% better. NSGA 3 found a 2.3%
better single objective optima for the Contiguous agriculture size. The number of optimal
solutions is also higher, with 57 compared to just 7 obtained with the NSGA 3. Furthermore,
GP found solutions (Fig. 5) that show spatial patterns, such as contiguous agriculture land
uses, or the seemingly ordered land uses along horizontal (Fig. 5 b, last row) and the vertical
axis (Fig. 5 a, last row, and b, third row)3.

3 Additional results, including Pareto frontiers, are available with a DOI at figshare.

https://figshare.com/s/9f5385b7e1d28b347ff4
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a bMax. Urban compactness

Agriculture within water range

Max. Con�guous agriculure area size

Max. distance to wind plants

Civil Rural non-forest Industrial

Forest Residen�al Transport and water

Agriculture Water

Wind plants

Figure 5 Single objective optimal solutions for vector land use problems with two problem sizes
2075 parcels (run time: 246 minutes) and 13687 parcels (run time: 761 minutes).

5 Discussion

5.1 Potential of encoding spatial objects as functions
The results of this study show that optimizing functions that generate continuous fields
can lead to more optimal land use configurations in shorter computation times compared
to using algorithms with standard encoding. The optimal land use maps produced with
functions in the GP algorithms are closer to the global optima, and in many cases, GP even
found the global optima. The observed scaling shows the potential for high-resolution land
units and/or larger study areas, which is promising for other land use allocation problems
than the ones shown here. Another example is uncertainty analysis of land use allocation
optimizations, which require many optimization executions and benefit even more from the

GISc ience 2023
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decreased computational cost [8]. Other spatial optimization problems might also be solved
with the GP algorithm, e.g. 3D routing optimizations for which a sequence of 3D points is
optimized instead of evolving functions [9], or facility location planning [3]. Possibly, GP can
be applied to solve spatial problems that change over time by including a time dimension
variable as part of the functions.

5.2 Limitations and future work
In this work, we used functions that include spatial dependencies in both x and y directions in
the encoding of solutions, while a sequence of elements that represent spatial units does not.
This yields a great advantage for spatial optimization problems that handle spatial objects
and offers much potential for future investigation. This approach comes with disadvantages,
too, e.g. the necessity to attach a random land use order to every solution to mitigate
the effect of translating a continuous to a nominal variable. Investigating the random land
use order association with individuals in more detail is, therefore, important for future
research. For example, in our results, the portion of unique land use orders decreases over
the generation and stabilizes at 40 after 50 generations. Finding out whether the observed
behaviour is an anomaly or whether some land use orders are particularly suitable for solving
the problem may yield important insights.

In this study, we used standard GP initialization, crossover and mutation operators and
no hyper-parameter tuning to prove the general applicability of the GP algorithm on land use
allocation problems. Many different initializations of trees, mutations, or crossover exist for
which many parameter settings are possible, and some operators and parameter settings may
yield better results for land use allocation problems or other spatial optimization problems.
One parameter that should be tuned is the maximum tree depth. This parameter was set to
8, but the maximum tree depth in the optimal solutions was 5. In the vector problem, the
tree depth was even shallower; some only had one terminal (Fig. 5). The parameter tuning
is, therefore, future work to further improve the algorithm performance.

Lastly, the better performance on the raster problem compared to the vector problem
leaves room for further analysis. The static boundaries of the features might be the reason
for this observation: While GP could generate patterns and clusters that potentially benefit
objectives in the raster case, that positive characteristic of the algorithm can not be realized
in the vector case where the object extents are set. Another reason may be the usage of
polygon centroids as x and y inputs to the function. A different mapping is possibly better
for considering the whole feature’s extent, e.g., using multiple points per polygon as input.

6 Conclusion

Standard land use allocation optimization algorithms cannot cope with large land use
allocation problems due to the solution encoding. Using function as solution encoding proved
to solve land use problems more efficiently. The functions represent spatial fields that are
mapped to nominal land use maps. We solve the identified mapping problem from continuous
fields to nominal maps by associating random land use orders with the individuals of the GP
population.

GP proved its ability to alleviate exponentially increasing run times of the standard
encoding scheme on a raster and a vector problem. While the computation time using the
standard solution encoding increased exponentially, the computation time using GP increased
linearly. As a consequence, the reduction of computation time increases exponentially with
larger problem instances, too. On the largest raster problem instance, GP was up to 722
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times faster than the NSGA 2 land use allocation algorithm. The difference in computation
time further increases when comparing GP to the standard encoding coupled with spatially
explicit operators.

Moreover, the improvement in computation time does not affect the algorithm’s per-
formance in finding better solutions than the benchmark algorithms. GP obtained better
single-objective solutions than NSGA 2 and NSGA 3 on six out of eight objectives of the
two benchmark problems. Moreover, GP found the global single objective optima for three
objectives of the raster problem with 10*10 cells and 100*100 cells. Even on the 1000*1000
single-cell raster problem, one global optimum was found and two near-optimal (deviation of
0.001% and 0.00001% from global optima). The highest increased performance was obtained
for the objective Habitat Heterogeneity of the raster problem that requires finding a highly
complex spatial pattern of adjacent land uses. Also, GP found contiguous clusters required
to find optimal solutions to four other objectives. This shows that GP can produce land use
maps with spatial patterns that involve adjacency and connectivity.

We conclude that evolving functions enable more efficient land use allocation optimizations
in the future and that the approach is a promising method for other spatial optimization
problems.
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