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Abstract
Traditional geographically weighted regression and its extensions are important methods in the
analysis of spatial heterogeneity. However, they are based on distance metrics and kernel functions
compressing differences in multidimensional coordinates into one-dimensional values, which rarely
consider anisotropy and employ inconsistent definitions of distance in spatio-temporal data or spatial
line data (for example). This article proposes a general framework for locally weighted spatial
modelling to overcome the drawbacks of existing models using geographically weighted schemes.
Underpinning it is a multi-dimensional weighting scheme based on density regression that can be
applied to data in any space and is not limited to geographic distance.
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1 Introduction

In recent years, analysis of spatial heterogeneity – for example, spatially varying regression
relationships – has attracted increasing interest from researchers. Among the local-form
spatial modelling methods, geographically weighted regression (GWR) [1] is popular. It fits a
unique weighted least squared model at multiple locations across a study region by borrowing
points from each location’s geographic neighbours. Extensions include geographically and
temporally weighted regression (GTWR) [2], enhancing basic GWR’s ability to model more
kinds of data. Basic GWR, on 2D spatial data sets, uses weights based on geographic
distances between samples. Extended versions may adapt the weights to incorporate other
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kinds of “distance” but are still rooted back into one-dimensional distance metrics. This
raises the problem of how to compress differences in multidimensional coordinates into a
one-dimensional distance value.

Additionally, even when the metric is simple, differences in geographic scales of different
dimensions may cause unexpected problems. This phenomenon is called “anisotropy”. For
example, the range of vertical distances is generally different from that of horizontal distances.
Consequently, when we incorporate distance in the 3D space to weight samples, relatively
large changes in heights may present very limited effects on weights (without rescaling the
vertical distances, at least). The problem is more evident when time is considered as this
is, of course, measured in units of time, not of space. They are not directly compatible.
These problems highlight the limitation of reducing multidimensional spaces into a single-
dimensional weighting based on some notion of “closeness” or least distance.

In this paper, we introduce a general framework for locally weighted geographic and other
spatial modelling based on density regression (DLSM: density-based local spatial models).
This model essentially follows the workflow of density regression [6] under a conditional
variable, but the conditional variable is restricted to the multivariate coordinates of samples
in their space. Critically, this space can be geographic, spatio-temporal, or any other kind.
It can have a dimension of any positive integer. Assuming these dimensions are independent,
the DLGM framework calculates a weight for each according to their own bandwidth and
kernel function. The product of these weights is used as the final weight to calibrate the
least-squared model at each location. This modelling method can be easily adapted to any
data of coordinates without trying to collapse the multiple dimensions into a single distance
metric in the first instance. Simulation experiments demonstrate that this method is flexible,
extensible and customisable. It can also reach higher goodness of fit than specially designed
GWR-like models that attempt to accommodate spaces and coordinate systems that are not
solely geographical.

2 Methodology

Geographically weighted regression can be expressed as Equation 1 for the sample i at
location ui,

yi = β0i(ui) + β1i(ui)x1i + β2i(ui)x2i + · · · + βpi(ui)xpi + ϵi (1)

and the estimator for its coefficients βi = (β0i, β2i, · · · , βpi) is shown in Equation 2,

β̂i =
(
XTWiX

) −1XTWiy (2)

where y = (y1, y2, · · · , yn)T is the vector of dependent variables, n is the number of samples,
X is the design matrix or independent matrix of all independent variables, ϵi ∼ N(0, σ2)
is the random error and Wi is the geographical weighting matrix for this sample. This
weighting matrix is a n × n diagonal matrix. Each diagonal element is a distance-decay
weight wij = k(dij ; b) (for j = 1, 2, · · · , n) in which dij is the distance from sample i to j, k is
a kernel function and b is the bandwidth. The basic GWR model uses straight-line distance,
Minkowski distance, network distance, or travel time [4], which are all spatial. The GTWR
model uses the spatial-temporal distance dST

ij = dS
ij ⊕ dT

ij by combining spatial distance
and temporal distance together [2]. The bandwidth can be fixed (defined by distance), or
adaptive (defined by the number of nearest neighbours).



Y. Hu, B. Lu, R. Harris, and R. Timmerman 40:3

For DLSM, the weight wij originates as a product of weights for every dimension in the
current space, as shown in Equation 3,

wij =
m∏

h=1
wijh =

m∏
h=1

kh (dijh; bh) (3)

where m is the number of dimensions in ui, kh is the kernel function for dimension h, bh is the
corresponding bandwidth, dijh = |uih − ujh|, and uih, ujh is the coordinates in this dimension
of sample i and j. Regardless of whether they are measured as longitude, latitude, height,
time, social distance or any other measure of “closeness”, they are all feasible dimensions in
this model. The estimator of this model can be that shown in Equation 2 or another locally
weighed regression estimator.

The weighting method shown in Equation 3 operationalises multiple values of bandwidths
– one for each dimension of the various coordinate spaces. The optimization of these
bandwidths uses multidimensional minimisation of a criterion function. Theoretically, any
kinds of multidimensional minimizer without derivatives are applicable here. We choose the
Nelder-Mead algorithm [5]. The criterion function can be either the cross-validation (CV)
value or goodness-of-fit, e.g., AIC function of given bandwidth b = (b1, b2, · · · , bm), shown in
Equation 4 and Equation 5 respectively,

CV(b) =
n∑

i=1

[
yi − xiβ̂−1(b)

]2
or CV(b) =

n∑
i=1

∣∣∣yi − xiβ̂−1(b)
∣∣∣ (4)

AIC(b) = 2n ln σ̂ + n ln 2π + n

[
n + tr(S)

n − 2 − tr(S)

]
(5)

where β̂−i(b) is the coefficient estimates for sample i without the sample itself, xi is the i-th
row of matrix X, S is the “hat matrix” in which each row si equals to xi(XWiX)−1XWi.

3 Experiments

We carried out three experiments, generating simulation data sets to demonstrate how DLSM
works 2. We also calibrated a corresponding GWR-family model in each experiment to
provide a comparison. In each experiment, we use root mean squared error (RMSE) or mean
absolute error (MAE) to evaluate the precise of estimates, which are defined in Equation 6,

RMSE =
n∑

i=1
(ri − ei)2, MAE =

n∑
i=1

|ri − ei| (6)

where n is the number of estimates, ei is the i-th estimate, ri is the corresponding real value.
We first generated a 2D data set of Cartesian coordinates. Anisotropy was preserved in

the coefficients. Bandwidths optimized by DLSM are 11.4% (570 neighbours) in the E-W
direction and 0.7% (35 neighbours) in the N-S direction. Coefficient estimates and their
RMSEs are shown in Figure 1. Whereas DLSM helps identify anisotropy, it is missing in
estimates from a basic GWR model because the only bandwidth value optimized by GWR is
16 nearest neighbours (regardless of direction). It also has a stronger risk of overfitting as
the bandwidth is too small. By contrast, DLSM can restrain overfitting in dimensions where
spatial heterogeneity is weaker.

2 Please turn to https://hpdell.github.io/GIScience-Materials/posts/DLSM/ for more details.
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(b) RMSE and MAE of coefficient estimates.

Figure 1 Results of GWDR and basic GWR with two-dimensional spatial data.

Four 3D data sets of Cartesian coordinates representing space-time location (u1, u2, u3)
were generated to compare DLSM and GTWR. In the former two data sets, coefficients
were generated by exp(u3). While in the latter two data sets, an autoregression model on
u3 was a part of all coefficients. The space-time distance metric use by GTWR was set to
dST

ij =
√

λ(∆u2
1,ij + ∆u2

2,ij) + µ(∆u2
3,ij). Parameters λ and µ in this space-time distance

metric were optimized according to goodness of fit. Coefficient estimates and their RMSEs
are shown in Figure 2. According to the results, DLSM can reduce the mean of absolute
estimation error by 10%-50%, especially when coefficients are temporally autocorrelated. The
multiple bandwidths attach actual meaning to the parameters λ, µ; they have a real-world
correlate, unlike the root of sum of squared meters and seconds (

√
m2 + s2).

A 4D data set was also generated to simulate flow data. DLSM was compared with
GWR. For flow data, each flow can be represented by a set of 4D coordinates (u, v, α, l) in
which u, v represents the spatial location of its starting point, α represents its direction, and
l represents its length. The distance metric used by GWR was set to the similarity between
flows Oi(uOi, vOi) → Di(uDi, vDi) and Oj(uOj , vOj) → Dj(uDj , vDj) [3], as shown in

dij =

√√√√[
(uOi − uOj)2 + (vOi − vOj)2

]
+

[
(uDi − uDj)2 + (vDi − vDj)2

]
lilj

(7)

in which li is the length of flow −−−→
OiDi. Coefficient estimates and their RMSEs are shown in

Figure 3. Results show that DLSM works well for spatial line data even without defining
distance metrics. It performs better than GWR according to the mean of estimation
errors, but a few outliers exist in estimates. GWR selected a much smaller bandwidth (173
neighbours). Thus, the risk of overfitting reappears.
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(a) Coefficient estimates and
real values, the first data set.
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(b) Coefficient estimates and
real values, the second data set.
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(c) Coefficient estimates and
real values, the third data set.
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(d) Coefficient estimates and
real values, the fourth data set.
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Figure 2 Comparison between real value and estimations of coefficients given by GWDR and
GTWR for ordinary spatial and temporal data.
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(b) RMSE and MAE of coefficient estimates.

Figure 3 Results of GWDR and basic GWR with four-dimensional spatial data.

4 Conclusion

This paper introduces the DLSM model as a framework for estimating local regression
models, such as GWR and GTWR. It offers more flexibility because of its three alterable
parts: a space where samples exist, a set of kernels selected for every dimension and a
locally weighted regression method. Simulation shows that DLSM can be applied to many
kinds of spatial data without specially defined distance metrics, such as spatio-temporal
data and spatial interaction data. It can also help tackle the effects of anisotropy because
it has, in effect, a multidimensional bandwidth and decay function, measuring “closeness”
in multiple dimensions simultaneously. In the future, researchers no longer need to design
distance metrics to bring together, in a rather ad hoc way, different types of space and
coordinate systems into the distance decay function. Assigning a weighting scheme to each
of the dimensions and then pooling across them is suggested as a better alternative.
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