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Abstract
This paper introduces an integrated Uncertainty and Sensitivity Analysis (US-A) approach for
Spatial Multicriteria Models (SMM). The US-A approach evaluates uncertainty and sensitivity by
considering both criteria values and weights, providing spatially distributed measures. A geodiversity
assessment case study demonstrates the application of US-A, identifying influential inputs driving
uncertainty in specific areas. The results highlight the importance of considering both criteria
values and weights in analyzing model uncertainty. The paper contributes to the literature on
spatially-explicit uncertainty and sensitivity analysis by providing a method for analyzing both
categories of SMM inputs: evaluation criteria values and weights, and by presenting a novel form of
visualizing their sensitivity measures with bivariate maps.
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1 Introduction

Uncertainty analysis (UA) and sensitivity analysis (SA) are two complementary methods of
evaluating uncertainty present in model inputs and, by extension, in model results [12]. UA
quantifies outcome variability given model input uncertainties, and is, therefore, forward-
looking as it focuses on evaluating how the uncertainty of inputs propagates through the
model and affects its output values. However, UA does not inform about the magnitude of
individual inputs’ influence on model output variability. This information can be obtained
from SA that relates the output variability to model inputs and evaluates how much each
source of uncertainty contributes to the overall variability of the output. In this sense, SA is
a backward-looking approach that complements UA.
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Spatial Multicriteria Models (SMM) implemented in the context of GIS-based multicriteria
analysis employ either value function-based methods or outranking relation-based methods to
arrive at a rank-order/classification of spatially-explicit choice alternatives [8]. In SMM that
employ value function methods, the rank order is determined by a synthetic score expressing
the overall strength of each choice alternative vis-à-vis other alternatives under consideration.
The score is calculated by integrating criteria values with weights using a combination rule.
Due to potential errors in criteria values and the subjectivity of weights, both types of inputs
can become potential sources of uncertainty affecting the SMM output. The overall impact
of uncertainty can be represented by a measure of output variability (e.g., variance), which is
also a proxy of output uncertainty. In order to isolate influential inputs driving the model’s
output uncertainty, one can employ SA. Ultimately, the purpose of UA combined with SA is
to improve the model’s reliability and its value for policy and decision-making.

2 Related work

Two approaches to UA-SA – local and global, have been proposed for SMM. In the local
approach, the values of model inputs are varied one at a time (OAT) while keeping other
inputs unchanged. This approach has been popular among modelers due to its simplicity,
tractability, and low computational cost [15]. Yet, in SMM based on compensatory decision
rules (i.e., Weighted Linear Combination, Analytical Hierarchy Process), model inputs do
interact, and the OAT approach does not address these interaction effects. In contrast, the
global approach accounts for model input interactions by more or less systematically sampling
the entire input value space [7]. The downside of the global approach is its computational
cost. Different solutions to accelerating global SA for spatial models have been proposed,
including parallelization [1], [5] and surrogate models [11].

In an early example of global approach for SMM, [3] used variance decomposition-based
SA to investigate model’s solution stability in light of uncertainties affecting criteria values
and weights. In their study, SA was performed on aggregated criteria values and weights,
producing one measure of sensitivity for each input for the entire study area. This approach
to UA-SA takes spatially explicit inputs, identifies among them the influential ones that
drive the model’s output variability, and returns non-spatial estimates of sensitivity without
providing a crucial piece of information – namely, where in the study area this influence plays
out. Others, including [6], [2], and [10] proposed a spatially explicit and integrated approach
to UA-SA of SMM, henceforth referred to as US-A, based on global variance decomposition,
in which the output of SMM results in spatially distributed measures of uncertainty and
sensitivity. Their work, however, addressed only one category of uncertain inputs: criteria
weights. The work presented here extends it by providing a method for analyzing both
categories of SMM input: criteria values, and weights. Additionally, it presents a novel form
of visualizing their sensitivity measures with bivariate maps.

3 Methods

The US-A of variable criteria and weights is presented in Figure 1. In this approach, weights
Wn are represented as probability distributions, whereas criteria Cn are represented as sets of
k multiple alternative layers. Since both types of inputs are stochastic, a given SMM f(W,C)
has to be calculated multiple times, each time with a different vector of input values. Each
calculation uses n scalars for W and n maps for C, where the scalars are derived from weights’
respective probability distributions and the maps from their respective sets of realizations.
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The sampling used to generate the vectors is called Sobol’s quasi-random with radials and is
described in [14]. As a result, we obtain a distribution of SMM spatial outputs, for which we
can calculate different aggregation statistics’ maps like mean or standard deviation. Both
statistics can then be used jointly (Figure 2) as an uncertainty map.

The next step involves spatially-explicit variance decomposition, independently applied
to every spatial unit (su) in the study area (e.g., raster cell, vector polygon). Variance
decomposition involves subdividing the total variance of su creating partial variances for
each input [14], [13]. The procedure produces two sensitivity indices per input – First Order
Effects Index and Total Effects Index. The former is the input’s fractional contribution
to the total variance when the given input is treated independently from all other inputs.
The latter is the input’s fractional contribution to the total variance due to its independent
influence and interactions with other inputs. Consequently, the difference between the Total
Effects Index and the First Order Effects Index is the input’s interactions (Figure 3, legend).
The final results comprise 2N sensitivity maps (i.e., one map per each W and one per each C)
depicting regions of input’s combined (i.e., bivariate) “first order and interactions” influence
on SMM outputs.

Figure 1 A framework for an extended US-A incorporating the analysis of criteria values and
weights.
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4 Case study

US-A was employed to assess the uncertainty and sensitivity of multicriteria geodiversity
assessment [16], for the Karkonosze National Park (KNP) in southwestern Poland. The
park is known for its unique relief and the richness of landforms, including mountain-top
planation surfaces, glacial kettles, granite tors with fanciful shapes, waterfalls, and peat
bogs. A multicriteria model developed for the purpose of assessment included seven criteria
(lithological features, relief energy, landforms, land cover and land use, soils, solar radiation
and the topographical wetness index), their relative importance weights, and it was based
on a weighted linear combination function for aggregating criteria values with weights. The
criteria values and weights were collected from 57 experts in geodiversity and/or Earth
sciences using a geo-questionnaire [4]. The study area, the model, and the data collection
approach are described in detail in [9].

5 Results

Uncertainty analysis is the first step of US-A (Fig. 1). Figure 2 shows its results, including
1) standardized, average geodiversity score (0.0 – 1.0 scale) calculated for each of 212 first
order watersheds (assessment units) based on 2000 model runs, and 2) standard deviation
representing the measure of uncertainty. Each model run used a sample of input values
drawn from discrete uniform probability distributions of criteria maps discrete non-uniform
distributions of weights. The sampling scheme was based on Sobol’s quasi-random sampling
sequence that improves the uniformity of samples in the parameter space [13]. Many
watersheds in Fig. 2 exhibit high average values of geodiversity (0.79 – 0.7) and medium-low
standard deviation (0.08 – 0.06). We focus our analysis on three watersheds rendered in black
in Fig. 2, representing high average geodiversity (0.79 – 0.7) and relative high uncertainty
(0.09 – 0.08). These watersheds, which are highlighted in red circles (Fig. 2), represent areas
characterized by the richness of geomorphological forms. Two of them (lower right red circle),
located in the eastern part of the park, include the headwaters of Sowia Valley in the eastern
part of Black Range. The third watershed, located in the western part of the park (upper
right), covers Snow Kettles – the second deepest complex of glacial kettles in the park.

Figure 2 Spatial distribution of average geodiversity and standard deviation in KNP.
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In order to identify inputs driving the uncertainty of the selected watersheds, we used
the combined “first order and interactions” effects for each of the model’s 14 inputs (seven
criteria + seven weights). As described in section 3, variance decomposition produces two
sensitivity indices for each criterion and each weight. A challenge in mapping first and
total effects sensitivity indexes in the presence of many inputs is cognitive difficulty in
interpreting 2N sensitivity maps. The values of indexes are typically rendered on coincident
maps (side-by-side) requiring a lot of visual back and forth. The overcome this challenge,
we used a bivariate map for each input, which allowed us to present the distribution of
both index values on one map per input (Fig. 3). The examination of the sensitivity maps
in Figure 3 reveals that both landforms and lithology criteria contribute to a relatively
high uncertainty (high standard deviation) of geodiversity values in the three watersheds.
Specifically, the landforms criterion affects geodiversity of the watersheds covering Sowia
Valley and the eastern part of Black Range (lower rights) and the lithology criterion impacts
geodiversity of the watershed covering Snow Kettles (upper right). This could be addressed,
for example, by obtaining higher quality input data for the criteria, which in turn might
reduce the uncertainty of assessment. The other input contributing to high uncertainty is
the relief energy criterion, but only for the watershed that covers Snow Kettles (upper left).

Figure 3 Spatial distribution of First Order and Interactions (Total Order) effects across 14 input
factors.

6 Conclusion

The work presented here shows that considering only criteria weights in US-A may give
us an incomplete understanding of important factors driving multicriteria model output
uncertainty. Notably, the framework presented in Figure 1 lends itself to incorporating in
US-A potential sources of the model’s output uncertainty other than criteria values and
weights. Other considerations, not accounted for in this study, are the model’s decision rule
represented by aggregation function(s) and the selection of criteria used in the model. They
can be addressed in future research.
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