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Abstract
A geophylogeny is a phylogenetic tree where each leaf (biological taxon) has an associated geographic
location (site). To clearly visualize a geophylogeny, the tree is typically represented as a crossing-
free drawing next to a map. The correspondence between the taxa and the sites is either shown
with matching labels on the map (internal labeling) or with leaders that connect each site to the
corresponding leaf of the tree (external labeling). In both cases, a good order of the leaves is
paramount for understanding the association between sites and taxa. We define several quality
measures for internal labeling and give an efficient algorithm for optimizing them. In contrast,
minimizing the number of leader crossings in an external labeling is NP-hard. We show nonetheless
that optimal solutions can be found in a matter of seconds on realistic instances using integer linear
programming. Finally, we provide several efficient heuristic algorithms and experimentally show
them to be near optimal on real-world and synthetic instances.
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1 Introduction

A phylogeny describes the evolutionary history and relationships of a set of taxa such as
species, populations, or individual organisms [25]. It is one of the main tasks in phylogenetics
to infer a phylogeny for some given data and a particular model. Most often, a phylogeny is
modelled and visualized with a rooted binary phylogenetic tree T , that is, a rooted binary tree
T where the leaves are bijectively labeled with a set of n taxa. For example, the phylogenetic
tree in Figure 1a shows the evolutionary species tree of the five present-day kiwi (Apteryx)
species. The tree is conventionally drawn with all edges directed downwards to the leaves and
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(a) Rooted binary phylo-
genetic tree.

N

(b) Map with the distribution
of each species.

A. australis

A. rowi

A. mantelli

A. haastii

A. owenii

N

(c) Visualization of the geophylogeny.

Figure 1 To visualize Weir et al.’s geophylogeny of the five present-day kiwi species [27], we
combine the phylogenetic tree (a) with the distribution map (b) into a single figure (c).

without crossings (downward planar). There exist several other models for phylogenies such
as the more general phylogenetic networks and unrooted phylogenetic trees; here we only
consider rooted binary phylogenetic trees and refer to them simply as phylogenetic trees.

In the field of phylogeography, geographic data is used in addition to genetic data. We
may thus have spatial data associated with each taxon such as the distribution range of each
species or the sampling site of each voucher specimen used in a phylogenetic analysis. For
example, Figure 1b shows the distributions of the kiwi species from Figure 1a. We speak of
a geophylogeny (or phylogeographic tree) if we have a phylogenetic tree T , a map region R,
and a set P of features on R that correspond one-to-one with the taxa in T ; see Figure 1c
for a geophylogeny of the kiwi species. In this paper, we focus on the case where P is a set
of points, called sites.

Visualizing Geophylogenies

When visualizing a geophylogeny, we may want to display its tree and its map together in
order to show the connections (or the non-connections) between the leaves and the sites. For
example, we may want to show that the taxa of a certain subtree are confined to a particular
region of the map or that they are widely scattered. In the literature, we mainly find three
types of drawings of geophylogenies. In a side-by-side drawing, the tree is drawn planar
directly next to the map. To show the correspondences between the taxa and their sites,
the sites are either labeled or color coded (as in Figure 2a and Figure 1c, respectively), or
the sites are connected with leaders to the leaves of the tree (as in Figure 2b). We call this
internal labeling and external labeling, respectively. There also exist overlay illustrations
where the phylogenetic tree is drawn onto the map in 2D or 3D with the leaves positioned at
the sites [15, 29], but for brevity we omit further discussion of this style.

Drawing a geophylogeny involves various subtasks, such as choosing an orientation for
the map, a position for the tree, and the placement of the labels. Several existing tools
support drawing geophylogenies but we suspect that in practice many drawings are made
“by hand”. The tools GenGIS by Parks et al. [23, 22], a tool by Page [20], and the R-package
phytools by Revell [24] can generate side-by-side drawings with external labeling. The
former two try to minimize leader crossings by testing random leaf orders and by rotating
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(a) Internal labeling with labels and colors [6]. (b) External labeling with s-leaders [13].

Figure 2 Side-by-side drawings of geophylogenies from the literature.

the phylogenetic tree around the map; Revell uses a greedy algorithm to minimize leader
crossings. The R package phylogeo by Charlop-Powers and Brady [8] uses internal labeling
via colors. Unfortunately, none of the articles describing these tools formally defines a quality
measure being optimized or studies the underlying combinatorial optimization problem from
an algorithmic perspective. In this paper, we introduce a simple combinatorial definition for
side-by-side drawings of geophylogenies and propose several quality measures.

Labeling Geophylogenies

Following standard map-labeling terminology, internal labeling places the labels inside or in
the direct vicinity of a feature; external labeling [5] places the labels in the margin next to the
map and a label is connected to the corresponding feature with a leader. An s-leader is drawn
using a single (straight) line segment as in Figures 2b and 3b. Alternatively, a po-leader (for:
parallel, orthogonal) consists of a horizontal segment at the site and a vertical segment at
the leaf; see Figure 3c. In the literature, we have only encountered s-leaders in geophylogeny
drawings, but argue below that po-leaders should be considered. In a user study on external
labeling, Barth, Gemsa, Niedermann, and Nöllenburg [1] showed that s-leaders perform well
when users are asked to associate sites with their labels and vice versa, but that po-leaders
(and “diagonal, orthogonal” do-leaders) are among the aesthetic preferences.

For internal labeling, a common optimization approach is to place the most labels possible
such that none overlap; see Neyer [18] for a survey on this topic. Existing algorithms can be
applied to label the sites in a geophylogeny drawing and it is geometrically straight-forward to
place the labels for the leaves of T . However, a map reader must also be aided in associating
the sites on the map with the leaves at the border based on these labels (and potentially
colors). Consider the drawing in Figure 1c, which uses color-based internal labeling: the
three kiwi species A. australis, A. rowi, and A. mantelli occur in this order from South to
North. When using internal labeling, we would thus prefer, if possible, to have the three
species in this order in the tree as well – as opposed to their order in Figure 1a.

External labeling styles conventionally forbid crossing the leaders as such crossings could
be visually confusing (cf. Figure 2b). Often the total length of leaders is minimized given
this constraint; see the survey by Bekos, Niedermann, and Nöllenburg [5]. If one allows a
many-to-one correspondence between sites and labels, the literature typically seeks a drawing
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(a) Internal labeling. (b) s-leaders and 1 crossing. (c) po-leaders and no crossings.

Figure 3 We place T above R and use either internal or external labeling to show the mapping
between P and L(T ). Figures (b) and (c) minimize the number of crossings for their leader type.
Note the difference in embedding of T and that not all permutations of leaves are possible.

that minimizes the number of crossings between the leaders, and this is NP-hard [17]. The
problem remains NP-hard even when leaders can share segments, so-called hyper-leaders [2].
Even though our drawings of geophylogenies have a one-to-one correspondence, the planarity
constraint on the tree restricts which leaf orders are possible and it is not always possible to
have crossing-free leaders in a geophylogeny. In order to obtain a drawing with low visual
complexity, our task is thus to find a leaf order that minimizes the number of leader crossings.

Results and Contribution

We formalize several graph visualization problems in the context of drawing geophylogenies.
We propose quality measures for drawings with internal labeling and show that optimal
solutions can be computed in quadratic time (Section 3). For external labeling (Section 4),
we prove that although crossing minimization of s- and po-leaders is NP-hard in general,
it is possible to check in polynomial time if a crossing-free drawing exists and to solve a
certain class of instances efficiently in practice. Furthermore, we introduce an integer linear
program (ILP) and several heuristics for crossing minimisation. We evaluate these solutions
on synthetic and real-world examples and find that the ILP can solve realistic instances
optimally in a matter of seconds and that the heuristics, which run in a fraction of a second,
are often (near-)optimal as well (Section 5). We close the paper with a discussion and open
problems; in particular, we point out further similarities between problems with geophylogeny
drawings and with external labeling.

A longer version of this paper containing all proofs is available on arXiv [16]. Fur-
thermore, implementations of the algorithms and the experiments are available online at
github.com/joklawitter/geophylo.

2 Definitions and Notation

For a phylogenetic tree T , let V (T ) be its vertex set, E(T ) its edge set, L(T ) its leaves,
and I(T ) its internal vertices. As size of an instance we let n = |L(T )| be the number of
leaves. Let T (v) be the subtree rooted at v and n(v) = |L(T (v))|.

A map R is an axis-aligned rectangle and a site is a point on R. A geophylogeny G

consists of a phylogenetic tree T , a map R, a set of points P on R, as well as a 1-to-1 mapping
between L(T ) and P . Call the elements of L(T ) = {ℓ1, . . . , ℓn} and P = {p1, . . . , pn} so that
without loss of generality the mapping is given by the indices.

We define a drawing Γ of G as consisting of drawings of R and T in the plane with the
following properties (see Figure 3). We assume that T is always drawn at a fixed position
above R such that the leaves of T lie at evenly spaced positions on the upper boundary

https://www.github.com/joklawitter/geophylo
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of R. Furthermore, we require that T is drawn downward planar, that is, all edges of T point
downwards from the root towards the leaves, and no edges of T cross. (In our examples
we draw T as a “rectangular cladogram”, but the exact drawing style is irrelevant given
downward planarity.) The points of P are marked on R and the drawing uses either internal
labeling as in Figure 3a or external labeling with s- or po-leaders as in Figures 3b and 3c.
For drawings with external labeling, we use si to denote the leader that connects ℓi and pi.

Since the tree is drawn without crossings and the sites have fixed locations, the only
combinatorial freedom in the drawing Γ is the embedding of T , i.e.w̃hich child is to the left
and which is to the right. Furthermore, since we fixed the relative positions of the map and
the leaves, note that there is also no “non-combinatorial” freedom. Hence, an embedding of T

corresponds one-to-one with a left-to-right order of L(T ) and we call this the leaf order π

of Γ. For example, if a leaf ℓi is at position 4 in Γ, then π(ℓi) = 4. Further, let x(v) denote
the x-coordinate of a site or leaf v of T in Γ.

3 Geophylogenies with Internal Labeling

A good order of the leaves is crucial for internal labeling, since it can help the reader associate
between L(T ) and P . It is in general not obvious how to determine which leaf order is best
for this purpose; we propose three quality measures and a general class of measures that
subsume them. Any measure in this class can be efficiently optimized by the algorithm
described below. In practice one can easily try several quality measures and pick whichever
suits the particular drawing; a user study of practical readability could also be fruitful.

3.1 Quality Measures
When visually searching for the site pi corresponding to a leaf ℓi (or the opposite direction), it
seems beneficial if ℓi and pi are close together. Our first quality measure, Distance, sums the
Euclidean distances over all pairs (pi, ℓi). Since the tree organizes the leaves from left to right,
it might be better to consider only the horizontal distances, i.e.

∑n
i=1|x(pi) − x(ℓi)|, which

we call XOffset. Finally, instead of the geometric offset, IndexOffset considers how much the
leaf order permutes the geographic left-to-right order of the sites. Assuming without loss of
generality that the sites are indexed from left to right, we sum how many places each leaf ℓi

is away from leaf position i, i.e.
∑n

i=1|π(ℓi) − i|. See Figure 4.
These measures have in common that they sum over some “quality” of the leaves, where

the quality of a leaf depends only on its own position and that of the sites (but not the other
leaves). We call such quality measures leaf additive. Unfortunately not all sensible quality
measures are leaf additive (such as for example the number of inversions in π).

1

1

2

2 3

3

4

4

5

5

T

R

(a) Distance (Euclidean).

1

1

2

2 3

3

4

4

5

5

(b) XOffset (horizontal).

1

1

2

2 3

3

4

4

5

5

1 2 3 4 5

(c) IndexOffset (position shift).

Figure 4 Orange arrows indicate what the three quality measures for internal labeling consider.
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3.2 Algorithm for Leaf-Additive Quality Measures
Let f : L(T ) × {1, . . . , n} → R be a quality measure for placing one particular leaf at a
particular position; the location of the sites is constant for a given instance, so we do not
consider it an argument of f . This uniquely defines a leaf additive objective function on
drawings by summing over the leaves; assume w.l.o.g. that we want to minimize this sum.

Now we naturally lift f to inner vertices of T by taking the sum over leaves in the subtree
rooted at that vertex – in the best embedding of that subtree. More concretely, note that any
drawing places the leaves of any subtree at consecutive positions and they take up a fixed
width regardless of the embedding. Let F (v, i) be the minimum, taken over all embeddings
of T (v) and assuming the leftmost leaf is placed at position i, of the sum of quality of
the leaves of T (v). Then by definition the optimal objective value for the entire instance
is F (w, 1), where w is the root of T .

▶ Theorem 1. Let G be a geophylogeny on n taxa and let f be a leaf additive objective
function. A drawing that minimizes (or maximizes) f can be computed in O(n2) time.

Proof. For a vertex v with children x and y, we observe the following equality, since the
embedding has only two ways of ordering them and those subtrees are then independent.

F (v, i) = min{ F (x, i) + F (y, i + n(x)), F (y, i) + F (x, i + n(y)) } (1)

Using dynamic programming on F allows us to calculate F (w, 1) in O(n2) time and space,
since there are 2n vertices, n possible leaf positions, and Equation (1) can be evaluated in
constant time by precomputing all n(v). The optimal embedding of T can be traced back
through the dynamic programming table in the same runtime. ◀

Note that we can still define leaf additive quality measures when P contains regions
(rather than just points) as in Figure 1. For example, instead of considering the distance
between ℓi and pi, we could consider the smallest distance between ℓi and any point in the
region pi.

With the above algorithm, we can restrict leaves and subtrees to be in a certain position
or a range of positions, simply by marking all other positions as prohibitively expensive in F ;
the rotation of an inner vertex can also be fixed by considering only the corresponding term
of Equation (1). This can be used if there is a conventional order for some taxa or to ensure
that an outgroup-taxon is placed at the leftmost or rightmost position. Furthermore, this
enables an interactive editing experience where a designer can inspect the initial optimized
drawing and receive re-optimized versions based on their feedback – for example “put the
leaves for the sea lions only where there is water on the edge of the map”. (This is leaf
additive.)

4 Geophylogenies with External Labeling

For external labeling, the optimization goal is to embed the tree such that the number of
crossings between leaders is minimized. Unless otherwise stated, we use s-leaders.

For brevity, we omit proofs1 of following foundational complexity results and move on to
more practical algorithms.

1 Proofs are available in the long version of this paper [16].



J. Klawitter, F. Klesen, J. Y. Scholl, T. C. van Dijk, and A. Zaft 5:7

1

2

3

4 5

(a) A geometry-free instance for s-leaders:
no site lies inside the s-area of another site.
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(b) A geometry-free instance for po-leaders:
no site lies inside the po-area of another site.

Figure 5 In a geometry-free instance the leaf order π fully determines if any two leaders cross.

▶ Proposition 2. Given a geophylogeny G and an integer k, it is NP-hard to decide, for both
s- and po-leaders, if G admits a drawing with external labels and at most k leader crossings.

▶ Proposition 3. Given a geophylogeny G on n taxa, it can be decided in O(n6) time, for both
s- and po-leaders, whether G admits a drawing with external labels and no leader crossings.

4.1 Geometric Structure and Geometry-Free Instances
We start by making some observations about the structure of geophylogeny drawings. This
leads to an O(n log n)-time algorithm for crossing minimization on a particular class of
“geometry-free” instances and forms the basis for our ILP.

Let B be the line segment between leaf position 1 (left) and leaf position n (right); let
the s-area of a site pi be the triangle spanned by pi and B. Note that the leader si lies
within this triangle in any drawing. Now consider two sites pi and pj that lie outside each
other’s s-area. Independently of the embedding of the tree, si always passes pj on the same
side: see Figure 5 where, for example, s2 passes left of p4 in any drawing. As a result, if pi

lies left of pj , then si and sj cross if and only if the leaf ℓi is positioned right of the leaf ℓj

(cf. Figure 5). The case where pi is right of pj is flipped. We call such a pair (pi, pj) geometry
free since purely the order of the corresponding leaves suffices to recognize if their leaders
cross: the precise geometry of the leaf positions is irrelevant.

Conversely, consider a site pk that lies inside the s-area of pi. Whether the leaders si

and sk cross depends on the placement of the leaves ℓi and ℓk in a more complicated way than
just their relative order: si might pass left or right of pk. In this case, we call pi undecided
with respect to pk. See Figure 6, where p1 is undecided with respect to p2.

We call a geophylogeny geometry free if all pairs of sites are geometry free. Such instances
are not entirely implausible: for example, researchers may have taken their samples along
a coastline, a river, or a valley, in which case the sites may lie relatively close to a line.
Orienting the map such that this line is horizontal could result in a geometry-free instance.
Furthermore, unless two sites share an x-coordinate, increasing the vertical distance between
the map and the tree eventually results in a geometry-free drawing for s-leaders; however,
the required distance might be impractically large.

Concerning po-leaders, we can analogously define the po-area of a site (see Figure 5b).

▶ Theorem 4. Given a geometry-free geophylogeny G on n taxa, a drawing with the minimum
number of leader crossings can be found in O(n log n) time, for both s- and po-leaders.

GISc ience 2023
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Figure 6 Drawings of the same geophylogeny with different leaf orders. Whether s1 and s2 cross
depends on the position of ℓ1 and ℓ2, whereas s1 and s3 cross if and only if ℓ3 is left of ℓ1. We call
the pair (p1, p2) undecided and the pair (p1, p3) geometry-free.

1 2 3 4 5

Tfix

T = Tvari

Figure 7 A geometry-free geophylogeny and a one-sided tanglegram (Tfix, Tvari) that have the
same combinatorics (in terms of leader crossings) as the two geometry-free instances in Figure 5.

Proof. We transform G into a so-called one-sided tanglegram (Tfix, Tvari) that is equivalent
in terms of crossings; see Figure 7. In a tanglegram [11] two phylogenetic trees on the same
taxa are drawn planar opposite each other and the matching taxa are connected with straight
line segments; the goal is to find leaf orders that minimize the number of crossings. In a
one-sided tanglegram, the leaf order for one tree is given and fixed.

We take the sites P as the leaves of Tfix and embed the tree so that the points are ordered
from left to right; the topology of Tfix is arbitrary. As the tree Tvari with variable embedding,
we take the phylogenetic tree T . Since G is geometry-free, the crossings in the tanglegram
correspond one-to-one with those in the geophylogeny drawing with the same embedding.

The number of crossings of (Tfix, Tvari) can be minimized in O(n log n) time using an
algorithm of Fernau et al. [11]: the resulting leaf order for Tvari then also minimizes the
number of leader crossings in Γ. ◀

4.2 Optimal Drawings with Integer Linear Programming

For the following ILP, we consider an arbitrary embedding of the tree as neutral and describe
all embeddings in terms of which internal vertices of T are rotated with respect to this
neutral embedding, i.e. for which internal vertices to swap the left-to-right order of their two
children. For two sites pi and pj , we use pi ≺ pj to denote that ℓi is left of ℓj in the neutral
embedding. Let U be the set of undecided pairs, that is, all ordered pairs (p, q) where q lies
inside the s-area of p; note that these are ordered pairs.
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Variables and Objective Function

ρi ∈ {0, 1} ∀i ∈ I(T ). Do we rotate internal vertex i (1) or keep its neutral embedding (0)?
Note that rotating the lowest common ancestor of ℓi and ℓj is the only way to flip their
order, so for convenience we write ρij to mean ρlca(i,j).

dpq ∈ {0, 1} ∀(p, q) ∈ U . For each undecided pair (p, q): should p’s leader pass to the
left (0) or to the right (1) of site q? (This is well-defined since the pair is undecided.)

χpq ∈ {0, 1} ∀p, q ∈ P, p < q. For each set of two sites: are the leaders of p and q allowed
to cross? There is no requirement that noncrossing pairs have χpq = 0, but that will be
the case in an optimal solution.

To minimise the number of crossings, minimize the sum over all χpq.

Constraints

We handle geometry-free pairs and undecided pairs separately.
Consider a geometry-free pair of sites: if the leaders cross in the neutral embedding, we

must either allow this, or rotate the lowest common ancestor. Conversely, if they do not cross
neutrally, yet we rotate the lowest common ancestor, then we must allow their leaders to
cross. Call these sets of pairs Frotate and Fkeep respectively, for how to prevent the crossing.

χij + ρij ≥ 1 ∀(i, j) ∈ Frotate; χij − ρij ≥ 0 ∀(i, j) ∈ Fkeep (2)

For undecided pairs (p, q), a three-way case distinction on [p ≺ q], ρpq and dpq reveals the
following geometry: pairs with p ≺ q have crossing leaders if and only if ρpq + dpq = 1; pairs
with p ≻ q have crossing leaders if and only if ρpq + dpq ̸= 1. Recall that we do not force χ to
be zero if there is no intersection, only that it is 1 if there is an intersection; we implement
these conditions in the ILP as follows. Let Uleft ⊆ U be the undecided pairs with p ≺ q.

ρpq − dpq ≤ χpq ∀(p, q) ∈ Uleft; dpq − ρpq ≤ χpq ∀(p, q) ∈ Uleft (3)

Conversely, let Uright ⊆ U be the undecided pairs with p ≻ q.

ρpq + dpq − 1 ≤ χpq ∀(p, q) ∈ Uright; 1 − ρpq − dpq ≤ χpq ∀(p, q) ∈ Uright (4)

Finally, we must ensure that each leader si respects the d variables: the s-leader from pi

to ℓi must pass by each other site in the s-area on the correct side. This does not affect
geometry-free pairs, but we must constrain the leaf placement for undecided pairs.

Observe that the ρ variables together fix the leaf order, since they fix the embedding
of T . Let Li(ρ) be the function that gives the x-coordinate of ℓi given the ρ variables. Note
that Li is linear in each of the ρ variables: rotating an ancestor of ℓi shifts its leaf location
by a particular constant, and rotating a non-ancestor does not affect it.

For an undecided pair (pi, pj), let x∗(i, j) be the x-coordinate of where the ray from pi

through pj intersects the top of the map and note that this is a constant. If dij = 0, then ℓi

must be to the left of this intersection; if dij = 1, it must be to the right. We model this in
the ILP with two constraints and the big-M method, where we can set M = n.

Li(ρ) − dijM ≤ x∗(i, j), Li(ρ) + (1 − dij)M ≥ x∗(i, j); ∀(pi, pj) ∈ U (5)

The number of variables and constraints in the ILP are both quadratic in n.

4.3 Heuristics
Since the ILP from the previous section can be slow in the worst case and requires advanced
solver software, we now suggest a number of heuristics.

GISc ience 2023
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Bottom-Up. First, we use a dynamic program similar to the one in Section 3 and commit to
an embedding for each subtree while going up the tree. At this point we note that counting
the number of crossings is not a leaf additive objective function in the sense of Section 3.
However, Equation (1) does enable us to introduce an additional cost based on where an
entire subtree is placed and where its sibling subtree is placed – just not minimized over
the embedding of these subtrees. More precisely, for an inner vertex v of T with children x

and y, let C(x, y, i) be the number of crossings between T (x) and T (y) when placed starting
at position i and i + n(x) respectively; this can be computed in O(n(v)2) time. Note that
this ignores any crossings with leaders from other subtrees. With base case H(ℓ, i) = 0 for
every leaf ℓ, we use

H(v, i) = min{ H(x, i)+H(y, i+n(x))+C(x, y, i), H(y, i)+H(x, i+n(y))+C(y, x, i) }

to pick a rotation of T (v). Since this can be evaluated in O(n2) time, the heuristic runs
in O(n4) time. In the example in Figure 8 this does not minimize the total number of crossings.

yx
v

(a) When T (x) and T (y) each
have zero crossings, . . . .

xy
v

(b) . . . then T (v) has two cross-
ings.

yx
v

(c) The optimal leaf order has
one crossing in T (x).

Figure 8 The bottom-up heuristic is not always optimal.

Top-Down. The second heuristic traverses T from top to bottom (i.e. in pre-order) and
chooses a rotation for each inner vertex v based on how many leaders would cross the vertical
line between the two subtrees of v; see Figure 9. More precisely, suppose that T (v) has its
leftmost leaf at position i based on the rotations of the vertices above v. For x and y the
children of v, consider the rotation of v where T (x) is placed starting at position i and T (y)
is placed starting at position i + n(x). Let s be the x-coordinate in the middle between the
last leaf of T (x) and the first leaf T (y). We compute the number of leaders of T (v) that
cross the vertical line at s and for the reserve rotation of v; the smaller result is chosen and
the rotation fixed. This procedure considers each site at most O(n) times and thus runs
in O(n2) time.

y
x

v

s

(a) T (x) and T (y) have one site each on the
other side of the vertical line through s.

v

x
y

s

(b) T (x) has one and T (y) has two sites on the
other side of the vertical line through s.

Figure 9 The top-down heuristic tries both rotations of v and here would pick (a).
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Leaf-Additive Dynamic Programming. Thirdly, we could optimize any of the quality
measures for interior labeling (Section 3). These measures produce generally sensible leaf
orders in quadratic time and we may expect the number of leader crossings to be low.

Greedy (Hill Climbing). Finally, we consider a hill climbing algorithm that, starting from
some leaf order, greedily performs rotations that improve the number of crossings. This
could start from a random leaf order, a hand-made one, or from any of the other heuristics.
Evaluating a rotation can be done in O(n2) time and thus one round through all vertices
runs in O(n3) time.

5 Experimental Evaluation

This section is based on our implementation of the ILP and the heuristics. The code is
available online at github.com/joklawitter/geophylo, and data from the corresponding
authors upon request.

5.1 Test Data
We use three procedures to generate random instances. For each type and with 10 to 100
taxa (in increments of 5), we generated 10 instances; we call these the synthetic instances.
We stop at 100 since geophylogeny drawings with more taxa are rarely well-readable.
Uniform. Place n sites on the map uniformly at random. Generate the phylogenetic tree by

repeating this merging procedure. Pick an unmerged site or a merged subtree uniformly
at random, then pick a second with probability distributed by inverse distance to the first,
and merge them; as position of a subtree, we take the median coordinate on both axis.

Coastline. Initially place all sites equidistantly on a horizontal line, then slightly perturb
the x-coordinates. Next, starting at the central site and going outwards, change the
y-coordinate of each site randomly (up to 1.5 times the horizontal distance) from the
y-coordinate of the previous site. Construct the tree as before.

Clustered. These instances group multiple taxa into clusters. First a uniformly random
number of sites between three and ten is allocated for a cluster and its center is placed at
a uniformly random point on the map. Then for each cluster, we place sites randomly in
a disk around the center with size proportional to the cluster size. Construct T as before,
but first for each cluster separately and only then for the whole instance.

In addition, we consider three real world instances derived from published drawings. Fish is
a 14-taxon geophylogeny by Williams and Johnson [28]. Lizards is 20-taxon geophylogeny by
Jauss et al. [13], where the sites are mostly horizontally dispersed (see Figure 2b). Frogs is a
64-taxon geophylogeny by Ellepola et al. [10], where the sites are rather randomly dispersed
on the map; the published drawing with s-leaders has over 680 leader crossings.

5.2 Experimental Results
The ILP is fairly quick. Our implementation uses a Python script to generate the ILP
instance and Gurobi 10 to solve it; we ran the experiments on a 10-core Apple M1 Max
processor. As expected, we observe that the runtime is exponential in n, but only moderately
so (Figure 10). Instances with up to about 50 taxa can usually be solved optimally within
a second, but for Clustered and Uniform instances the ILP starts to get slow at about 100
taxa. We note that geophylogenies with over 100 taxa should probably not be drawn with
external labeling: for example, the Frogs instance can be drawn optimally by the ILP in
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Figure 10 Computing optimal drawings with the ILP.

about 0.5 s, but even though this improves the number of crossings from the published 680
to the optimal 609, the drawing is so messy as to be unreadable (Figure 12b). We further
observe that Coastline instances are solved trivially fast, since with fewer undecided pairs
the ILP is smaller and presumably easier to solve.

The synthetic instances have a superlinear number of crossings. The Clustered instances
can be drawn with significantly fewer crossings than Uniform: this matches our expectation,
as by construction there is more correlation between the phylogenetic tree and the geography
of the sites. More surprisingly we find that the Coastline instances require many crossings.
We may have made them too noisy, but this does warn of the generally quadratic growth
in number of crossings, which makes external labeling unsuitable for large geophylogenies
unless the geographic correlation is exceptionally good.

The heuristics run instantly and Greedy is often optimal. The heuristics are implemented
in single-threaded Java code. Bottom-Up, Top-Down and Leaf-Additive all run instantly,
and even the Greedy hill climber runs in a fraction of a second. Of the first three heuristics,
Bottom-Up consistently achieves the best results for both s- and po-leaders. Comparing the
best solution by these heuristics with the optimal drawing (Figure 11), we observe that the
number crossings in excess of the optimum increases with the number of taxa, in particular
for Uniform and Clustered instances; Coastline instances are always drawn close to optimally
by at least one heuristic. The Greedy hill climber often improves this to an optimal solution.

For the number of crossings, po-leaders are promising. In addition to s-leaders, our
implementation of the heuristics can handle po-leaders. (The ILP cannot.) Our heuristics
require on average only about 73% as many crossings when using po-leaders compared to
s-leaders (55% for Coastline instances); the Lizard example in Figure 2b requires 11 s-leader
crossings but only 2 po-leader crossings. We therefore propose that po-leaders deserve more
attention from the phylogenetic community.

Algorithmic recommendations. Our results show that the ILP is a good choice for geophylo-
geny drawings with external labeling. If no solver is at hand or it is technically challenging
to set up (for example when making an app that runs locally in a user’s web browser), then
the heuristics offer an effective and efficient alternative, especially Bottom-Up and Greedy.
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Figure 11 Number of crossings made by the best heuristic minus the number of crossings in the
optimal drawing, averaged over 10 random instances per value of n.
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(a) Drawing of Fish with 17 crossings. (b) Drawing of Frogs with 609 crossings.

Figure 12 Crossing-optimal drawings of Fish and Frogs with s-leaders.

For the Fish instance, for example, we found that the drawing with s-leaders and 17
crossings in Figure 12a is a good alternative to the internal labeling used in the published
drawing [28]. However, for instances without a clear structure or with many crossings, it
might be better to use internal labeling. Alternatively, the tree could be split like Tobler
et al. [26], such that different subtrees are each shown with the map in separate drawings.

6 Discussion and Open Problems

In this paper, we have shown that drawings of geophylogenies can be approached theoretically
and practically as a problem of algorithmic map labeling. We formally defined a drawing style
for geophylogenies that uses either internal labeling with text or colors, or that uses external
labeling with s/po-leaders. This allowed us to define optimization problems that can be
tackled algorithmically. For drawings with internal labeling, we introduced a class of quality
measures that can be optimized efficiently and even interactively constrained. In practice,
designers can thus try different quality measures, pick their favorite, and make further
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adjustments easily even for large instances. For external labeling, minimizing the number of
leader crossings is NP-hard in general, but we provide multiple algorithmic approaches to
solve this problem and demonstrated experimentally that they perform well in practice.

Even though we have provided a solid base of results, we feel the algorithmic study of
geophylogeny drawings holds further promise by varying, for example, the type of leader
used, the objective function, the composition of the drawing, or the nature of the phylogeny
and the map. We finish this paper with several suggestions for future work.

One might consider do- and pd-leaders, which use a diagonal segment and can be
aesthetically pleasing. We expect that some of our results (such as the NP-hardness of
crossing minimization and the effectiveness of the heuristics) should hold for these leaders.
The boundary labeling literature [5] studies even further types, such as opo and Bézier, and
these might be more challenging to adapt.

For external labeling we have only considered the total number of crossings. If different
colors are used for the leaders of different clades or if the drawing can be explored with an
interactive tool, one might want to minimize the number of crossings within each clade (or
a particular clade). Furthermore, one might optimize crossing angles. While we provided
heuristics to minimize leader crossings, the development of approximation algorithms, which
exist for other labeling problems [17, 3], could also be of interest.

Our model of a geophylogeny drawing can be expanded. One might allow the orientation
of the map to be freely rotated, the extent of the map to be changed, or the leaves to be
placed non-equidistantly. Optimizing over these additional freedoms poses new algorithmic
challenges. Straying further from our model, some drawings in the literature have a circular
tree around the map [21, 14]. (This is similar to contour labeling in the context of map
labeling [19].) Also recall that Figure 1 has area features. Our quality measures for
internal labeling are easily adapted to handle this, but (as is the case with general boundary
labeling [4]) area features provide additional algorithmic challenges for external labeling.
The literature contains many drawings where multiple taxa correspond to the same feature
on the map [7], where we might want to look to many-to-one boundary labeling [17, 2].
Furthermore, one can consider non-binary phylogenetic trees and phylogenetic networks.

Lastly, we note that side-by-side drawings can also be used for a phylogenetic tree together
with a diagram other than a map: Chen et al. [9] combine it with a scatter plot; Gehring
et al. [12] even combine three things (phylogenetic tree, haplotype network, and map).
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