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Abstract
Reported case numbers in the COVID-19 pandemic are assumed in many countries to have underes-
timated the true prevalence of the disease. Deficits in reporting may have been particularly great
in countries with limited testing capability and restrictive testing policies. Simultaneously, some
models have been accused of over-reporting the scale of the pandemic. At a time when modeling
consortia around the world are turning to the lessons learnt from pandemic modelling, we present an
example of simulating testing as well as the spread of disease. In particular, we factor in the amount
and nature of testing that was carried out in the first wave of the COVID-19 pandemic (March -
September 2020), calibrating our spatial Agent Based Model (ABM) model to the reported case
numbers in Zimbabwe.
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1 Introduction

From the early stages of the COVID-19 pandemic, there have been initiatives to estimate the
true scale and impact of the epidemic in terms of cases, hospitalizations and deaths across
different countries around the world. Starting with the World Health Organization [23], a
number of other data trackers sprung up (e.g. [15, 21, 12] or the more policy-focused [3]).
These trackers fed into disease models which sought to predict the future spread of disease.
Agent-based models (ABMs) became popular, especially as researchers sought more granular
dimensions to population characteristics and scenario modelling (see [4, 16, 10]).

During the pandemic, criticisms were levelled at modellers in the public eye that the model
forecasts did not reflect the number of cases that were reported in the media [2]. Certain
studies suggested that the cases detected and reported were substantially under-reporting
the true magnitude of the epidemic. In different contexts, researchers estimated that true
case numbers might outstrip reported case numbers by a factor of between 5 and 20 ([19].
What accounts for this discrepancy?

In this paper, we attempt to recreate these “hidden” cases, taking as a case study
Zimbabwe. We endeavour to replicate the true reported case numbers by layering a simulated
testing process on top of our existing model of disease. The work presented in this paper
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incorporates the available data on Zimbabwe’s pandemic response policy, testing, and reported
cases. The following sections will address some relevant background for this question (Section
2) before presenting the modelling framework and data used to inform it (Section 3). The
results of the applied model will be presented (Section 4) and contextualised (Section 5).

2 Background

This section will present motivating context for understanding reported cases of disease as
well as Zimbabwe’s handling of the COVID-19.

2.1 Understanding reported cases
ABMs experienced an explosion in popularity as a result of the COVID-19 pandemic. The
ways in which researchers sought to understand how their simulations related to reported
cases varied. Some modelers have made efforts to either a-priori include an understanding of
testing, resulting in only a proportion of cases being detected, or to somehow back-calibrate
to reported data. For example, the US based Institute of Disease Modelling’s model Covasim
[16] added a parameter to incorporate testing. Others tried to compare actual and simulated
hospital admissions [17] or to calibrate their models on diagnosis versus morality rates [14].

In many Low and Middle Income Country (LMICs) contexts, where testing capacities were
often more limited, these underestimates on reported case numbers are likely to have been at
least as high as those in High Income Countries (HICs). Many have proactively attempted to
mitigate this: for example, in Kenya, researchers used a combination of serological and PCR
test data to calibrate their work for this reason [20]. Research seems to support the idea that
true cases were undercounted: in Kazakhstan, researchers used death and the Case Fatality
Ratios (CFR) to attempt to backcast true case numbers from July 2020 to May 2021 of the
pandemic in that country [22]. The authors of the study asserted that official cases reported
undercounted the number of infections by at least 60%. A similar situation was reported
in various African countries [6], where serological surveys also retrospectively appeared to
reveal a much higher prevalence of those who had developed SARS-CoV-2 antibodies in the
population than the reported case statistics would appear to show. For example across 3
high density suburbs in Harare, Zimbabwe researchers found that the seroprevalence was
at 19% in 2020 and 53% in 2021, with almost half of the participants who tested positive
reporting no symptoms in the preceding six months [11]. With this background, it is useful
to explore further the specific case of Zimbabwe.

2.2 The case of Zimbabwe
Zimbabwean authorities acted very quickly after the first case was detected in their country
on 20th March 2020 [5]. They launched the country’s Preparedness and Response Plan for
Coronavirus the very next day.However, during this initial period testing was very limited.
Large scale rapid diagnostic testing did not become available till September 11th, 2020 [13].
As of 27th June 2020, Zimbabwe had 567 confirmed SARS-CoV-2 cases [21]. Eighty-two
percent of these were returning residents and 18% were the result of local transmission. The
testing was heavily skewed towards returnees despite a comprehensive testing strategy [18].
For those tests that were conducted, there were also logistical issues in transporting samples
to the few available testing centers (see [7]) further confounding the picture. Thus, despite
proactive measures by leadership, it is likely that cases in Zimbabwe were substantially
underreported.
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With this understanding of the need for simulation which can calibrate against systemat-
ically underreported data, we proceed to a description of the method we adopt in the rest of
this paper.

3 Methodology

This model is an extension of work documented in [24], based on simulation available as
an open-source project available online1. To briefly review the simulation framework, we
constructed a spatial agent-based model (ABM) simulating the spread of SARS-CoV-2 in
Zimbabwe with district level dis-aggregation in movement patterns for individual agents in
the model. Default model values are taken from [16], which in turn draws upon [10].

In this paper, we introduce the incorporation of a testing regime into the model to enable
us to measure both cases that exist and cases that have been detected in the population.

3.1 The testing regime
The modelled testing regime sits on top of our existing simulation of the spread of the virus.
In the testing regime, a number of tests are distributed amongst the population each day.
Individuals who exhibit symptoms of SARS-CoV-2 are eligible for testing. The symptoms of
SARS-CoV-2 - such as a continuous cough or fever - are common to many other infections;
thus we take into account that people without SARS-CoV-2 will present for testing. To
simulate the allocation of tests to those without the infection, we generate a number of
people with “spurious” SARS-CoV-2 symptoms. These symptoms will last for 7 days before
subsiding. A person will seek a test only once. This process is based upon the work of
numerous contextual studies (see [7, 6, 13, 8, 9, 5]).

Two factors will necessarily influence the number of detected cases beyond the actual
underlying number of cases: the number of tests administered per day and the number of
people with SARS-CoV-2 infections who are tested. The number of tests given out each day
is a set number taken from the government’s reported numbers [21]. Because the number of
tests distributed daily was not available to us, we calculated the number of tests performed
each day from the reported number of cases and the percent of tests that were positive as
per [21]. The total number of tests administered each day were then scaled to match the
models population size. The number of people with SARS-CoV-2 who are tested remains
an unknown; false positives and negatives make it impossible to objectively determine this.
Thus, we explore different possibilities in the results section.

3.2 Movement
One key feature of the model is the movement of individuals between districts. As we wanted
to compare our test results to real reported case data, it was important to ensure that
lockdowns and their consequent lower mobility levels were incorporated into the simulation.

The model calculates the likelihood of any agent moving between districts based on a
number of different factors: their economic status, the day of the week, and the baseline
likelihood of moving between their current district and another. That last factor is represented
in the model by an origin-destination (OD) matrix, which draws from Call Detail Records
(CDR) provided by the largest mobile phone service provider in the country. The raw data

1 see https://github.com/dime-worldbank/Disease-Modelling-SSA
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Figure 1 a) The model’s number of SARS-CoV-2 cases detected through the testing regime
compared to the official reported case number, taken from Our World in Data. b) The model’s
detected number of SARS-CoV-2 and the total number of the model’s predicted cases.

(to which this study did not have access) covered the period February 1-June 30, 2020. At
the dis-aggregated level, it contains data on 1900 towers to include 8.1 billion observations
across each of the country´s 60 districts. The World Bank research team which handled
this data partitioned it into two periods: the first from February 2 to March 14 (prior to
the first Level 4 lockdown), and the second from March 15 - June 2020. By extracting the
inter-district movements for these two time periods into separate OD matrices, they created
patterns of travel representative of both normal and lockdown conditions.

Thus, in order to ensure that our simulated individuals were moving correctly, we applied
a “lockdown” in the simulation by drawing the movement of individuals from a distribution
defined by either the pre- or lockdown OD matrices. The simulation imposes a level 4
lockdown on the 30th of March, with reduced movement; we then revert back to the pre-
lockdown levels of interdistrict travel on the 17th of May, when the imposed restrictions on
intercity travel were removed as part of Level 2 measures (as per [5]).

4 Results and Discussion

Each instantiation of the model was run for 200 simulated days; our model start date and
testing routine coincides with the start of the case reporting from Zimbabwe from the 20th of
March 2020. The simulated population is based on a 5% sample of the 2012 Zimbabwe Census
was taken from IPUMS International [1], allowing us to incorporate realistic distributions of
age, sex, economic status, and household composition.

We performed a parameter grid search to calibrate the models’ number of detected cases
to those reported. We paired combinations of the infection transmission parameter, β, to the
rate in which a person will develop spurious symptoms, γ. The total error in the number
of detected cases in each parameter combination was assessed and models were selected to
minimize the total error. Initially, SARS-CoV-2 testing in Zimbabwe was limited to points
of entry (functionally, districts with an official boarder crossing, airport or train station).
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Within our parameter grid search, the parameter combination which resulted in model
runs that most closely fit the true reported case data came when β = 0.128 and γ = 0.0875.
The simulated reported cases are shown in Figure 1a, with a 95% confidence interval
indicating the variation among runs. Figure 1b demonstrates the total number of simulated
cases in the same model, demonstrating the significant number of cases missed as a result of
a limited testing regime. During the simulation period, the model’s daily detected number of
cases peaked at 531, whereas the peak number of both undetected and detected cases was
3763.

Our methodology of filtering the model’s simulated cases through a simulated testing
regime allowed us to closely match the reported case numbers. Over the course of the
simulation, the model generated a total of 153,807 cases, yet the simulated testing documented
only 6892 cases. Thus, only 5% of the model’s “true” cases were discovered by the testing
regime. Other modelling studies have found similar discrepancies in the detected and total
cumulative number of cases estimated (see for example [19]).

5 Conclusion

The results of this paper are dependent on the outcome of the model’s calibration and a
number of assumptions made. For example, one relevant assumption is the number of cases
distributed in the population at the beginning of the simulation. Initially, we created a single
infection in a 25% scale size population (equivalent to four initial cases, once scaling is taken
into account). A single initial infection was chosen to represent the single initial case reported
on the 20th of March. It may be that more cases existed in Zimbabwe at the time; however,
in hindsight it would be impossible to establish the exact number. Seeding more infections
initially would result in an increased number of cases overall. Future work might explore the
sensitivity of the epidemic to the number of initial cases as well as the parameters β and γ.

Broadly, this work contributes to the discussion around disease forecasting and prediction.
As described above, many people were skeptical of the apparent “overprediction” of cases of
SARS-CoV-2 cases. Our results show a clear example of how the results of such simulations
might track well with the reality of testing. The fit between our simulated testing data and
real testing data in our chosen case study suggests the model is capturing the true epidemic
peak - and also of reflecting the impact of a testing regime. Exploration of different testing
regimes represents a promising future direction for research. Regardless, researchers should
ensure that modelled results distinguish between cases and reported cases, and should seek
to document the statistical process which mediates the relationship between these. Reported
case numbers will paint only a partial picture of the full situation, but through simulation
we may begin to better understand the underlying reality.
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