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Abstract
We examine the effect of null hypothesis on spatial autocorrelation tests using Moran’s I statistic.
There are two possible variable states that do not exhibit spatial autocorrelation. One is that they
have the same average values in all small regions, and the other is that they are not the same, but
their variations are spatially random. The second state is less restrictive than the first. Thus, it
intuitively appears suitable for the null hypothesis of Moran’s I test. However, we found that it can
make false discoveries more frequently than the nominal rate of the test when the first state is the
true data generation process.
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1 Introduction

Moran’s I statistic [3] is one of the most widely accepted statistics for testing spatial
autocorrelation in spatially aggregated quantitative data such as the results of social surveys
aggregated at the municipality level. A typical example of data to be tested is “per capita”
quantity. For instance, we may obtain the average income of each municipality from a survey
and test whether spatial clusters of high (or low) income exist using these data. In this
paper, we discuss two fundamental aspects of Moran’s I test that are often overlooked but
can potentially affect the results of the test. One is the reliability of the observations and
the other is the null hypothesis.

The reliability of the observations varies among municipalities because of their heterogen-
eous populations and sizes. Although the original implementation of Moran’s I test does not
consider such variability in data reliability, studies have pointed out its influence on results
and proposed adjustment methods for heterogeneous populations [4, 7, 1].

In addition to population heterogeneity, the selection of the null hypothesis also affects
the results of Moran’s I test. [1] classified the spatial risk pattern (which corresponds to the
income pattern in our example) to be tested into three states:

A. spatially constant risk,
B. heterogeneous risks without spatial correlation, and
C. heterogeneous risks with spatial correlation.
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Although the Hypotheses A and B imply no spatial autocorrelation, their practical meanings
are substantially different. Hypothesis A is rejected when there are differences in the average
income of individual municipalities. By contrast, B is rejected only when the differences in
average income have spatial clusters. Therefore, we consider A as a more rigorous state of
no spatial autocorrelation than B. When one suspects that the data in hand have a spatial
pattern of C, it appears reasonable to employ B as the null hypothesis to detect spatial
autocorrelation in the data. Employing A as the null hypothesis would result in overdetection
because it regards the spatial pattern of B as spatial autocorrelation. However, analysts
do not always carefully examine the null hypothesis when applying Moran’s I test. In this
study, we investigate how our choice of null hypothesis and population adjustment influences
the results of Moran’s I test.

This paper is structured into four sections, including this introduction. Section 2 dis-
cusses the theoretical basis for adjusting Moran’s I test for heterogeneous populations.
Section 3 presents simulation studies using synthetic grids and population data for Japanese
municipalities. Section 4 summarizes our major findings.

2 Spatial Autocorrelation Tests with Moran’s I

2.1 Moran’s I Statistic
Let us consider a set of observed values x = (x1, . . . , xn)⊤ for a study region consisting of
n regions. Let C be a known spatial adjacency matrix and ci,j be its i − j element. When
regions i and j are adjacent, ci,j = 1; otherwise, ci,j = 0. Furthermore, for diagonal elements,
ci,i = 0. Let W be a row-standardized version of C and wi,j be the i−j element. In the
simulation studies discussed in Section 3, we define C as Queen’s contiguity matrix. Using
these notations, Moran’s I statistic is defined as

I(x) = nx⊤MWMx

W0x⊤Mx
(1)

where W0 =
∑

i

∑
j wi,j and M = I − 1

n 11⊤. Note that I is the identity matrix of size n

and 1 is an n × 1 vector, all of whose elements are 1.

2.2 Data Generation Process and Null Hypothesis
Here, we derive the distribution of Moran’s I when x follows the Gaussian distribution. We
assume that xi represents the estimated value of an unknown parameter µi. For instance,
let xi be the average income observed in region i, µi be its true value without biases such
as measurement errors, and yi,k be income that an individual k in region i gains. As yi,k

generally contains personal differences and measurement errors, we assume that yi,k follows a
normal distribution with mean µi and variance σ2. Letting mi be the population of region i,
xi is given by 1

mi

∑
k yi,k; thus, it can be discerned that the observation xi follows a normal

distribution with mean µi and variance σ2

mi
. If the data generation process (DGP) is A, the

mean µi is constant µ for the entire study region. However, if DGP is B, µi is not uniform.
Following [1], we assume that µi follows an independent normal distribution of mean µ and
variance σ2s2. The parameter s2 controls the relative heterogeneity of true values µi. If
s2 = 0, then the DGP corresponds to A, whereas if s2 > 0, it corresponds to B.

Therefore, letting µ = (µ1, ..., µn)⊤ be the vector of true income values and Σ be a
diagonal matrix whose i − i element is 1

mi
+ s2, x follows a multivariate normal distribution

of the mean µ and the variance-covariance matrix Σ. Below we explain our finding that,
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when the mean µi is constant µ for the entire study region, and s2 = 0, the distribution of
Moran’s I does not depend on unknown parameters µ and σ2. When Σ can be decomposed
into Σ = LL⊤ by Cholesky decomposition,

x = µ1 + σLε (2)

where ε is a vector of elements following a standard normal distribution. By substituting
this into x in Eq. (1), we can obtain

I(x) = nx⊤MWMx

W0x⊤Mx
= nε⊤L⊤MWMLε

W0ε⊤L⊤Mx
(3)

given that ML = 0 and Mx = µM1 + σMLε = σMLε, where 0 is a zero vector. Eq. (3)
includes neither the parameters µ nor σ2, implying that Moran’s I statistic is a pivotal
statistic independent of the unknown parameters when we assume A as a null hypothesis.
[5] and [6] present the distribution of Moran’s I statistic and its approximation, respectively,
when the observed vector x follows a normal distribution. Based on them and Eq. (3), the
probability that I(x) is less than an arbitrary value Iobs can be written as

Pr [I(x) ≤ Iobs] = Pr
[
ε⊤ (

nL⊤MWML − IobsW0L⊤ML
)

ε ≤ 0
]

. (4)

Let T be nL⊤MWML − IobsW0L⊤ML and its eigenvalue decomposition be T = E⊤ΛE,
where Λ is a diagonal matrix composed of the eigenvalues, (λ1, ..., λn). If we make E an
orthogonal matrix, z = Eε follows independent normal distributions; thus, the left-hand side
of the inequality in Eq. (4) , ε⊤Cε =

∑
i λiz

2
i , follows the generalized chi-square distributions.

[2] provides details of this transformation. This property indicates that we can evaluate the
cumulative distribution of Moran’s I statistic by evaluating that of the generalized chi-square
distribution without using the unknown parameters µ and σ2.

This property is particularly beneficial when the population mi is not uniform because
we cannot employ the permutation test approach because the observation vector x is not
exchangeable. If our null hypothesis is A, then we assume s2 = 0. Hence, we can apply
population adjustment without knowledge of the unknown parameters µ and σ2. However, if
our null hypothesis is B, we need s2 for the population adjustment.

We cannot distinguish A and B when the population mi is uniform for the entire study
region. Therefore, the selection of the null hypothesis A or B does not affect the property of
Moran’s I test when the populations are uniform and the DGP is Gaussian. By contrast, in
the case of heterogeneous populations, it is unclear how the selection of the null hypothesis
affects the results. In the next section, we examine the potential influence of this selection
using two simulation studies.

3 Simulation Studies

This section describes the settings and results of the simulations. The two study regions
are discussed in Sections 3.1 and 3.2. Section 3.1 presents a synthetic grid system with
three population patterns to examine the influence of population heterogeneity. For a more
realistic scenario, we introduce real-world municipalities and their populations in Section 3.2.
Section 3.3 illustrates how the choice of null hypothesis influences the false discovery rate
(FDR) of Moran’s I test in our simulations.
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Figure 1 Populations on the Synthetic
Grids.

Figure 2 Municipalities and Populations
in Tokyo, Japan.

3.1 Synthetic Grid Data
We consider a 20×5 regular grid system as the study region. Using the notation defined
in Section 2 and assuming that an individual living in region i has the value of a target
variable with mean µi and variance σ2, the value of xi can be simulated as a random number
obtained from the normal distribution of mean µi and variance σ2

mi
. Note that variance σ2

is set constant for the entire study region. Once the local mean µi is marginalized, the
observation xi follows a normal distribution of the mean µ and variance σ2( 1

mi
+ s2).

To examine the influence of heterogeneous populations, we consider the three spatial
distributions of the regional populations shown in Figure 1. The “steep grid” pattern shown
in Figure 1(a) has the regional population that steeply increases toward the right, while the
“flat grid” pattern in Figure 1(c) shows a constant regional population for the entire study
region. The “gradual grid” pattern in Figure 1(b) is in between; while its regional population
also increases toward the right, it is less steep than the steep grid pattern. The regional
populations are arranged such that the total populations are the same.

In the simulations described in Section 3.3, we set σ2 = 1.0 and µ = 0. For the nonspatial
autocorrelation state B, we select s2 = 1.0.

3.2 Tokyo Municipality Data
For a realistic study region, we use municipal and population data from three prefectures
in the Tokyo Metropolitan Area in Japan: Tokyo, Kanagawa, and Saitama. The muni-
cipal boundaries and populations are shown in Figure 2. The red dashed lines show the
neighborhood relationships among municipalities defined by the Queen style.

In the simulations in Section 3.3, we set σ2 as the same as the average of mi and µ = 0.
For the nonspatial autocorrelation state B, we select s2 = σ−2.

3.3 Results
For both the grids and Tokyo, we applied one-sided tests to detect a positive autocorrelation
at the 5% significance level. We employed the numerical approach presented in [5] to calculate
the cumulative probability that appears in Eq. (4). Therefore, numerical errors were included
in the simulation results.
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Table 1 False Discovery Rates on the Syn-
thetic Grids.

(a) steep grid
H0 = A H0 = B

DGP=A 0.049 0.077
DGP=B 0.027 0.049

(b) gradual grid
H0 = A H0 = B

DGP=A 0.050 0.057
DGP=B 0.043 0.049

(c) flat grid
H0 = A H0 = B

DGP=A 0.050 0.050
DGP=B 0.050 0.050

Table 2 False Discovery Rates on Tokyo
Municipalities.

H0 = A H0 = B
DGP=A 0.050 0.058
DGP=B 0.042 0.049

Figure 3 The Distributions of Moran’s I on the Synthetic Grids.

Table 1 shows the false discovery rates (FDR) of the synthetic grids described in Section 3.1.
In the case of (c) flat grid, A and B are identical, as discussed in Section 2.2. Thus, we do not
need to consider differences in the null hypothesis if the population is uniform. However, in
other grids, FDRs equal to a nominal rate of 5% only when the null hypothesis H0 is correctly
selected. This shows that the null hypothesis H0 = B, which allows heterogeneity of the true
mean µi, results in a much higher FDR than expected, when actual µi is homogeneous. The
opposite result is obtained when we employ H0 = A. Thus, counterintuitively, a test that
assumes homogeneous means is more conservative than one that allows heterogeneous means.
This tendency is clearer in (a) steep grid than in (b) gradual grid.

Table 2 shows the result of Tokyo municipality data. We observe the same counterintuitive
results as those found in synthetic grids.

The results in Tables 1 and 2 indicate that H0 = A is a safer choice than H0 = B to keep
FDR less than 5%, which is the predetermined nominal significance level of the test. This
is because the distribution of Moran’s I from H0 = A exhibits a larger variance than from
H0 = B. Figure 3 shows Moran’s I distributions for the synthetic grids. However, whether
this property is always observed remains unclear.

4 Conclusion

Intuitively, the test under the null hypothesis B does not reject it if the true data generation
process (DGP) is A. Hence, it sounds reasonable for analysts to employ B as their null
hypothesis if they want to discover only C. However, our simulation studies based on
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synthetic grids and real municipalities with population data revealed that testing under the
null hypothesis B does not guarantee that FDR becomes less than the nominal significance
level if the true DGP is A. In other words, if we employ B as a null hypothesis, we may
often detect incorrect “spatial autocorrelation” of income when income is the same in all
municipalities. This implies that the null hypothesis must be selected carefully when applying
spatial autocorrelation test.

Further research is needed to examine whether this counterintuitive property appears in
other situations, such as the target variable xi following non-Gaussian distributions and the
spatial contiguity matrix C different from Queen’s definition. To evaluate the performance
of the test, the statistical power, in addition to FDR, also needs to be examined. This is not
straightforward because the true value of s2 is generally unknown; thus, practical approaches
are required.
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