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Abstract
Spatial analysis of data with compositional structure has gained increasing attention in recent
years. However, the spatial heterogeneity of compositional data has not been widely discussed. This
study developed a Moran eigenvectors-based spatial heterogeneity analysis framework to investigate
the spatially varying relationships between the compositional dependent variable and real-value
covariates. The proposed method was applied to municipal-level household income data in Tokyo,
Japan in 2018.
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1 Introduction

Spatial data that represent parts of a whole and carry only relative information are known
as compositional data, such as income structure, land use shares, and vote shares across
multiple regions. Although previous studies have considered both the compositional and
spatial nature of data [5], little attention has been given to spatial heterogeneity, which is one
of the fundamental spatial properties. Spatial heterogeneity in compositional data generally
refers to the inconsistent relationships between the relative ratios of each composition and
the associated factors across geographical space. This variability can be investigated by
estimating spatially varying coefficients (SVCs) at each location [8]. To date, the methodology
and application have not been widely discussed.

To enrich this research area, this study proposes a Moran eigenvector-based SVC (MSVC)
[3] framework to explore the spatial heterogeneity of compositional data. MSVC links the
local variations to the global spatial process, providing interpretable explanations of SVCs.
In addition, based on the linear regression framework, MSVC has the advantage of being
extendable to accommodate the specific properties of compositional data.

2 Properties of compositional data

Compositional data including D positive components can be represented by a vector y =
(y1, . . . , yD), where each component yj describes only relative information (e.g., proportion
or percentage) and all of them sum up to a constant. y is defined on a simplex space SD as
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SD =

y = (y1, . . . , yD) | yj > 0, j = 1, . . . , D;
D∑
j

yj = 1

 . (1)

The constant-sum of compositions leads to spurious correlation [1], which poses challenges
to the use of traditional statistical methods with compositional data. A common solution
to this problem is to adopt the isometric log-ratio (ILR) transformation [2], which maps
compositions y from the simplex space SD to ILR coordinates y∗ in the Euclidean space
RD−1 through y∗ = ilr (y) := V′ ln (y). The inverse ILR transformation is y = ilr−1 (y∗) =
C exp(Vy∗), where C is the closure operation that Cy : = y/

∑
j yj . The D × (D − 1) matrix

V obeys V′ ·V = ID−1 and V·V′ = ID −(1/D)1D×D. Columns vi and vectors ei = C exp(vi)
forms orthonormal bases of RD−1 and SD, respectively. The orthogonality of ILR coordinates
allows for the use of classical regression models for each coordinate separately.

3 Method

3.1 MSVC model
The MSVC model is developed based on the correlation between eigenvalues and Moran’s I
statistic (MC). First, a spatial weight matrix C is constructed by the binary relationships or
distance decaying function (e.g., the exponential function). The eigenvector decomposition
(I − 11′/N)C(I − 11′/N) = EN ΛE′

N , where the left-hand side of the equation is also a part
of MC, decomposes the spatial structure of the data into a set of orthogonal spatial patterns
that are represented by each eigenvector in EN . Λ includes the corresponding eigenvalues.

Based on this work, Griffith (2008) [3] introduced a subset of eigenvectors into the basic
linear model to account for the spatial heterogeneity in the regressed relationships. The
resulting MSVC model is expressed as

y =
K∑

k=0
xk ◦ βESF

k + ε, ε ∼ N (0, σ2I). (2)

Here, βESF
k = βk1 + Eγk represents the k-th spatially varying coefficient, which consists

of the global trend of the spatial process βk1, and the linear combination of eigenvectors
Eγk that account for the local deviations from the trend at each location. “◦” is the column-
wise product operator. The next section will extend the MSVC model to accommodate
compositional data.

3.2 MSVC model for compositional data
Let Y =

(
y1 · · · yN

)′ =
(
y(1) · · · y(D)

)
represent N samples of D-composition data,

where yi, i = 1, . . . , N , is the D × 1 transposed vector of the i-th sample, and y(j), j =
1, . . . , D is the N × 1 the vector of the j-th component. The ILR transformation of Y
becomes ilr(Y) =

(
ilr (y1) · · · ilr (yN )

)′, where ilr (yi) = yi
∗ =

(
y∗

i(1) · · · y∗
i(D−1)

)
.

The MSVC model for the j-th (j = 1, . . . , D − 1) coordinate is formulated as

y∗
(j) =

K∑
k=0

xk ◦
(

β∗
k(j)1 + Eγ∗

k(j)

)
+ ε∗

(j), ε∗
(j) ∼ N (0, σ2

(j)I). (3)
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where * denotes the ILR transformation, xk(k = 0, ..., K, x0 = 1) is the k-th covariate,
βSV C∗

k(j) = β∗
k(j)1 + Eγ∗

k(j) represents the relationship between the k-th covariate and the j-th
ILR coordinate. We can also rewrite the model into a more general form as

y∗
(j) = Xβ∗

k(j) + Ẽγ∗
k(j) + ε∗

(j), (4)

where Ẽ = (x0 ◦ E, x1 ◦ E, . . . , xK ◦ E) are considered as proxy variables. Under the ILR
transformation, Equation (4) can be estimated by ordinary linear regression for each y∗

(j),
but the interpretation of the estimated coefficients is not straightforward. In line with [4, 8],
we adopt the concept of semi-elasticity (SE), which reflects the relative percentage change in
a particular composition with respect to a unit change in the covariate of interest. The k-th
spatially varying SE of the j-th composition at the i-th location is defined as

e (yj , xk)i =
(

ln βik(j) −
D∑

m=1
yi(m) ln βik(m)

)
yi(j). (5)

where yj , yi(m), yi(j), and βik(j) are the inverse transformed variables in the simplex space.

3.3 Variable selection
Using all eigenvectors can result in an excessive number of explanatory variables. This
can create computational challenges and potential overfitting problems. To mitigate these
issues, as suggested by [7], we first select eigenvectors whose corresponding eigenvalues satisfy
λl/λmax > 0.251 and then use penalized regression (see Equation (6)) to choose only the
eigenvectors that explain significant spatial variations in the data.

min(y∗
(j) − Xβ∗

k(j) − Ẽγ∗
k(j))′(y∗

(j) − Xβ∗
k(j) − Ẽγ∗

k(j)) + λ|γ∗
k(j)|1 (6)

The value of λ is determined by cross-validation or information criteria. Because the
output of the penalized regression is known to be biased, we use it only for variable selection
and apply the proposed model to estimate the coefficients of the selected variables.

4 Empirical application

4.1 Data and methods
We applied the proposed model to the analysis of the municipal-level household income
structure of Tokyo, Japan in 2018. The annual income data were aggregated into three main
groups: Low (less than 2 million JPY), Middle (between 2 and 7 million JPY), and High
(more than 7 million JPY), resulting in a three-composition response variable. The following
matrix V for the ILR transformation of compositions generates two ILR coordinates [6].

V =

2/
√

6 0
1/

√
6 1/

√
2

−1
√

6 −1/
√

2

 . (7)

The first coordinate y∗
(1) refers to the relative importance of the low-income with respect

to the other two groups, and the second coordinate y∗
(2) refers to that of the middle-income

with respect to the high-income group.

1 0.25λmax relates to roughly 5% of the variance in response variable attributable to positive spatial
dependence.
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The covariates used in the analysis included the proportion of people with secondary
education (Uni), the unemployment rate (Unemp), the proportion of people aged over 65
(Age), and the homeownership rate (House). The data were published by the Statistics
Bureau of Japan on the e-Stat portal site (https://www.e-stat.go.jp/en). We excluded
11 municipalities with no records, resulting in a final sample size of N = 51. Based on the
adjacency of regions, we built a spatial weight matrix in which the (i, j)-th element was 1 if
two regions i, j shared a common boundary, and 0 otherwise. From this matrix, we extracted
12 out of 51 eigenvectors to be further selected by the penalized regression.

4.2 Results and discussion
First, we conducted the ordinary linear regression without considering the spatial effects.
The results shown in Table 1 suggest that all covariates except the unemployment rate are
significantly associated with both ILR coordinates. The residual MC indicates that the
spatial autocorrelation is significant in y∗

(1), but not significant in y∗
(2).

The results of the proposed model are summarized in Table 2. For y∗
(1), the use of

eigenvectors led to a decrease in the residual MC and a noticeable increase in the adjusted
R2, suggesting that the spatial variations captured by the eigenvectors explain a considerable
proportion of the variance in the response variable. No eigenvector was found to be significant
on y∗

(2), which aligns with the MC of y∗
(2) shown in Table 1 and proves that the proposed

model can distinguish the existence of spatial heterogeneity. This result only indicates
that the impacts of covariates on the ratio between middle- and high-income are spatially
invariant. However, it does not necessarily imply that the impacts on each income group
remain constant. For further analyzing their relationships, we can transform coefficients back
to the simplex place and then calculate the corresponding SEs (Equation (5)).

Figure 1 plots the SEs of each covariate across different income groups. The SEs provide
insights into the interconnections among income groups, as they sum up to zero within
each region for each covariate. For the entire region, we observe that an increase in the
proportion of individuals with secondary education contributes to the shift from low- and
middle-income to high-income groups. However, this impact varies by region. Particularly
in the southeastern area, which serves as the business and cultural center of Tokyo, the
expansion of the high-income group is notably significant. This can be attributed to the
concentration of knowledge-intensive industries in this region, which has led to a higher
demand for skilled professionals. In Chiyoda-ku, for example, when the proportion of the
educated population increases by one unit, the high-income group increases by 0.426%, which

Table 1 Estimation results of the ordinary linear regression.

Variables y∗
(1) y∗

(2)

Coefficient Std. Error Coefficient Std. Error

Constant -0.798* 0.465 0.673** 0.274
Uni -0.678* 0.381 -1.159*** 0.224
Unemp 0.110** 0.049 0.044 0.029
Age 2.967*** 1.065 2.988*** 0.626
House -1.460*** 0.351 -0.807*** 0.206
MC 0.236*** 0.014
Adjusted R2 0.568 0.860

Note) : *p < 0.1; **p < 0.05; ***p < 0.01.

https://www.e-stat.go.jp/en
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Table 2 Estimation results of the MSVC-based regression.

Variables y∗
(1) y∗

(2)

Min. Med. Max. Min. Med. Max.

Constant -0.296 -0.239 -0.168 0.673
Uni -1.285 -1.048 -0.801 1.159
Unemp 0.038 0.044
Age 3.069 2.988
House -1.969 -1.757 -1.547 -0.807
MC -0.005** 0.014
Adjusted R2 0.729 0.860

Note) : *p < 0.1; **p < 0.05; ***p < 0.01.

is the highest among all regions. The middle- and low-income groups decrease by 0.153%
and 0.273%, respectively. In contrast, in Hinode-machi, which is located on the periphery of
Tokyo, the high-income group increases by only 0.189%, and the low- and middle-income
groups decrease by only 0.094% and 0.096%, respectively. An increase in the unemployment
rate results in the expansion of low- and middle-income groups, along with a decrease in
the proportion of the high-income group, primarily observed in southeastern Tokyo. The
proportion of people aged over 65 negatively affects the high-income group but positively
affects the other two groups. This is consistent with the fact that older people generally
have lower incomes and may require more social welfare support. Furthermore, this impact
is stronger compared to other factors in terms of the magnitude of the SE, highlighting the
importance of considering the impact of the aging of population on income analysis. Lastly,
the increase in homeownership rate contributes to the transition of low-income groups into
middle-income groups in western and northeastern Tokyo. The middle-income group further
shifts to high-income in the southeastern parts.

5 Conclusion

This study proposed an MSVC-based framework to investigate the spatial heterogeneity
of compositional data. We adopted the ILR transformation and the semi-elasticity to aid
the model estimation and interpretation. The application on household income in Tokyo
indicated that socio-economic factors affect income distribution differently across regions,
which yields insights for understanding the drivers of income inequality.

There are still many challenges and our work is only just beginning. It is worth discussing
in the future a more intuitive way of model interpretation. Moreover, an in-depth investigation
is necessary to assess the impact a change in the type of spatial weights matrix and the criteria
for selecting eigenvectors might have on the outputs. Finally, comparing the performance of
the proposed method and previous approaches in analysing spatial heterogeneity would be
an interesting topic for future discussions.
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Figure 1 Spatial distribution of semi-elasticities of MSVC-based CoDA.
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