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Abstract
Shadow calculation is an important prerequisite for many urban and environmental analyses such as
the assessment of solar energy potential. We propose a neural net approach that can be trained with
3D geographical information and predict the presence and depth of shadows. We adapt a U-Net
algorithm traditionally used in biomedical image segmentation and train it on sections of Styria,
Austria. Our two-step approach first predicts binary existence of shadows and then estimates the
depth of shadows as well. Our results on the case study of Styria, Austria show that the proposed
approach can predict in both models shadows with over 80% accuracy which is satisfactory for
real-world applications, but still leaves room for improvement.
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1 Introduction

The production of renewable energy in urban environments is a crucial contribution to carbon
neutrality. This requires the assessment of the solar energy potential that is reflected by
the solar radiation on the earth’s surface [1]. Of particular interest is the assessment of
solar energy potential in urban environments, where almost 50% of the world’s population is
located. Besides photovoltaic systems mounted on roofs, there is additional potential for
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photovoltaic systems on facades. As urban areas are covered by buildings that cast shadows
on surrounding buildings, and the production of renewable energy with photovoltaics is
influenced by shadows - the calculation of shadows is key to make informed decisions.

Contemporary Geographic Information Systems (GIS) are capable of representing shadows
for 3D city models based on some type of surface information. The task of generating shadows
is usually performed by strictly geometrical approaches such as GIS shadow calculation
models. Such models have high accuracy, but usually come at high computational costs
depending on spatial and temporal resolution of the data and calculation [11, 12]. One such
model is used as a source of ground truth in this study as well [4, 5].

In order to address these issues, this paper presents an approach to calculate shadows
using GeoAI methods. One approach, already using machine-learning libraries (tensor-based
techniques) but simply optimizing the data preparation and computation time, was shown
by[2]. Their urban test area is also represented by a digital surface model (DSM) with a
spatial resolution of 1m. They provide a proof-of-concept for binary shadow calculation, in
contrast to our ML-approach, which is able to predict not only the binary value, but also
the depth of the shadow. In detail, we present a method for the calculation of the shadow
depth of tiles in Styria using U-Net [13]. With this machine-learning approach to solving this
problem of physics, we strive to get results more quickly after a computationally intensive
training [16, 17].

The U-Net, as basic structure of our network, was originally developed for segmenting
biomedical images and is designed to get by with few training images and to be able to
localise high-resolution features. These properties fit well for our shadow segmentation task,
because as the shadow calculation depends on the position of the sun, we would have needed
a large amount of training data.

2 Methodology

The architecture of a U-Net is made up by a contracting path followed by an expansion
path, which is roughly symmetric to the contraction. Each contraction step consists of two
convolutions and a subsequent max pooling as well as a doubling of the channel numbers. In
every expansion step we have an upsampling, followed by a concatenation with the channels
of the same size from the contracting path and two convolutions. The concatenations between
contraction and expansion paths are key to allow for better localization of high-resolution
features and thus more precise segmentation. On top of the U-Net we include residual
connections [8] within the convolution net, concretely we insert identity mappings between
every other multi-channel feature map. This further eases the training of our net, allowing
us to use a larger number of layers in our net.

For our purposes, a U-Net with 5 up- and downsampling layers and a depth of 256 in the
bottleneck layer was implemented, where the input tensor consists of the geographic data
for each pixel in a 64 × 64 tile. More specifically, for each pixel, the input is defined as the
elevation information, i.e. surface height and the surface height plus the average height of
the objects in the pixel, the terrain information slope and aspect, and sun angle and azimuth
at a certain time. The input tensor therefore has the size 64 × 64 × 6. Let’s take as an
example a tile whose centre has the coordinates (47.0867407955596, 15.423575649486619).
The pixel in the upper right corner of the tile has a surface height of 352.3 metres, with
the objects on the surface 354.59 metres. The terrain has an aspect of 0.23◦ and a slope of
15.77◦. Assuming that the shadow is to be calculated on 19.02.2022 at 12 noon, the angle
of the sun is 39.28◦ and the azimuth is 240.971◦. Hence the input tensor of this pixel is
(352.3, 354.59, 15.77, 0.23, 39.28, 240.97).
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The output differs between the two models. The binary model calculates whether a pixel
is shaded or not, whereas the shadow depth model tries to predict the shadow depth, or
more precisely the degree of shading of objects with consideration of the shadow depth in a
pixel. The degree of shading is divided into eleven classes, where the first class indicates that
0% of the object surface is shaded, the second class indicates that 10% of the object surface
is shaded, the third class indicates that 20% of the object surface is shaded, and so on. This
is therefore a multi-class net.

For the training of the networks, training areas in Styria (Austria) were defined and
divided into 64 × 64 tiles, where one pixel corresponds to 1m2. While the elevation and
terrain information for the input layer were derived from the digital service model, a random
day of the year 2022 at 12 o’clock was chosen for each tile to determine the position of the
sun, from which the azimuth and the angle of the sun were calculated. A total of 449152 tiles
were generated and further augmented, i.e., rotated 90, 180 and 270 degrees to increase the
size of training data. This dataset was split into 66% training tiles, whereas the rest serve as
validation tiles. For each of these tiles, the ground truth was calculated to train the nets.
For this purpose, a QGIS Terrain Shading plugin was used to calculate the shadow depth
over the DSM [5]. The next step is to transform the result of the QGIS plugin to make it
comparable to the output of the nets. For the binary model, a pixel is not shaded, i.e. it
has the value 0, if the shadow depth is zero, otherwise its value is 1. For the multi-class net,
the degree of shading of an object pshaded, if there is any shading, is calculated from the
depth of shading dshadow ∈ R− and the object height, the difference between surface height
hsurface ∈ R+ and ground level hground ∈ R+.

pshaded =


0 , dshadow = 0 and hsurface − hground = 0
1 , dshadow < 0 and hsurface − hground = 0
⌊ dshadow

hsurface−hground
⌉ , else

(1)

Hence, pshadow ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} which is equivalent to eleven
categories.
In each training step, different evaluation metrics were applied to the current results to check
whether the neural net is learning. One of those is the Jaccard index [6], also known as
intersection over union, and the other one is the Dice score [7]

J (A, B) = |A ∩ B|
|A ∪ B|

= |A ∩ B|
|A| + |B| − |A ∩ B|

, (2)

C(A, B) = 2|A ∩ B|
|A| + |B|

, (3)

where A and B are any two batches of tiles to be compared. Both scores determine the
similarities of sets and are common [10, 15].

3 Results

3.1 Binary Model
As already discussed in Section 2 the binary model predicts whether a pixel is shadowed or
not. To measure the learning behaviour of the network, we will use the Jaccard index (IoU),
Dice Score and Accuracy, and then perform a threshold analysis.

GISc ience 2023
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Figure 1 The left figure shows the training metrics of the binary model. Due to early stop
algorithm, training was cancelled after 8 epochs. The right figure shows the IoU, Dice, Accuracy
and AUROC [3] for validation dataset at different thresholds, where the vertical line indicates the
threshold with the best results.

Figure 2 The top left figure shows the original shadowing computed with the QGIS plugin.
The top right figure shows the shading predicted by the binary model with threshold 0.2. The
bottom left figure shows the shading predicted by the binary model with threshold 0.35. The
bottom right figure shows the shading predicted by the binary model with threshold 0.5.

The model learning is basically achieved in the first 4 epochs. This is depicted in the left
of Figure 1, and can be explained with the number of tiles used for training and the property
of the U-Net to learn quickly with a small data set. One may observe in the right of Figure
1, the best results are obtained when the threshold is chosen at 0.35. If the choice is too low,
the transitions can also be predicted as shaded. It is also remarkable that in this particular
study the MSE-Loss performs best. In the literature[14][9], the cross-entropy loss is mostly
used.
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3.2 Shadow Depth Model
This model is more complex than the binary model, due to the nature of a multi-class net.
Generally, it is expected that premature termination will not occur in this case, which can
be also seen in Figure 3. Figure 4 shows that this net accurately calculates the shaded/non-
shaded areas, but the transition between them is not sharp as in reality, which is why the
result looks blurred. This can be remedied by an additional algorithm that sharpens the
results.

Figure 3 The figure shows the training metrics of the shadow depth model for 40 epochs. Unlike
the binary model, the accuracy increases over the epochs so that the training was not terminated
earlier.

Figure 4 The left figure shows the original shadowing computed with the QGIS plugin. The
right figure shows the shading predicted by the shadow depth model.

4 Conclusion

In this paper, the calculation of shading by a U-Net with residual layers was discussed and
trained using selected test areas in Styria. As the results have shown, satisfactory values for
the metrics, especially for accuracy, were obtained for both the binary net and the shadow
depth net. This is an improvement over the current state of the art because there are
currently no approaches that can predict the non-binary depth of the shadow. However, there
are still a number of questions that are still open and are in need of further investigation.
For example, the nets perform best with MSE loss as the training loss. However, the present
state of affairs provides satisfactory results that may serve for further studies. Another aspect
that needs to be further investigated and developed is the calculation time. Contrary to the
literature, the approach shown is a factor of ten slower in the calculation of 10000 tiles than
the QGIS plug-in with the traditional method.

GISc ience 2023
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In summary, with the approach of a U-Net as a basis for calculating the shadow depth, a
suitable basis for further developments could be created.
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