
How to Count Travelers Without Tracking Them
Between Locations
Nadia Shafaeipour #

Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede,
The Netherlands

Maarten van Steen #

Digital Society Institute (DSI), University of Twente, Enschede, The Netherlands

Frank O. Ostermann #

Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede,
The Netherlands

Abstract
Understanding the movements of travelers is essential for sustainable city planning, and unique iden-
tifiers from wireless network access points or smart card check-ins provide the necessary information
to count and track individuals as they move between locations. Nevertheless, it is challenging to
deal with such uniquely identifying data in a way that does not violate the privacy of individuals.
Even though several protection techniques have been proposed, the data they produce can often
still be used to track down specific individuals when combined with other external information. To
address this issue, we use a novel method based on encrypted Bloom filters. These probabilistic
data structures are used to represent sets while preserving privacy under strong cryptographic
guarantees. In our setup, encrypted Bloom filters offer statistical counts of travelers as the only
accessible information. However, the probabilistic nature of Bloom filters may lead to undercounting
or overcounting of travelers, affecting accuracy. We explain our privacy-preserving method and
examine the accuracy of counting the number of travelers as they move between locations. To
accomplish this, we used a simulated subway dataset. The results indicate that it is possible to
achieve highly accurate counting while ensuring that data cannot be used to trace and identify an
individual.
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1 Introduction

As urbanization continues to rise, the usage of public transportation modes is increasing.
To implement policies that increase the sustainability of urban transportation systems, a
deeper understanding of travel patterns is essential. Traditional surveys and travel diaries
require significant effort and provide only snapshots [2]. Various more recent technologies
allow automated counting, e.g., Bluetooth and Wi-Fi detection systems and automated
fare collection systems. Information gathered by these systems has proved to be helpful in
improving security, physical activity, traffic safety, public transportation, communication
infrastructure [7, 5], and the overall quality of life for citizens.
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However, counting travelers at specific locations by using smart-card IDs allows tracking
their movements between locations. It is, therefore, a sensitive issue, especially if it allows
monitoring travelers over an extended period of time: the trade-off for valuable insights into
movement patterns is an infringement upon their privacy. It has been shown that a few
points are enough to identify individual travelers with simple anonymization and persistent
identifiers [4].

To prevent such situations, various regulations have been adopted, including Europe’s
General Data Protection Regulation (GDPR) [6], which requires parties to obtain explicit
consent before collecting and using personal information. Obtaining explicit consent may
reduce the completeness of the data collection, which can introduce bias and reduce the
representativeness of the results. Even if consent is granted, individuals must trust that their
data will be used responsibly and not misused for other purposes.

For these reasons, we challenge the feasibility of robust privacy protection within a system
that relies on identifying travelers to count them. Instead, we propose an alternative system
that offers statistical counts of travelers as the only accessible information. To implement
such a system, we propose to use Bloom filters, which are probabilistic data structures that
support set operations, in combination with homomorphic encryption, which is a type of
encryption that allows performing operations on encrypted data. We envision a system
that provides reliable counts of travelers moving between locations as the only retrievable
information [10].

In this paper, we explain and briefly evaluate our privacy-preserving method for its
accuracy in counting travelers moving between locations, with the aim to show its principal
working. As a case study, we consider a subway network where travelers utilize smart-card
technology to check in and out of the transportation system. To accomplish this, we use a
synthetic dataset that is accurate in representing the characteristics of a real-world subway
dataset. The results demonstrate the effective combination of Bloom filters and homomorphic
encryption in accurately counting travelers between locations while preserving individual
privacy. This finding paves the way for expanding the analysis to include multiple locations
within the subway network. Our research carries significant implications for enhancing public
transportation efficiency and safeguarding user privacy.

2 System model

Our example proof-of-concept assumes a subway network with an automatic fare collection
system. Subway networks usually consist of lines that connect specific origin and destination
stations. For each station A, we assume there is a set of nA scanners SA = {sA

1 , ..., sA
nA

},
which are used by travelers to check in and out. In our model, we trust the sensors, but
not the centralized server. For this reason, we first let a sensor collect detections to then
send this collection in encrypted form to the server. The time during which detections are
collected and aggregated before sending them to the server is called an epoch. Typically,
an epoch lasts 5 minutes. As we will discuss in detail below, the server can operate on the
encrypted collections of detections, but cannot reconstruct individual detections themselves.

A scanner s ∈ SA reads a card’s unique identifier cid. Each card reading belongs to an
epoch e ∈ E corresponding to its timestamp t, such that tstart(e) ≤ t < tend(e), where tstart

and tend mark the beginning and the end of an epoch and E denotes the set of all such
epochs. A detection is thus a triplet (cid, s, e), representing a card uniquely identified by
its identifier cid, read by scanner s during epoch e. By Ds,e, we denote the set containing
all the identifiers detected by a scanner s during an epoch e. Let DA

e denote the set of all
identifiers detected by any scanner at A during epoch e: DA

e = ∪s∈SA
Ds,e.
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Using collections of detections provides a powerful mechanism for counting travelers. One
simple example is that the size of a set Ds,e indicates the number of travelers who passed the
scanner s during the epoch e. More interestingly, for two different stations, the size of the
set DA

e1
∩ DB

e2
represents the number of travelers who were first detected at A during epoch

e1 and subsequently detected at B during epoch e2, where e2 occurs after e1.

3 Method

3.1 Bloom filter
The problem with using sets of detections is that they still contain the card identifiers
for anyone to see who has access to those sets. This issue can be addressed by using a
representation for sets, called Bloom filters [3]. A Bloom filter has the property that it
allows only for membership tests. In other words, the only way to discover which card
identifier is stored, is to go over the entire list of possible card identifiers and check for each
one of them which identifier the membership tests succeed. Although this already poses a
potentially tremendous computational burden for discovering detected identifiers, it is not
enough to prevent finding identifiers. To understand how encryption, combined with Bloom
filters, can prevent such a discovery, we must first explain what they are.

A Bloom filter is implemented as a binary vector of m bits, initially all set to zero. Adding
an element to the set involves hashing it with k different hash functions, each returning a
position in the vector. Those bits are then set to 1. To determine whether an element is in
the set, the same hash functions are applied, and the corresponding bits in the vector are
checked. When each bit is also 1, the element is considered to be in the set. An important
observation is that there is a chance that two different elements will see exactly the same bits
being set to 1. As a consequence, a membership test may return a false positive: the element
for which the test is computed is factually not in the set represented by the Bloom filter. It
is for this reason that Bloom filters are said to be probabilistic data structures. Given the
maximum acceptable probability p for false positives, along with the desired number n of
elements to be stored, one can compute the minimal length m of a Bloom filter, as well as
the minimal number k of hash functions to use: m = − n·ln p

(ln 2)2 and k = m
n · ln 2.

The size of the set represented by a Bloom filter (i.e., its cardinality c) can be estimated
when knowing only k, m, and the number t of bits that are set to 1 [8]:

c = −m

k
ln

(
1 − t

m

)
(1)

In addition to membership testing, Bloom filters also support union and intersection
operations. An intersection of two sets DA and DB can be done by taking their respective
Bloom filter representations and conducting a bitwise AND operation. To illustrate, if A is
represented by [0, 1, 1, 0, 1] and B by [1, 1, 1, 0, 0], then A ∩ B is represented by [0, 1, 1, 0, 0].
A union is computed through a bitwise OR operation. (Note that for realistic representations
of sets, Bloom filters generally have lengths of 1000s of bits.) Whereas unions do not affect
the probability of false detections, intersections do. This also means that estimating the size
of an intersection when using Bloom filters may easily see deviations. We ran extensive tests
and encountered estimates that were 15% off the real size. A more accurate estimation for
two intersecting sets is provided by [8], yet no general estimation is known for more than two
intersecting sets. For this paper, we will use the simple approximation given by Equation 1.

Ignoring encryption for the moment, detections at a scanner s are converted into Bloom
filters and sent by s to the server at the end of each epoch. To answer queries, the server may
do a series of unions and intersections on various Bloom filters, as we explained in our simple
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example above. The result is a Bloom filter representing the detections related to the query.
At that point, the server could return the estimated cardinality of the set. Unfortunately, the
server itself can still, with some computational effort, discover the detected card identifiers.
As we mentioned, in our system model, we do not trust the server. This is where encryption
comes into play.

3.2 Homomorphic Encryption
To prevent the server from discovering identifiers, Bloom filters must be combined with
encryption schemes. Homomorphic encryption [9] is a specialized form of encryption that
enables mathematical operations to be conducted directly on encrypted data without the
need for decryption. The results of these operations are also encrypted, and the output is
the same as if the operations had been conducted on unencrypted data.

The following procedure is now followed using homomorphic encryption. Suppose a user
U is interested in knowing how many travelers moved from A to B. To that end, she passes
an encryption key to the server, which is then used to encrypt all Bloom filters from the
moment the key is available (note that this means that a user cannot issue queries that relate
to the past, i.e., the time before they made the encryption key available). Also note that the
user holds the decryption key, and is thus the only entity who can decrypt the corresponding
encrypted Bloom filters. Neither the scanners nor the server can decrypt those Bloom filters.

The server now operates on bitwise encrypted Bloom filters and produces a final result,
say an encrypted Bloom filter BF representing a set R. By simply adding the entries of BF ,
it can produce an (encrypted) version t∗ of t, the number of bits that have been set to 1.
This value, along with k and m can then be handed over to the user U , who can decrypt
t∗ and compute the cardinality c. The server can also hand out BF to the user, but not
after having shuffled the entries (otherwise, the user could still decrypt BF and discover
detections). Shuffling keeps the same number of (encrypted) bits that have been set to 1,
but a shuffled version of BF has no relationship to R anymore.

4 Results and Discussion

In this section, to get a clear understanding of the effects of preserving privacy, we conduct
an experiment by using a synthetic dataset. To determine the accuracy of the responses, we
compare the statistical counts generated by our model with those from our dataset. For the
hashing part, we choose MurmurHash3 [1], which is highly efficient. The estimation formula
used by Bloom filters provides only an approximation of the number of elements likely to
be present in the original set, rather than an exact count. For this reason alone, we expect
to see deviations from the ground truth. In addition, taking intersections also affects the
probability of having false positives; which will generally lead to overestimations of the size.
We express the accuracy of the estimated count c to the real count ct as:

Accuracy = max
(

1 − |c − ct|
ct

, 0
)

(2)

To simulate real-world subway data, we generate card identifiers from a uniform distribu-
tion. As is common practice, real identifiers are often processed using a cryptographic hash
function before being used for further analysis, and our use of uniform random identifiers
similarly mimics this step. As an example, we ask ourselves how many travelers move from
one station to another. Let sA

1 , . . . , sA
nA

be the sensors at station A and sB
1 , . . . , sB

nB
the

sensors at station B, The answer is then |
⋃

ed

⋃
ea

DA
ed

∩ DB
ea

|, where we assume that ed ◁ ea.
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In other words, we take all combinations of departure epoch at A and later arrival epoch
at B, and consider the detections from all sensors at A, and intersect that with the set of
detections from all sensors at B.

To see the effects of taking intersections as unions, we count in two different ways. First,
we simply compute the size of the union of intersections, as just mentioned. Second, we take
a look at any combination of departure epoch ed and (possible) arrival epoch ea, as well as
all pairs of sensors sA

i and sB
j . Using Bloom filter representations, we compute the size of the

intersection DA
ed

∩ DB
ea

, and subsequently add those sizes for all combinations of departure
and arrival epochs:

∑
ed

∑
ea

|DA
ed

∩ DB
ea

|.

Table 1 Comparison of the accuracy of estimated counts with ground truth.

Ground truth 100 1000 10000 100000
Estimated count first method 96 1006 10001 99933
Accuracy first method 96.00% 99.40% 99.99% 99.93%
Estimated count second method 97 990 10081 107670
Accuracy second method 97.00% 99.00% 99.19% 92.33%

We conducted four experiments using 100, 1000, 10000, and 100000 trips distributed over
a single day (24h). For each experiment, we set the epoch length as 5 minutes (resulting
in 288 epochs), fixed p at 0.001, and selected n to be equal to the corresponding number
of trips in each experiment. We used optimal settings for m and k, given n and p. We ran
each experiment 50 times. In both counting methods we perform a bitwise intersection with
all possible arrival epochs for each departure epoch. The distinction between the counting
methods takes into effect when performing intersections.

Table 1 presents the results of our experiments. The table displays the ground truth, as
well as the estimated counts obtained using the two different counting methods from our
proposed approach, along with the corresponding accuracy values. The results show that the
difference between the counting methods becomes more pronounced as the number of trips
increases. This is mainly because as epochs become more crowded, i.e., when we have more
detections in a single epoch, the probability of false positives also increases when intersecting
two epochs. The impact of false positives on the counting accuracy differs between the two
methods. The first method yields an estimated count closer to the ground truth because it
also considers the union of intersections. Taking the union ensures that false positives inside
all intersections are counted only once because they are consolidated through the union
operation at the end. In contrast, the second counting method estimates the size immediately
after the intersection between each departure epoch at station A and each arrival epoch at
station B. The estimated count after each intersection also includes false positives between
the corresponding epochs. Therefore, the total count obtained at the end of this method is
the sum of the counts obtained after each intersection, which includes false positives and
leads to overestimating the total number of travelers. The first method’s estimated count of
travelers for all different numbers of trips is in close agreement with the actual count and
consistently achieves high accuracy.

The difference in accuracies comes from the way we use Bloom filters, and is seen to be
dependent on the query. Further research is needed to see how accuracies depend on different
types of queries.

The current setup and implementation allow us to run queries involving (tens and hundreds
of) thousands of travelers, often within just a few minutes, even with more intricate queries.
When considering entire networks, many queries can be subdivided into independent parts,
making them excellent candidates for processing in parallel.
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5 Conclusion

In this paper, we have used a privacy-preserving method for counting travelers moving in
public transport systems through encrypted Bloom filters. By using encrypted Bloom filters,
we can count travelers moving between stations without revealing any information about who
made these trips. Further, the information about who made which travels is unrecoverable
and hidden for all components and parties in the system: the sensors, the server, and the
client interested in the counts. The downside is that the method decreases the accuracy
of counting. We evaluate the accuracy of our method on a synthetic subway dataset. We
show that the loss of accuracy can be minimized and that it is possible to achieve highly
accurate counting while ensuring that data cannot be used to trace back to an individual.
An important observation is that the attainable accuracy is dependent on how counting takes
place. If we count too soon to aggregate counts later on, we may fail to compensate for false
counting later in the process. In other words, the accuracy of our method is dependent on
the query and when counting and aggregation actually take place.

Although we did not show in this paper, our method is not limited to counting travelers
moving between only two locations. The proposed method has the capability to handle more
complex queries, such as counting the number of travelers moving between multiple locations.
As a next step, we plan to investigate how more complex queries can also be answered with
high accuracy. In addition, we need to investigate the practical feasibility of running queries
such that answers can be provided in a reasonable time.
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