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Abstract
Agent-based models (ABMs) are powerful tools used for better understanding, predicting, and
responding to diseases. ABMs are well-suited to represent human health behaviors, a key driver of
disease spread. However, many existing ABMs of infectious respiratory disease spread oversimplify
or ignore behavioral aspects due to limited data and the variety of behavioral theories available.
Therefore, this study aims to develop and implement a data-driven framework for agent decision-
making related to health behaviors in geospatial ABMs of infectious disease spread. The agent
decision-making framework uses a logistic regression model expressed in the form of odds ratios to
calculate the probability of adopting a behavior. The framework is integrated into a geospatial ABM
that simulates the spread of COVID-19 and mask usage among the student population at George
Mason University in Fall 2021. The framework leverages odds ratios, which can be derived from
surveys or open data, and can be modified to incorporate variables identified by behavioral theories.
This advancement will offer the public and decision-makers greater insight into disease transmission,
accurate predictions on disease outcomes, and preparation for future infectious disease outbreaks.
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1 Introduction

In the twenty-first century, society has faced several infectious disease outbreaks, such as
monkeypox, influenza, and the novel COVID-19 [2]. To mitigate these threats, decision-
makers rely on epidemiological models for predicting outbreaks and assessing the impact of
various interventions [1]. Compartmental models, while computationally efficient, struggle
to capture heterogeneous populations, spatial interactions, and individual health behaviors
- key drivers of disease trajectories [8]. An alternative approach is agent-based modeling
(ABM), which explicitly represents behavior and interactions between individual “agents”

1 corresponding author

© Emma Von Hoene, Amira Roess, and Taylor Anderson;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Geographic Information Science (GIScience 2023).
Editors: Roger Beecham, Jed A. Long, Dianna Smith, Qunshan Zhao, and Sarah Wise; Article No. 76; pp. 76:1–76:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:evonhoen@gmu.edu
https://orcid.org/0009-0002-8741-3627
mailto:aroess@gmu.edu
https://orcid.org/0000-0003-2321-1575
mailto:tander6@gmu.edu
https://orcid.org/0000-0003-1145-0608
https://doi.org/10.4230/LIPIcs.GIScience.2023.76
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


76:2 A Data-Driven Decision Framework for Spatial ABMs of Disease Spread

and their environment. ABMs provide the flexibility to assign heterogeneous attributes and
decision-making processes to each agent. In addition, spatial data can be used to represent the
built environment, facilitating the representation of individual movements and interactions
in space [8]. The ability to capture complex behaviors of individuals makes ABM an ideal
approach for better understanding the spread of diseases and supporting decision-making.

Health behaviors, actions that affect disease transmission, are often overlooked or simplified
in existing ABMs. This is mainly due to lack of data to inform agents’ behavioral parameters,
competing theories of health behavior to draw from, and institutional challenges limiting
interdisciplinary collaboration among modelers and domain experts [5]. For instance, Perez
and Dragicevic [14] model the spatial spread of disease without considering behavioral
responses like staying home when sick. Other models impose behaviors on a set of agents
without considering their individual characteristics, beliefs, or perceptions. For example,
Li et al. [10] compare COVID-19 outcomes using scenarios with different percentages of
randomly selected agents who are considered vaccinated. More complex representations of
health behavior range from the use of social contagion of adopting behaviors along a social
network [9], game theory or the rational choice model to inform adoption decisions [17], and
fuzzy cognitive maps [12]. However, in general, most models of disease spread either ignore
or incorporate health behaviors in an ad hoc manner without leveraging behavioral data or
theories. Therefore, a more comprehensive framework that has the potential to leverage both
data and theories for simulating health behaviors in ABMs of disease spread is needed.

Realistically incorporating human behaviors into ABMs of infectious disease spread
demands a combination of data-driven and theoretical approaches. The objective of this
study is to develop and implement a data-driven agent decision framework that improves
the representation of health behaviors in geospatial ABMs of infectious disease spread. The
framework is intended to leverage behavioral data and theories by implementing a logistic
regression model with a geospatial ABM of infectious disease. This is demonstrated by
simulating the spread of COVID-19 and mask-usage behavior among the undergraduate
student population at George Mason University’s (GMU) Fairfax campus in Fall 2021.

2 Methods

2.1 Data
Built Environment Data. The model environment consists of GMU’s Fairfax campus, which
was created using shapefiles obtained from GMU’s open geoportal. Datasets capturing the
buildings, parking lots, walkways, and water features were acquired and updated to reflect
the built environment on campus in 2021. Within each building are sublocations in which
agents interact, for example representing individual classrooms.

Data Informing University Patterns of Life. The agent schedules were generated using
GMU’s course data. All in-person courses offered during the Fall 2021 semester were collected
from PatriotWeb, GMU’s openly available database with a schedule of classes. 2,004 courses
were collected, along with details on their course number, course section, meeting times,
total seats, building and classroom. The data was processed into variables that directed the
agents to enroll in courses that corresponded with their undergraduate program, attend class
at the scheduled times, and travel to their course’s designated building and classroom.

Health Behavior Data. This study utilizes data from a survey conducted in August 2021
that is representative of the United States [16]. The survey gathered information on factors
influencing mask-wearing decisions when masks were optional in the U.S. 3,528 respondents
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Figure 1 A representation of how the agent decision-making framework works.

participated, providing socio-demographic details such as age, gender, ethnicity, income,
political party affiliation, and rural or urban residency. The study exclusively focused on
respondents under the age of 40, resulting in a total of 1,425 participants. Respondents were
asked how often they decided to wear a mask. Odds ratios were calculated to capture the
association between the socio-demographic variables and individuals who would wear a mask
3 or more times a week. The survey results indicated that only income, residence location,
and political party affiliation were statistically significant variables for predicting mask use.

Disease Data for Calibration. The model is calibrated using data obtained from GMU’s
Campus COVID-19 Data Archive. The dashboard includes COVID-19 case, testing, and
vaccine data among the Mason community during the Fall 2021 semester, spanning from
August 16, 2021 to December 17, 2021.

2.2 Agent Behavioral Framework
The proposed agent decision framework determines how agents in a geospatial ABM make
decisions about whether or not to adopt a specific health behavior. A visual representation
of how the agent decision-making framework is applied to the geospatial ABM in this study
is presented in Figure 1. The framework is adapted from the methods presented by Durham
and Casman [4] that uses a standard logistic regression model to calculate the probability
that an agent will adopt a behavior based on four antecedents, defined by the Health Belief
Model. The logistic regression model is expressed in terms of odd ratios, which are informed
by survey data. We modify the methods presented by Durham and Casman [4] to include
the variables that we have recognized from our survey data as important predictors of mask
usage. These variables are outlined in Section 2.1 and are expressed in Equation 1:

p(mask) =
OR0 ·

∏
i ORXi

i

1 + OR0 ·
∏

i ORXi
i

, i = 1, . . . , 3 (1)

The values of i = 1, . . . , 3 denotes each of the independent variables that will be used,
including income, residence location, and political party. ORi is the value of the odds ratio.
Xi is a binary variable that indicates the state of the independent variable where 1 is true
and 0 is false. OR0 is a constant probability when all Xi variables are low. The probability
of behavior, p(mask), is a value from 0 to 1. A threshold is used to determine whether the
individual adopts the behavior. When p(mask) > threshold, the individual will uptake the
behavior, and if p(mask)< threshold, the individual will not uptake the given behavior.
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2.3 Geospatial ABM

The geospatial ABM was developed and integrated with an agent decision framework that
can collectively leverage both behavioral theories and data to realistically implement human
health behavior during an infectious disease outbreak. The model aims to demonstrate this
framework by simulating the spread of COVID-19 and mask-wearing behavior among the
undergraduate population at GMU’s Fairfax campus in Fall 2021.

Agent Characteristics and Scheduling. The model consists of agents representing un-
dergraduate students who were registered for in-person classes in the Fall 2021 semester
and enrolled full-time. University data informed whether the student agent lives on or off
campus, as well as the elective and core courses associated with their undergraduate degree
program. Based on the joint distributions found in the survey data, agents’ demographic
profiles are generated to include three binary characteristics: residence location (rural or
otherwise), political affiliation (democratic or otherwise), and household income (below
$20,000 or otherwise). Given the odds ratios from the survey data and the demographic
profile of the agent, the probability of mask-wearing from 0 to 1 for each agent is assigned.
Additional agent characteristics that affect the disease transmission include health status,
symptomatic status, and quarantine status. The length of the incubation and infectious
periods for infectious agents is determined from a normal distribution informed by COVID-19
literature. All agents are assumed vaccinated as it was mandatory to be on campus during
the Fall 2021 semester.

The model processes discrete time steps representing one second, captures weekly patterns
(Monday-Friday from 7:15am to 11pm), and stops at the end of the semester. Agents follow
their class schedule generated at the initialization of the model, beginning each day at their
home, represented in the model as either a parking lot or a residential building on campus.
They leave for their first class 15 minutes before it starts and travel to each class throughout
the day, updating the building and sublocation where they are located. If an off-campus
agent has no class following their previous one, they go to a student center or gym until the
next class, while on-campus agents have a 50 percent chance of going to a student center/gym
or returning to their dorm. After attending all their classes for the day, agents return home.

Disease Transmission. Since COVID-19 was simulated in the Fall 2021 semester, literature
was used to define the parameters of the Delta variant. There is a probability that susceptible
agents are exposed to the virus if they come in contact with an infected agent, known as the
transmission rate, which is calibrated to 0.05 (see Initial Calibration). However, if the agent is
wearing a mask, then the transmission rate is reduced by 50% [6], resulting in a transmission
rate of 0.025. Additionally, all susceptible agents have a 0.02 off-campus transmission rate, a
value obtained from other disease spread models on a university campus [6].

Once an agent becomes exposed, they remain in the exposed stage for an average of
4.41 days, after which they have an 85% chance of becoming symptomatic [18, 13]. Both
symptomatic and asymptomatic agents stay in the infectious period for an average of 8
days [7]. However, this infectious period includes a pre-symptomatic stage of two days
because individuals can spread the virus 48 hours before symptoms appear [15]. After the
pre-symptomatic stage, symptomatic agents begin to quarantine, meaning they do not go
to campus until their infectious period has ended, where asymptomatic agents continue to
follow their schedules [15]. Individuals have immunity for 90 days, which implies that agents
remain in the recovered period for that length of time since they cannot be re-infected [3].
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Health Behavior Framework. At the initialization of the model, agents decide to wear a
mask for the period of a semester based on their demographic profile. A logistic regression
model for each agent determines based on the combination of their characteristics what the
probability of mask use is from 0 to 1. Agents will choose to wear a mask if that value is
greater than a 0.50 threshold, which may be calibrated in the future. The model currently
does not incorporate individual learning, sensing, or prediction. Future work will include
agent perception leading to dynamic health behaviors by incorporating different driving
variables such as the perceived severity or perceived susceptibility of the disease.

Initialization. The model is implemented with Repast Simphony, a freely available Java-
based modeling toolkit, and built upon a Repast Simphony program called RepastCity [11].
The model is currently not accessible online, but it will be made available in the future once
the work is completed. Before the model begins running, one agent is selected to be infectious,
and 3.5% of agents are set to be recovered. The model is initialized with 5,000 agents, which
captures 37.5% of the estimated campus population during the Fall 2021 semester. While
the model will be upscaled to include 13,500 agents in future work, for the current study, we
limited the simulation to 5,000 agents to test the proposed agent decision-making framework.

Initial Calibration. GMU’s Fall 2021 COVID-19 data archive reported 399 symptomatic
cases throughout the semester with 100% mask use. Since we simulate roughly 37% of the
campus population, we expect around 148 symptomatic cases in our model. We calibrate the
model by modifying the transmission rate in the 100% mask-use scenario so that the number
of infectious and symptomatic agents throughout the semester corresponds with the data.

3 Results

To address the variation in model results due to randomness within ABM processes, the
model was run 50 times for a duration of 105 days to represent a full 15-week semester at
GMU. Future work will validate disease outcomes using data that was not used in model
calibration prior to running scenarios and generating final results. However, we present
initial results for three scenarios here: 1) no mask, 2) 100% mask usage, and 3) mask usage
determined by the agent’s behavioral framework, where the demographic profiles in the
population determine the adoption of masks. The results are presented in Figure 2.

The preliminary results indicate that the number of cumulative cases was on average
253 for no mask-usage, 165 for mask-usage determined by the agent behavioral framework,
and 148 for 100% mask-usage. No-mask usage results in a higher peak infection level and
greater variation, whereas 100% mask usage leads to less variation across simulation runs
and a lower percentage of infections. The findings from the behavioral framework scenario
are comparable to those of 100% mask usage as most of the agent population chose to wear
masks based on their demographic profile.

4 Discussion and Conclusion

Existing ABMs of infectious respiratory disease spread often overlook or oversimplify the
complexities of human health behaviors. To address this gap, this study proposes a novel
agent decision making framework with the potential to integrate data-driven and theoretical
approaches. Limitations of this work include the use of national survey data to represent a
university population. Future work may explore the use of open data that better corresponds
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Figure 2 The results for each tested scenario, showing the daily percentage of infectious agents.

with the study area. Although, the agents’ health behaviors emerge as a function of each
agent’s demographic profile, they are unchanging. Future work will explore the effect of
agent perceptions on behavior, enabling agents to adapt and respond to new situations. This
study aims to advance ABMs of infectious disease spread by improving the representation of
how humans respond to diseases, which will ultimately offer the public and decision-makers
support with accurate predictions and intervention strategies for future outbreaks.
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