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—— Abstract

Centrality metrics are essential to network analysis. They reveal important morphological properties
of networks, indicating e.g. node or edge importance. Applications are manifold, ranging from
biology to transport planning. However, while being commonly applied in spatial contexts such as
urban analytics, the implications of the spatial configuration of network elements on these metrics
are widely neglected. As a consequence, a systematic bias is introduced into spatial network analyses.
When applied to real-world problems, unintended side effects and wrong conclusions might be the
result. In this paper, we assess the impact of node density on betweenness centrality. Furthermore,
we propose a method for computing spatially normalised betweenness centrality. We apply it to a
theoretical case as well as real-world transport networks. Results show that spatial normalisation
mitigates the prevalent bias of node density.
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1 Introduction

Betweenness centrality is a key metric for assessing node and edge importance in networks.
It is based on computing the share of shortest paths that pass each edge or node in relation
to the total number of paths in a network. Thereby it reveals the relative importance of
edges or nodes for enabling interaction within the network. While centrality metrics can
generally be applied to spatial networks, many complex effects occur that are still to be fully
understood [2]. As direct consequence of the definition of betweenness centrality, the number
of nodes, their location, and their morphological embedment within the network determine
centrality. The key aspect to be questioned within spatial applications is the assumption
that each pair of nodes has equal influence on centrality. This characteristic implies that the
spatial density of nodes strongly influences betweenness centrality.

State of the Art

Due to the generic network science origin of centrality metrics, their focus lies on topological
rather than spatial properties of networks. However, important steps for integrating spatial
aspects into centrality concepts have been accomplished e.g. by considering the spatial length
of edges and paths in betweenness centrality. Further research assessed how different forms
of spatial networks influence centrality and how such networks can be characterised through
© Christian Werner and Martin Loidl;
37 licensed under Creative Commons License CC-BY 4.0
12th International Conference on Geographic Information Science (GIScience 2023).
Editors: Roger Beecham, Jed A. Long, Dianna Smith, Qunshan Zhao, and Sarah Wise; Article No. 83; pp. 83:1-83:6

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:christian.werner@plus.ac.at
https://uni-salzburg.elsevierpure.com/en/persons/christian-werner-5
https://orcid.org/0000-0001-9406-9284
mailto:martin.loidl@plus.ac.at
https://uni-salzburg.elsevierpure.com/en/persons/martin-loidl-4
https://orcid.org/0000-0003-0474-3234
https://doi.org/10.4230/LIPIcs.GIScience.2023.83
https://doi.org/10.5281/zenodo.8125632
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

83:2

Betweenness Centrality in Spatial Networks

the use of centrality metrics [2]. Various studies applied betweenness centrality for assessing
spatial transport networks - for Indian railways[6], Paris and London transport[4] or urban
road networks in Germany[5]. All these examples have in common that they do not consider
the impact of spatial configuration on centrality metrics, thus neglecting its potential bias.
Application-driven research proposed domain-specific concepts for weighting origin-
destination pairs in computation of centrality, which may mitigate bias of spatial configuration.
In urban analytics and transport modelling, weighting based on flow estimation is common.
Spatial interaction between origins and destinations is modelled, resulting in an estimate
for travel demand. Despite the long history of such methods, adequate modelling is highly
complex and has been found not to meet real-world observed patterns in many cases.

Research Gap

While numerous studies applied betweenness centrality to spatial networks, effects of the spa-
tial configuration of nodes on centrality have not been regarded systematically. Furthermore,
we identified the lack of a simplistic null model of betweenness centrality for applications in
spatial networks that avoids introducing complex (behavioural) models.

To fill this gap, we first assess the problem in more detail and then provide a method to
compensate the influence of spatial node density. Motivated from the application domain
of urban analytics and mobility, we focus on edge betweenness centrality as known key
measure from which node betweenness centrality may easily be derived [2]. Where helpful,
we motivate our theoretical considerations using examples of real-world transport networks.

2 Method

The Problem lllustrated

To illustrate the impact of node density on edge betweenness centrality (cp), we use a
simplistic reference case. In a network constructed as a regular grid, cg is known to be
highest in the spatial centre, as shown in figure 1 a). If we subdivide one grid cell by adding
an additional node per edge and one node at the cell centre, we observe a shift in high
cp towards the newly subdivided area, visualised in figure 1 b). One may think of this
as a city block to which access paths for pedestrians have been added. While the overall
structure of this virtual residential area remained the same (i.e. no buildings have been
added or removed), centrality shifted significantly. This can be explained by the fundamental
definition of cg. As we introduce new nodes - in the given case five nodes are added to a cell
originally consisting of four nodes - each of these new nodes introduces an equally important
origin and destination for all shortest paths computation. As a consequence, the influence of
paths from and to this cell increases in relation to all paths within the given network.

To quantify this gain in influence, we can calculate the change in contribution of paths
from and to the given cell relative to all paths within the network. Following the definition
of cp (see equation 1), it is more precisely the number of origin-destination relations that
start or end within the given cell that we are interested in. As known from normalisation of
cp, the total number of origin-destination relations in a directed graph consisting of n nodes
is n(n — 1). As one single node has the role as origin as well as destination for o-d relations
to all other nodes, it contributes 2(n — 1) o-d relations. Consequently, we can express the
relative contribution of one node to all possible relations as 721((2:3
we can quantify the contributed relations of i nodes to the network beyond the given cell as

2i(n—1)—i(i—1)
n(n—1) .

. In a more generic form,
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(a) Regular grid network. (b) Same network with subdivision added.

Figure 1 The problem illustrated: Influence of node density on centrality.

Considering the case of adding subdivision to a regular grid, we can assess the contribution
I of nodes forming a given cell C' and the subdivided cell C" as follows:
2a(n—1) —ala—1) 2m+a)(n+m—1)—(m+a)(m+a—1)
n(n—1 (n+m)(n+m—1)
where a denotes the number of nodes originally constituting the cell and m denotes the

Ic = and Icr =

number of nodes added through subdivision.

The relative increase in influence of cell C' can be assessed as IICC/ which for a < n and
20, = oM Thus, the influence of the given
cell on centrality increases approximately proportional to the increase in node count for the
same area for commonly large networks.

For our minimalistic example with n = 36;a = 4;m = 5, the cell’s influence increases by
28—015 36T75 ~ 1.858. Due to the small network size and relatively high a and m, this value does
not reach the approximate value for large networks of % = 2.25.

To summarise this section, we were able to show that the influence of spatial node density

m < n can be approximated as: n?(a + m)

on betweenness centrality can be assumed to be proportional for commonly large networks.
Consequently, spatial variation in node density has significant impact on betweenness cent-
rality. While this might be intended in specific application cases, it appears unintended for
generic, unbiased assessments and remains hard to control for in general.

Proposed Method: Spatial Betweenness Centrality

To mitigate the effect of varying node density on betweenness centrality, we propose a method
for computing spatially normalised betweenness centrality. We refer to edge betweenness
centrality as cp and to our proposed spatial edge betweenness centrality as csg. The main
idea behind cgp is to weight all paths contributed to centrality per origin-destination pair
relative to the area covered by their origin and destination nodes.

Our proposed method consists of two steps: 1) determining the spatial coverage per node,
and 2) computing spatially weighted centrality based on node coverage.

Determining the spatial coverage per node. Spatial coverage of nodes can be determined
using tessellation of the network space. While tessellation using Voronoi polygons is common
e.g. for retrieving a network null model, it does not render suitable in the given case.
Especially in networks with high variability in edge length, Voronoi polygons may intersect
non-adjacent edges. Furthermore, motivated from the mobility domain, we assume that
interaction is generated along edges rather than at nodes. Therefore, we propose utilising an
edge-based tessellation such as the method described by Araldi and Fusco using proximity
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bands [1] or network-based Thiessen tessellation. The area of each polygon then describes
the spatial coverage per edge. Each node’s spatial coverage can thus be derived as the total
spatial coverage of all edges adjacent to a node divided by two.

Compute spatially weighted centrality based on node coverage. Edge betweenness
centrality cp(e) is defined for a graph G(V, E), where V refers to the set of nodes and E
refers to the set of edges as follows:

cple) = Z gs.(¢) (1)

g
s,teV;s#t st

In this formula, for any pair of origin s and destination ¢ nodes, o, denotes the number
of shortest paths from s to ¢, and o, ¢(e) refers to the quantity of paths that pass edge e.

In standard cp, each origin-destination pair contributes equally to centrality. Consequently,
the weight each o-d relation contributes equals to one: wpelation(s,t) = 1. For spatial
normalisation we want to weight the paths contributed to centrality per o-d pair proportionally
by their origin and destination node spatial influence (weights). Therefore, we propose a
weight function that distributes an origin node’s spatial influence (area covered) to all other

nodes proportionally to their relative spatial influence as a destination:

w(t
Wrelation (8, 1) = w(s)* for s,t € Vis#t

)
>, wl)
ueViu#s
where w(v) refers to the weight of a node v, respectively its spatial coverage. The full

definition of our proposed spatial betweenness centrality metric consequently reads as:

c e) = Js’t(e)w s w(t) 2
sp(e) ;# oy () ST (2)

ueViu#s

In order to obtain normalised values for cgp, the absolute values are divided by the total
area covered by origin nodes: cspnorm(e) = csp(e)/ Y ey w(v).

We propose an implementation based on spatial interaction incorporated betweenness
centrality (SIBC)[7]. It builds upon Brandes algorithm [3] and adds a weight function f(s,t),
which represents a measure of spatial interaction - known flow or estimated flow based on a
gravity model [7]. If one pre-computes the o-d weight matrix, it can be employed as spatial
interaction matrix in the SIBC method. For applicability in large networks, we suggest
computing o-d weights stepwise per origin, alongside solving the single-source shortest path
(SSSP) problem.

3 Results

In this section we provide centrality assessments for different networks using both, standard
edge betweenness centrality cg and our proposed spatial variant cgp.

The artificial case: regular grid network. As first example we assess the network that we
used to illustrate the problem in section 2.

In figure 1 we can observe that ¢ shows a shift of high centrality towards the subdivided
cell, whereas such a shift is not present in cgp shown in figure 2 a) and b). The differences
between cgp for the subdivision case and cp for the regular grid case are relatively small. In
contrast, figure 2 c¢) highlights the mitigated shift of high centrality when applying csp.



C. Werner and M. Loidl

csgref Csg Acg, csp [%]

[0.000, 0.016] [0.029, 0.041] @ [-35,-25]

(0.016, 0.032] (0.041, 0.053] ® (-25,-15]
(0.032, 0.048] (0.053, 0.065] (-15, -5]
(0.048, 0.064] (0.065, 0.078] (-5, 5]

® (0.064,0.079] ® (0.078,0.090] (5 15
@ (0.079,0.095] ® (0.090, 0.102] ® (15 25)
@ (0.095,0.111] ® (0.102,0.114] ® (25, 35]

(a) Regular grid network. (b) Network with subdivision. (c) Difference compared to cp.

Figure 2 Spatial betweenness centrality applied to the original problem case.

The real-world case: street networks. Additionally, we computed cp and cgp for several
extracts of real-world road networks of varying form. For brevity, we only present one example
here and provide more cases online at https://doi.org/10.5281/zenodo.8125632.
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(a) Betweenness Centrality cp. (b) Spatial Betweenness Centrality csp.
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(c) Difference: csp — cp. (d) Tessellated input network.

Figure 3 Betweenness centrality for a subset of a real-world street network (Stuttgart, Germany).

Results for the real-world case using a subset of Stuttgart, Germany are presented in
figure 3. High node density is present in the North, whereas lower node density is prevalent
in the centre and South, which is visible in subfigure d). Accordingly, the size of tessellation
polygons decreases with higher node density. When comparing subfigures a) and b) or
assessing the differences in subfigure c), cp puts a clear emphasis on routes linking the
high-density areas. For cgp, part of these links also show above-average centrality. However,
additional links in the centre and South are more pronounced in cgpg.

For all networks assessed, we can observe a tendency of higher centrality values for c¢p in

proximity of areas with higher node density compared to spatially normalised centrality csp.
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4 Discussion and Outlook

We showed that spatial variation in node density has significant influence on betweenness
centrality for spatial networks. Unless node density is an intended indicator to consider in a
specific application case, we regard this as systematic bias that needs to be addressed. E.g.
for applications in mobility, standard betweenness centrality cg may only render suitable
results, if node density spatially correlates with population density.

With the concept of spatial betweenness centrality cgp we propose a generic solution
that utilises spatial normalisation to weight the contribution of individual relations. Results
applying csp show a clear mitigation of bias introduced through variations in node density
in cp. Spatial betweenness centrality cgp can therefore provide a generic null model of
betweenness centrality in spatial networks.

For practical application of cgp, edge effects need to be considered. One may utilise
a network covering larger extent than the area of interest for assessment to allow shortest
paths on edges outside the area of interest and to avoid edge effects in tessellation. Future
research should shed more light on specific edge effects of ¢g and cgp.

Depending on the domain-specific application case, additional factors may be integrated
into cgp assessments. Non-uniform weight may be applied to areas of e.g. different land use.
This also allows for excluding certain areas from contributing to centrality computation as
orign and destination. Furthermore, combination e.g. with population data can open new
application scenarios.

We see great potential in the use of spatial betweenness centrality cgp for unbiased, generic
assessment of spatial networks. It combines both, morphological properties with spatial
embedment of the network. However, it may depend on the specific domain application,
whether cgp or an advanced domain-specific modelling approach is preferable.
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