
Predicting visit frequencies to new places
Nina Wiedemann1 #

Institute of Cartography and Geoinformation, ETH Zürich, Switzerland

Ye Hong #

Institute of Cartography and Geoinformation, ETH Zürich, Switzerland

Martin Raubal #

Institute of Cartography and Geoinformation, ETH Zürich, Switzerland

Abstract
Human mobility exhibits power-law distributed visitation patterns; i.e., a few locations are visited
frequently and many locations only once. Current research focuses on the important locations of users
or on recommending new places based on collective behaviour, neglecting the existence of scarcely
visited locations. However, assessing whether a user will return to a location in the future is highly
relevant for personalized location-based services. Therefore, we propose a new problem formulation
aimed at predicting the future visit frequency to a new location, focusing on the previous mobility
behaviour of a single user. Our preliminary results demonstrate that visit frequency prediction is a
difficult task, but sophisticated learning models can detect insightful patterns in the historic mobility
indicative of future visit frequency. We believe these models can uncover valuable insights into the
spatial factors that drive individual mobility behaviour.
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1 Introduction

Large-scale tracking data collected from mobile phone users are crucial for location-based
services such as place recommendations [8]. One field of research is the so-called next location2

prediction, which is concerned with finding the immediate next location an individual will
visit [7]. Such predictions could be used for recommendations, navigation advice or on-demand
transport services. The developments in this field, however, suffer from the heavy-tailed
distribution of visit frequencies [3]; i.e., many locations are visited only once and are thus
difficult if not impossible to predict [11]. Specifically, Cuttone et al. [1] find that 70% of
locations are visited only once, and 20-25% of the visits are to new locations. The interest
of users in these locations is primarily assessed upfront via recommendation systems that

1 Corresponding author
2 Since the term ”place” describes the subjectively experienced form of a geographic location [19], we will

use the term ”location” throughout the paper to objectively denote a user’s activity cluster.
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leverage insights from aggregated user behaviour, e.g., the general popularity of a place.
Many systems were developed for this purpose, mainly based on data from location-based
social networks (LBSN), and employ (context-aware) collaborative filtering [9, 2, 18]. For a
recommender system to successfully suggest entirely new locations to the user, data from
many users in the same region must be available, which is often hampered due to the sensitive
nature of tracking data [4].

At the same time, the mobility of a single user already allows one to draw insights about
a user’s interest in new locations. For example, the spatial layout [10] and topology of
the mobility behaviour [20, 16], or the category frequencies of the user’s previously visited
locations [17] can help to estimate the spatial distribution of future visitation patterns [11].
In light of this possibility, we argue for a new problem formulation: Predicting the frequency
of future visits to a newly visited location, given the historic mobility of a single user.
In other words, assuming that we observe a user visiting a location for the first time,
can we predict whether they will return to this location, in a scenario where knowledge
about collective mobility patterns is scarce? We argue that this problem is mistaken as
a subtask of recommender systems or next location prediction. In contrast, it requires
special modelling approaches to learn efficiently from individual historic mobility patterns.
Successful approaches could decide whether a location will become part of a user’s activity
set [6] and possibly unveil hidden patterns in the user’s location preferences. Moreover, the
gained knowledge will support the online next location prediction that needs to consider new
locations at runtime, or improve individualized transport recommendation and planning.

In this paper, we formalize our new problem termed “visit frequency prediction”, and
present an approach to frame it as a supervised learning task. We experiment with self-
attention-based and graph-based neural network models to efficiently process the historical
tracking data. As expected, predicting the visit frequency to new locations is challenging due
to the lack of information about the user’s motives for visiting the location. Nevertheless, we
find that neural network models can find patterns in the historic mobility that are predictive
of future visits, improving over the baseline methods.

2 Problem formulation

Let Lu = {lu
1 , . . . , lu

m} denote the set of all locations visited by user u. A location is defined by
point coordinates or an area, where the user performed some stationary activity (e.g., working
or catering). Locations can be derived, e.g., by clustering GNSS data or from check-ins to
known POIs in LBSN. In practice, a user visits these locations sequentially, represented as
a list Su of n visit events, for example, Su = [lu

2 , lu
1 , lu

2 , lu
4 ] with n = 4. The visit frequency

ν(l) is thereby the number of visits to location l, e.g., ν(lu
2 ) = 2 in the example. Let Si:j be

the excerpt of the chain from the i-th until the j-th element in S (excluding the j-th). We
assume that at a specific point t, we observe that a new location lu

θ /∈ Su
1:t. The task is to

predict ν(lu
θ ) in Su

t:n given the historic mobility Su
1:t.

One potential approach is to train a model to learn a mapping g such that, optimally,
ν(lu

θ ) = g(Su
1:t, lu

θ , u), where the model could leverage 1) feature representation of the
previously visited locations f(l), l ∈ Su

1:t and the visit frequency ν(l) of these locations, 2)
user characteristics u, and 3) features of the new location f(lu

θ ). Note that the model can be
fitted to the data of many users, but, at inference time, it should be possible to apply the
model to the data from a single user, potentially in a different geographical region.
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3 Methods
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Figure 1 Approaching the visit
frequency prediction problem as a
supervised task.
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Figure 2 Graph-based model for learning visit frequency of
new locations from the historic location graph. The graph is
embedded and concatenated with the new location’s features.

We propose a supervised approach to tackle the visit frequency prediction problem. In
each training step, one location lu

θ is removed from the user’s overall tracking data (see
Figure 1). The pruned mobility data Lu \ lu

θ and Su \ lu
θ (i.e., the historic mobility, pretending

that lu
θ was never visited), as well as features of the removed location f(lu

θ ) are provided as
input, and the visit frequency ν(lu

θ ) is the desired output. We utilize the following features
as f : The projected coordinates of l relative to the home location, the location purpose
encoded as a one-hot vector, the average start hour of visits to l, and POI features. This
leads to a vector of 24 entries. We implement a simple median and a k-nearest neighbor
(kNN) approach as baselines and then test a fully connected neural network (MLP), a
multi-head self-attention (MHSA) model, and a graph convolutional network (GCN) on the
task. Each model is described in the following. For implementation details, see our code and
supplementary material available at https://github.com/mie-lab/predict-visits.

The simple median baseline is given by ν̂(lu
θ ) = median({ν(lu) | lu ∈ Lu}). This approach

yields the same output for all queried locations of a user. For a more informed baseline, we
consider a kNN approach, estimating the unknown visit frequency as ν̂(lu

θ ) = 1
k

∑
l∈N(lu

θ
) ν(l),

where N(lu
θ ) is the set of k nearest neighbors of lu

θ in Lu \ lu
θ . We measure the distance

between locations by the Euclidean distance of their feature vectors f .

For the MLP and the MHSA model, we provide a fixed set of m locations from the historic
mobility of a single user, Lu \ lu

θ , and the new location lu
θ as input. We hypothesize that the

locations with the highest activity are most predictive of the visit frequency to new locations,
and therefore select the m locations with the highest visit frequency. They are sorted by the
frequency and are featurized by f , leading to an input matrix of size (m+1)×24. The matrix
is flattened to be fed into the model. The MLP is a simple fully-connected two-layer network,
whereas our MHSA follows the implementation by Hong et al. [5] for location prediction. A
graph approach, on the other hand, allows for a variable number of input locations per user.
Our approach is shown in Figure 2. The graph is passed through a Graph-Resnet [13], and
the node embeddings are combined with average pooling, yielding a single vector of fixed size.
This graph embedding is then concatenated with the embedding of the new location features
f(lu

θ ) passed through a single layer. The last layer yields the estimated visit frequency.

GISc ience 2023
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4 Results

4.1 Data
We utilize high-quality and activity-labelled GNSS data from three tracking studies: Green
Class 1 (GC1), Green Class 2 (GC2) [12] and yumuv [15]. All three studies were executed in
collaboration with the Swiss Federal Railways (SBB) and aimed to evaluate the impact of
Mobility-as-a-Service offers. The participants were tracked via a GNSS-based app and were
asked to manually label their activities. The app already preprocesses the raw GNSS track
points by inferring stationary staypoints and continuous movement triplegs, which are further
processed with the Python library Trackintel [14]. Trackintel derives a set of visited locations
from a user’s tracking data using the DBSCAN clustering algorithm. After preprocessing, we
included 139 users for GC1, 48 for GC2 and 653 for yumuv, who visited 104.5k, 35.7k and
127.3k distinct locations respectively. To align the tracking period, we split the data into time
bins of three months. Finally, following Martin et al. [16], we transform the tracking data
into a location graph for the GCN-based approach with the same hyperparameter setting.
By the visit frequency prediction definition given above, the model should be applicable
to unseen users in other geographic regions. Therefore, we split the data into train and
test set on a dataset-level for the experiment; i.e., the train set Dtrain comprises randomly
sampled data from the GC1 and yumuv studies, and Dtest is sampled from GC2. To focus
on rarely-visited locations, we only use locations that were visited up to ten times as test
locations (lθ). This cutoff on average excludes three locations per person.

4.2 Model comparison
Figure 3 shows the results for all tested models. We first consider the mean absolute error
(MAE), i.e. 1

|Dtest|
∑

lu
θ

∈Dtest
|ν̂(lu

θ ) − ν(lu
θ )|. The absolute error is generally low (around 1.8)

for all models, and complex models only improve marginally over the baselines. However, the
MAE is misleading due to the imbalance between the visit frequencies: Many locations are
visited only once, whereas very few are visited ten times. For a more insightful evaluation, we
propose to consider the balanced MAE: 1

10
∑10

i=1

(
1

|Dtest|
∑

lu
θ

∈Dtest with ν(lu
θ

)=i |ν̂(lu
θ )−ν(lu

θ )|
)

As Figure 3 (middle) shows, the balanced MAE is 3.99 for the simple median baseline
and improves to 3.78 for the best kNN model. The neural network models yield a substantial
improvement if they are also trained with balanced data (denoted by ”bal.” in Figure 3),
meaning that the batches at train time were sampled such that each visit frequency from
1 and 10 appear equally often. The balanced GCN and balanced MHSA model yield the
best performance with a balanced MAE of 2.43, indicating that these models can indeed
learn patterns in historic mobility. The results for the balanced GCN are also visualized as a

0 1 2
Absolute error

KNN (k=25)
KNN (k=5)

MLP
MLP (bal.)

GCN
GCN (bal.)

MHSA
MHSA (bal.)

Simple
median 0 2 4

Balanced abs. err
0.0 0.1 0.2 0.3

Correlation

Figure 3 Model comparison on the visit frequency prediction problem for new users.
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Figure 4 Violinplot of visit frequency predicted by the GCN
compared to the ground truth.

Figure 5 Spatial distribution
of predicted visit frequencies.

violin plot in Figure 4. While the test set is imbalanced and the predictions are very noisy,
there is a clear shift in the distribution of predicted frequency with increasing ground truth
visit frequency.

Finally, the Pearson correlation coefficient ρ of predicted and ground truth visit frequencies
of the test data is shown in Figure 3 (right). The GCN and MHSA models again achieve
the best performance with ρ up to 0.3. In general, the results indicate that predicting visit
frequencies to newly visited locations is a difficult task. The value of the predicted frequencies
for real applications is limited so far, even though they are more accurate than the baselines.

5 Discussion and outlook

The increasing availability of user location data gives rise to new research opportunities in
the context of location recommendation and prediction. We have introduced a new problem
that, for the first time, regards the importance of newly visited locations by approximating
their projected visit frequency. Our preliminary results show that the task suffers from
similar difficulties as next location prediction, namely noisy data, lack of information and
inherent stochasticity in user decisions. The difficulty is also due to the strong imbalance
of the ground-truth visit frequency. However, other models or additional context data may
improve performance.

A well-trained visit frequency prediction model could also be applied to map the probability
of visits to new locations. This analysis would yield insights into the spatial distribution
of visit frequencies learnt by the model. An example is shown in Figure 5, where we
systematically sampled locations within the convex hull of the visited locations of one user.
The heatmap of predicted visits is based on hidden patterns detected in the ground-truth
visit frequencies (dots, locations that are only visited once are filtered out for visibility).
An analysis of the spatial visitation patterns, e.g., with respect to the spatial layout and
distances of frequently visited locations, may improve the understanding of user behaviour.
Thus, we believe that visit frequency prediction is an exciting endeavour, and we hope that
our problem formulation and preliminary methodology inspire further research on this topic.
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