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Abstract
Flash floods, as a type of devastating natural disasters, can cause significant damage to infrastructure,
agriculture, and people’s livelihoods. Mapping flash flood susceptibility has long been an effective
measure to help with the development of flash flood risk reduction and management strategies.
Recent studies have shown that machine learning (ML) techniques perform better than traditional
statistical and process-based models in estimating flash flood susceptibility. However, a major
limitation of standard ML models is that they ignore the local geographic context where flash floods
occur. To address this limitation, we developed a local Geographically Weighted Random Forest
(GWRF) model and compared its performance against other global and local statistical and ML
alternatives using an empirical flash floods model of Jiangxi Province, China.
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1 Introduction

Flash floods are one of the most devastating natural disasters, which often occurs within a
short period of time and can be caused by a variety of factors such as intense rainfall, rapid
snow melt, landslides, and dam failure. Given their rapid speed and strong force, flash floods
can cause significant damages to properties, infrastructures, and even loss of life. As a result,
flash flood risk mitigation and management are of fundamental importance if sustainable
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development is to be achieved. Flash flood susceptibility estimation has long been an effective
means adopted by practitioners and policymakers to assist with development of flood risk
reduction strategies, land use planning and emergency resource deployment [6] [8].

Common approaches that have been widely adopted in the estimation of flash flood
susceptibility include statistical, hydrodynamic models and geographical information system
(GIS) based spatial analyses. The examples of statistical models include regression analysis,
frequency ratio, weights-of-evidence, and analytical hierarchy process, among others [6].
Hydrodynamic models usually predict the propensity of an area to flash floods by simulating
the water flow during a rainfall event [13]. GIS-based approaches often combine potential
factors that contribute to flash floods (e.g., rainfall topography and land use) to identify
areas at risk, mainly utilizing remote sensing images [12].

In recent years, with the emergency of big data (e.g., weather and water levels) collected
by various sensors as well as the advances in high-performance computing techniques,
artificial intelligence (AI) particularly machine learning (ML) has been increasingly applied
in evaluating and predicting flash flood susceptibility [9]. Common ML approaches such as
support vector machine (SVM), random forest (RF), neural network (NN) have demonstrated
better performance than traditional methods like statistical and hydrodynamic models [8]
[2] [1]. However, a major limitation of existing ML approaches is that they ignore the
geographic nature of flash floods. Often, the same set of hyperparameters are employed for all
observations without considering the geographic context of each flash flood event. It is worth
mentioning that there have been several recent developments in GeoAI that incorporate
spatiality into modeling.

[3] developed Geographical Random Forests (GRF), in which a separate RF model is
fitted for each location. One limitation of GRF is that, although it considers the local nature
of the phenomenon, it does not allow geographical weighting in the training, which ignores
the distance-decay effect for most geographical processes. [4] improved GRF to incorporate
geographical weighting, but the prediction process for unseen data is less explicit and does
not allow the weighting kernel to vary spatially. [5] developed a Geographically Weighted
Neural Network (GWNN) model, in which geographical weighting is imposed on the loss
function during model training. However, GWNN does not allow hyperparameters to vary
spatially, thus failing to account for local variations in the underlying processes.

To this end, in this paper, we address limitations in recent GeoAI developments by allowing
geographical weighting in model training and prediction as well as allowing hyperparameters,
which include both the model hyperparameters and the bandwidth parameter that controls
the geographical weighting, to vary spatially. In this regard, both complex spatial and
non-spatial processes can be fully considered. We use a random forest model as an example
of this generic local modelling framework, which can be naturally extended to other popular
models such as neural networks and gradient boosting, for both regression and classification
tasks. We benchmark its performance against other global and local statistical and ML
alternatives with an empirical flash flood model of Jiangxi Province, China.

2 Methods

Four models are included in comparison to predict a binary flash flood occurrence: 1) logistic
regression (LR); 2) geographically weighted logistic regression (GWLR); 3) random forest
(RF) and 4) geographically weighted RF (GWRF), They represent the four quadrants of
model (as shown in Table 1) ) types consisting of global/local and statistical/ML, respectively.
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Table 1 Four model types.

Model Type Global Local

Statistical Logistic Regression (LR) GW Logistic Regression (GWLR)

Machine learning Random Forest (RF) GW Random Forest (GWRF)

Listing 1 GWRF Algorithm
For each location in all locations :

1. Find a set of hyperparameters and local bandwidth that
minimises geographically weighted loss with a 5-fold cross
validation ;

2. Train the local RF model using the best set of
hypterparameters and local bandwidth ;

3. Use the local RF to predict at any unknown locations weighted
by its distance away from unknown locations ;

Sum of all the distance weighted predictions to be the final
predictions .

LR is a global statistical model used to predict binary outcomes. It’s a linear model with
a logit link function that transforms continuous outcomes into probabilities bounded between
0 and 1. GWLR is a local statistical approach that accounts for location-specific effects
when generating the outcome of interest. It fits a geographically weighted logistic regression
model at each location using a distance decay kernel governed by a kernel function and
kernel bandwidth. This approach allows for parameters in the model to vary spatially. RF is
a machine learning algorithm that utilizes ensemble learning methods to make predictions
by combining multiple decision trees. While RF is widely used in various applications
due to its flexible and accurate predictions, it’s considered a global model since the same
hyperparameters that govern the tree structure remain constant regardless of geographic
location. The last model GWRF is the proposed approach. It trains a separate local RF
model at each location allowing different hyperparameters for the RF model and bandwidth
for geographical weighting. Each local RF is optimised using a geographically weighted
loss function. Then the prediction at an unseen location can be computed as the distance
weighted predictions from all RFs. The specific training and prediction process are described
as follows:

LR and RF are implemented using the sklearn python package [11], GWLR is fitted
using the mgwr python package [10], and GWLR is implemented using both sklearn and
mgwr. Code and data that produce the results can be found at this repository: https:
//anonymous.4open.science/r/global_local_ML_GIScience-48F9.

3 A Case Study of Jiangxi Province, China

3.1 Study area
The case study area is Jiangxi, a province in south-eastern China. Jiangxi has long been
one of the places suffering flash floods every year in China, which is primarily due to its
unique geography and climate. It is located in a mountainous region with over 3,000 rivers
and lakes, which accounts for 78% of the total area. The largest freshwater lake in China,

GISc ience 2023

https://anonymous.4open.science/r/global_local_ML_GIScience-48F9
https://anonymous.4open.science/r/global_local_ML_GIScience-48F9


86:4 Global and Local Statistical and ML in Estimating Flash Flood Susceptibility

Poyang Lake, is located in the north of the province. Further, Jiangxi is in a subtropical
climate zone and experiences a high amount of rainfall during the monsoon season from
May to September. Flash flood risk reduction and management is a major challenge to local
government with respect to sustainable development. In addition to dams and other flood
control infrastructure, mapping flash flood susceptibility has become an effective measure to
assist with land use planning as well as to improve public knowledge of flash floods.

Figure 1 Historical flash flood events in Jiangxi Province, China.

3.2 Data

The main dataset used in this research is the flash flood inventory map provided by the
Flood Control and Drought Relief Division, Emergency Management Department of Jiangxi,
which contains historical flash floods in Jiangxi during 1950-2015. Among 12,388 catchments
within the province, 940 contain historical flash flood events. Accordingly, 971 catchments
without historical flash floods are randomly selected across space. The final dataset contains
1,911 observations labelled either 1 (flash floods) or 0 (non-flash floods). The resulting flash
floods distribution map can be seen in figure 1.

In addition, four ancillary datasets are used to derive potential factors that contribute
to flash floods, including the DEM dataset of China (2014), Statistical Parameter Atlas of
Rainstorms in China (2010), River System in China (2012) and the Landsat 7 Collection
1 Tier 1 Annual NDVI Composite. Based on those datasets, 10 influencing factors are
calculated or extracted: slope, elevation, shape factor, concentration gradient, topographic
wetness index, rainfall, peak discharges per unit area, time of concentration, normalized
difference vegetation index (NDVI) and distance to the nearest river, which are selected
based on previous studies and data availability.
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3.3 Results
The dataset was split 80/20, with 20% of the unseen data being used for out-of-sample
accuracy assessment, the results of which are shown in Table 2. Three accuracy measures
are included:

Accuracy = (TP + TN)/(TP + FP + TN + FN)

Recall = TP/(TP + FN)

Precision = (TP/TP + FP)

where TP is True Positive; TN is True Negative; FP is False Positive; and FN is False
Negative.

Table 2 Accuracy, recall and precision for four models.

Model Accuracy Recall Precision

LR 0.70 0.80 0.66
GWLR 0.75 0.60 0.86

RF 0.81 0.65 0.96
GWRF 0.85 0.76 0.91

Regarding the overall accuracy of models, local models have been observed to have
approximately a 5% advantage over their global counterparts. This suggests that allowing
parameters to vary spatially can lead to an increase in model accuracy. Furthermore, machine
learning (ML) approaches have been found to be approximately 10% more accurate than
statistical approaches, indicating that complex non-linear and interaction effects are present
and can be captured by ML but not by statistical approaches. The proposed GWRF,
which allows for non-linearity, interaction, and spatial heterogeneity, has emerged as the
best-performing model, achieving a promising overall accuracy of 85%. Additionally, the
GWRF model demonstrates the second-highest precision and recall, resulting in a more
well-rounded and balanced performance in estimating flash flood occurrences.

4 Summary

Flash floods can pose significant threats to the environment, properties, and life. Recent
advances in AI particularly ML techniques provides new opportunities for assessing and
estimating the susceptibility of flash floods – an effective measure that can help with
designing flash flood risk reduction strategies. This research develops a novel Geographically
Weighted Random Forest (GWRF) within a generalisable local ML framework and compares
against other local and global statistical and machine learning approaches in estimating flash
flood susceptibility. The preliminary results show that GWRF has the best performance
among others with higher accuracy and more balanced precision and recall. The initial
findings suggest the importance of incorporating geographic space into ML approaches
to improve model performance. However, one drawback of ML is its black-box nature,
which limits interpretability. The recent development of eXplainable AI methods (XAI)
offers opportunities to estimate the effects of ML models and has been demonstrated to be
effective when modeling spatial data [7]. The next step of this research is to investigate the
explainability of the ML model to explore spatial and non-spatial relationships, enhancing
better understanding of flash flood processes.
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