
Causal Effects Under Spatial Confounding and
Interference
Jing Zhang #

School of Geographical Sciences, University of Bristol, UK

Abstract
Spatial causal inference is an emerging field of research with wide ranging areas of applications. As
a key methodological challenge, spatial confounding and spatial interference can compromise the
performance of standard statistical inference methods. In the current literature, there is a lack of
appreciation of the connections between spatial confounding and interference. This could potentially
lead to overspecialized silos of research. Therefore, we need further research to bridge such gaps
theoretically, and to find creative solutions for complex spatial causal inference problems. This
short paper offers a brief demonstration: It discusses the connections between spatial confounding
and interference. An illustrative simulation study shows how commonly used approaches compare
across four test scenarios. The simulation study is discussed with an emphasis on the promising
performance of counterfactual prediction based inference methods.
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1 Introduction

Knowledge of cause and effect plays an important role in explaining past events and planning
for future ones. Causal inference is, broadly speaking, the empirical quest for such knowledge.
The last seventy years have witnessed the formation of statistical inference frameworks that
revolutionised empirical approaches to causal inquiries. Most notably, we have the Potential
Outcomes (PO) framework [9] which approaches the inference of causal effect via an analogy
to randomised experiments. It would also be fitting to describe this progress as part of a
wider intellectual movement propelled by mutually reinforcing forces such as the vogue of
evidence-based policy, the availability of data, and the maturity of causal theories.

Spatial causal inference is causal inference in the presence of substantive spatial causal
mechanisms. Here, space can be interpreted as either geographical or relational. Over recent
years, spatial causal inference has emerged as an independent area of research. On the one
hand this is motivated by empirical topics that are irreducibly spatial. For example, policing
and neighborhood crimes, vaccination and disease spread, air pollution and health... This
makes spatial causal inference a valuable methodological endeavour with real world impact.
On the other hand, this is also characterised by unique analytical challenges associated with
spatial causal mechanisms that cannot be simply conceptualised as standard randomised
experiments.

This short paper aims to offer a synthesis of two key concepts in spatial causal inference
with illustrative examples. The paper was motivated by my observation that, in the current
literature, there is a lack of appreciation of the connections between key analytical concepts,
which could potentially lead to overspecialised silos of methodological research. Despite
recent efforts to document progress in spatial causal inference (e.g. [8]), we have more of an
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assemble of techniques rather than a cohesive picture of the field. I believe the field will
benefit from a consolidation of existing understandings of spatial causal problems as well as
approaches to meeting the analytical challenges. In this short paper specifically, the focus
will be placed on spatial confounding and interference. In the rest of the paper, I will first
reflect on the two concepts. Then, with a simulation study, I will compare commonly used
approaches across settings of spatial confounding and/or interference. The simulation will
be discussed with an emphasis on the promising performance of counterfactual prediction
based causal inference methods as an example of creative approaches that are able to engage
multiple methodological topics.

2 Challenges in spatial causal inference

Spatial causal inference is characterised by its unique methodological challenges. Individual
units are embedded in spatial contexts, and they interact in a spatially structured way.
This tends to create more complex dependence structures than standard non-spatial causal
inference methods admit. The resulted statistical problems are commonly captioned as
spatial confounding, spatial interference, and spatial heterogeneity. Here, let’s focus on
spatial confounding and spatial interference. Specifically, I want to draw attention to the
connections between spatial confounding and interference. Besides conceptual connections,
the two problems often coexist in real world scenarios. Therefore, although methodological
developments typically target one or the other, it is important that we understand how
spatial causal inference methods engage with and perform under both spatial confounding
and interference.

2.1 Spatial confounding
Confounding is a classic causal inference problem. Confounders influence both the treatment
allocation and the outcome, and therefore not adjusting for the confounder admits a spurious
correlation between the treatment and outcome variables. In spatial causal inference, we are
particularly interested in confounders with significant spatial patterns (e.g. Figure 1.a), a
condition which makes confounding adjustment amenable to spatial statistical techniques.
The best way to think of spatial confounding is as a shorthand for spurious correlation due
to omission of spatial variables. In recent literature, spatial confounding is mainly covered
by the area of research on causal effects under unmeasured confounding. Under unmeasured
confounding, the causal parameter in a PO model (typically the Average Treatment Effect,
ATE) cannot be fully identified. Progress has been made on identification with propensity
score matching (e.g. [2] [7]), using confounder proxy variables (e.g. [3]). For causal effect
estimation, there are techniques to derive bounds for the causal parameter, for example,
through sensitivity analysis (e.g. [1]), nonparametric bounding and interval estimates (e.g. [5]).

2.2 Spatial interference
In causal inference, ‘interference’ refers to the existence of dependence of an observational
unit’s outcome on the treatments of other units. In the PO framework, no interference is one
of the basic assumptions, commonly known as one component of the Stable Unit Treatment
Value Assumption. Spatial interference refers to scenarios of causal interference resulted
from spatial interaction among the units. A typical case is treatment spillover, where a
unit is exposed to a direct treatment as well as an indirect spillover treatment from its
neighbours (e.g. Figure 1.b). This is what makes the interference problem unique, as we may
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Figure 1 Illustrative Directed Acyclic Graphs (DAG) for spatial confounding and interference.
(Subscript denotes location.)

be interested in more than one causal estimands. The identifiability of causal effects under
interference has been thoroughly investigated, among others, by Manski [6], and Forastiere [4].
Short of fieldwork-based exposure mapping to obtain true exposure levels, the estimation
relies on strong restriction assumptions about the structure of causal interaction. Apart
from interaction restrictions, the identification also relies on assumptions of no unmeasured
confounding.

2.3 Common sources and shared solutions?

One way to appreciate how confounding and interference are connected is to reflect on
the relationship between causal mechanisms and their reduced statistical representations.
Although spatial confounding and spatial interference are conceptually distinct, they could
be manifestations from the same underlying causal mechanism. In other words, it is possible
that a given spatial causal mechanism, when translated as a statistical model, can present
with either confounding or interference or both. As an illustrative case: When measuring the
effect of vaccination on disease spreading, it can be conceptualised as an interference case
(where the unvaccinated population receives a spillover protection from the vaccinated via
mediation of group immunity, Figure 1.c); or it can be conceptualised as a confounding case
(where the neighbourhood context of individuals confounds their actually received levels of
protection as well as health outcome, Figure 1.a). Spatial confounding and interference can
also coexist (e.g. Figure 1.d). With the example of neighbourhood crime rate interventions:
The interference aspect is that intervention on one neighbourhood could affect crime rates of
adjacent ones. There could coexist an element of confounding if intervention and crime rate
variables are spatially distributed and a shared spatial trend creates a spurious dependence
between them.

We can also try to understand the connection between spatial interference and confounding
through the language of statistical causal inference. In a way, we can say that, a spatial
interference problem is a spatial mediation problem wrapped within a confounding problem
(e.g. Figure 1.e). After we peel away the confounding part with, for example, propensity score
methods, the task of estimating direct and indirect effects is in spirit a task of estimating
path specific causal effects. In the style of mediation analysis, the effect of direct treatment
can be estimated conditional on indirect treatment levels and vice versa (e.g. [10]; [11]) . In
other words, an indirect effect is a causal effect mediated by the spatial interaction structure
of the observational units, while the existence of such a structure usually also implies some
degree of spatial confounding.
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If spatial interference and confounding are so closely linked, what does this mean for
methodology developments? To approach this question, first we have to better understand
how the performance of existing methods generalises over spatial confounding and interference
problems. So far, we have limited knowledge on this issue, as confounding and interference
have been handled in separate strands of literature. To gain some insights, an illustrative
simulation study is carried out.

3 Simulation study

The simulation study covers test scenarios of spatial confounding, spatial interference, and
the coexistence of the two. Tested methods include two popular approaches to spatial causal
inference: propensity score based adjustments, and spatial regression. Also tested is causal
effect estimation based on counterfactual prediction of unobserved potential outcomes (also
known as imputation based method). The counterfactual prediction approach is relatively
new and has shown potential in addressing complex spatial causal inference problems.

3.1 Experiment design
The experiment is based on a basic setup. For the basic setup, the test dataset is generated
in the following way: We have n observational units characterised by k covariates Xz drawn
from a uniform distribution. Each unit inhabits a random location on a square. Its neighbours
are defined as the set of units within a certain distance band. Its neighbourhood attributes
Xg are represented by the average values of its neighbours’ covariates. The assignment of
direct treatment is independently determined by a unit’s attributes Xz . The treatment Z is
drawn from a Bernoulli distribution based on treatment propensity ez(Xz). A unit’s outcome
is determined only by its direct treatment status, Z = 1 treated and Z = 0 not treated.
Accordingly, each unit has two potential outcomes, one of which is observed. The potential
outcomes corresponding to direct treatment Z are Y z = Z ∗ τz + Xz ∗ β + ϵ, ϵi.i.d. ∼ N(0, 1),
where τz is the average treatment effect parameter of interest. To reflect spatial causal
inference problems, different spatial causal mechanisms are added to the basic setting. This
includes the following test scenarios:
(a) Spatial interference: In this scenario, besides direct treatment, a unit’s outcome is also

affected by its exposure to a neighbourhood treatment spillover G , G = 1 receiving
spillover and G = 0 no spillover. The neighbourhood exposure G is determined by a
unit’s neighborhood covariate levels based on propensity eg(Xg). The marginal potential
outcome corresponding to neighbourhood exposure G is Y g = τg ∗ G , where τg is the
average indirect treatment effect parameter. A unit’s observed outcome is Y = Y z + Y g.
Accordingly, each unit has four potential outcomes, one of which is observed.

(b) Spatial confounding: To introduce spatial confounding, the Xz covariates are spatially
smoothed, which introduces a common spatial pattern in the treatment and outcome
variables.

(c) Interference and confounding: A test scenario where both interference and confounding
from scenarios (a) and (b) are present.

(d) Non-linearity: On top of scenario (c), a non-linear function is used to generate the
outcome variable.

The following list of causal inference methods are tested. They are denoted as:
IMP: Imputing unobserved potential outcomes with non-parametric models, followed by
inverse probability weighting to estimate average causal effects.
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NS: A baseline non-spatial PO model.
NSP: Non-spatial PO model with propensity score adjustment.
S: A baseline spatial model. The model takes the form of a spatial regression, as spatial
econometric models are common in the estimation of spillover effects. The model is
formulated as a PO model with spatially lagged treatment and confounder variables.
SP: Model S with propensity score adjustment.

Some further clarifications: In the simulation, all the methods are implemented in their
basic form for a fair comparison. While misspecification of the interference structure and
inaccuracy of propensity score estimation are important sources of bias, in this experiment
the test is kept simple. Where needed, true propensity scores and true interference network
is used. For each scenario, the tests are run with sample size 1000, covariate dimension 5.

Figure 2 Main results of simulation experiments.

3.2 Test results
Test results are reported in Figure 2. The four subplots corresponds to the four test scenarios.
For each test scenario, the estimated average treatment effects from the five models are
benchmarked on ground truth. A few findings from the results:
(1) Across all test scenarios, comparing the performance of models ‘NS’ with ‘S’, and models

‘NSP’ with ‘SP’, we can see that the incorporation of spatial regression adjustment does
not necessarily help to improve estimation accuracy. More generally, in applied cases it is
difficult to verify the specification of spatial regression models, which can be a significant
problem for causal inference tasks.

(2) Comparing the performance of models ‘NS’ with ‘NSP’, and models ‘S’ with ‘SP’, the
incorporation of propensity scores helps to adjust the estimates in the correction direction
for most test scenarios. This is including the scenario with spatial interference and no
confounding (Figure 2.b).

(3) Comparing Figure 2.c with other scenarios, we can see that the coexistence of interference
and confounding is challenging, as most models perform worse under this scenario.
Meanwhile, compared with other models, the estimation accuracy of the counterfactual
prediction based method ‘IMP’ does not deteriorate significantly when spatial confounding
and interference coexist, suggesting a robustness of this approach.

(4) Across all test scenarios, comparing the performance of ‘IMP’ models with others, we
can see that the counterfactual prediction based method performs as well as the other
methods in recovering the true causal effect. While propensity score based adjustments
and spatial regression techniques are mainstream and have enjoyed decades of refinement,
the counterfactual prediction approach is relatively new to spatial causal inference.
Recently, the approach has been employed by Davis et al. [2] in a spatial confounding
setting, and by Forastiere et al. [4] in a network interference setting. I believe the
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counterfactual prediction approach is a promising direction of further methodological
research. It is flexible enough to accommodate complex cases of spatial causal inference.
And, it provides alternative ways to derive uncertainty quantification for models and
parameters.

4 Conclusions

Spatial causal inference is an emerging field of research with wide ranging areas of applica-
tions. It is one of the methodological frontiers in the ongoing causal modelling movement.
Complementary to existing review papers, this short piece offers a synthesis of two import-
ant concepts in spatial causal inference: spatial confounding, and spatial interference. A
key message here is that: In the current literature, there is a lack of appreciation of the
connections between core analytical concepts. This could potentially lead to overspecialised
silos of research. Respectively, I believe several directions of research could benefit the field:
Theoretically, we need further efforts on consolidating existing understandings of spatial
causal problems and approaches to meeting the analytical challenges. Methodologically,
counterfactual prediction is a promising direction of research which could potentially lead to
flexible methods for complex spatial causal inference cases.
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