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Abstract
In a period-timestamped, relational temporal database, each tuple is timestamped with a period. The
timestamp records when the tuple is “alive” in some temporal dimension. Nonsequenced semantics
is a query evaluation semantics that involves adding temporal predicates and constructors to a query.
We show how to use log-segmented timestamps to improve the efficiency of temporal, nonsequenced
queries evaluated using a non-temporal DBMS, i.e., a DBMS that has no special temporal indexes
or query evaluation operators. A log-segmented timestamp divides the time-line into segments of
known length. Any temporal period can be represented by a small number of such segments. The
segments can be appended to a relation as additional columns. The advantage of log-segmented
timestamps is that each segment can be indexed using standard database indexes, e.g., a B+-tree.
A query optimizer can use the indexes to generate a lower cost query evaluation plan. This paper
shows how to rewrite a query to use the additional columns and evaluates the time cost benefits and
space cost disadvantages.
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1 Introduction

In a tuple-timestamped, temporal relational database, the lifetime of a tuple in some temporal
dimension is recorded using a period timestamp. The period timestamp represents the lifetime
using a start time and an end time. Temporal relational database management systems
process the timestamps in queries using two commonly recognized semantics for temporal
query evaluation: sequenced [3] and nonsequenced [5]. Sequenced query evaluation, in effect,
runs the query in every time instant, while nonsequenced semantics is about the evaluation
of explicit temporal predicates, constructors and functions.

We previously showed how to use a different kind of timestamp, which we called a
log-segmented timestamp, to implement sequenced semantics for queries in an unmodified
relational DBMS [14] and that sequenced semantics can be leveraged to support other kinds
of semantics [16]. This paper shows how to use log-segmented timestamps to implement
nonsequenced semantics. The primary benefit of doing so is that the log segments can be
indexed by non-temporal indexes, and the indexes can be used to (sometimes) lower the cost
of query evaluation.

To illustrate nonsequenced query evaluation, consider the query given in Figure 1. The
query computes the join on the dept attribute between the Tesco and Walmart relations;
the relations are shown in Figure 2. The OVERLAPS temporal predicate in the WHERE clause
determines if the timestamps for the time attributes in each relation overlap. The query can
be translated by a layer into a Postgres SQL query as shown in Figure 3. Evaluating the
query in Figure 3 gives the result in query Figure 2(c).
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13:2 Optimizing Nonsequenced with Log Segments

SELECT s.dept, OVERLAPS(r, s)
FROM tesco s, walmart r
WHERE r OVERLAPS s

Figure 1 Query to compute the temporal join between two tables.

Data Time Metadata Data Time Metadata
Dept Start Stop Dept Start Stop
Shoe 1 5 Shoe 2 3

Shoe 5 6

(a) Relation Tesco (b) Relation Walmart

Data Time Metadata
Dept Start Stop
Shoe 2 3
Shoe 5 5

(c) Result of the nonsequenced evaluation of the query in Figure 1.

Figure 2 Example relations.

The focus of this paper is on the cost of query evaluation and whether that cost can
be reduced. As an example, consider the evaluation of the query in Figure 3 on relations
with 50K tuples. The query evaluation plan generated by the SQL compiler for the query is
given in Figure 4. To improve query efficiency in the plan a two attribute index was created
(indexstartstop) on the time attributes as well as individual indexes on each attribute.
The index is used in the nested loops join, but the overall cost of the query (given in the top
line of the plan) is 30,587,076.

The key research question addressed by this paper is whether this query evaluation plan
can be improved using “off-the-shelf” relational DBMS technology, i.e., not using a specialized
temporal index or other modifications of a DBMS. Using the techniques presented in this
paper we show how to lower the cost to 1,376,011. The optimizer can choose between the
plans to generate the lowest cost query.

This paper makes the following contributions.

We describe how to extend a relation to store a temporal period using log segments.

We show how to use log segments to evaluate a nonsequenced temporal predicate.

We describe experiments with the Postgres DBMS that demonstrate the efficacy of our
approach. Our experimental reproducibility package is available.1

This paper is organized as follows. The next section gives background material relevant
to the paper. Section 3 presents the main technical content of the paper, how to store
log segments and use the segments in nonsequenced query evaluation. Evaluation of the
technique is given in Section 4 followed by a discussion of related work and a short conclusion
with remarks on future work.

1 https://www.usu.edu/cs/people/CurtisDyreson/logsegmented/nonsequenced

https://www.usu.edu/cs/people/CurtisDyreson/logsegmented/nonsequenced
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SELECT s.dept,
GREATEST(r.time.start, s.time.start) AS start,
LEAST(r.time.stop, s.time.stop) as stop

FROM tesco s, walmart r
WHERE ((r.start <= s.start AND s.start <= r.stop)

OR (s.start <= r.start AND r.start <= s.stop))

Figure 3 Query to compute the nonsequenced temporal join between two tables.

Nested Loop (cost=228.08..30587076.79 rows=524691358 width=20)
-> Seq Scan on empt r (cost=0.00..1662.00 rows=50000 width=20)
-> Bitmap Heap Scan on empt s (cost=228.08..454.30 rows=10494 width=8)

Recheck Cond: (((r.start <= start) AND (start <= r.stop))
OR ((start <= r.start) AND (r.start <= stop)))

-> BitmapOr (cost=228.08..228.08 rows=11111 width=0)
-> Bitmap Index Scan on foostart (cost=0.00..55.86 rows=5556 width=0)

Index Cond: ((start >= r.start) AND (start <= r.stop))
-> Bitmap Index Scan on foostartstop (cost=0.00..166.97 rows=5556 width=0)

Index Cond: ((start <= r.start) AND (stop >= r.start))

Figure 4 Query execution plan for a temporal join.

2 Preliminaries

In this section we describe background material pertinent to the paper.

2.1 Model of time
This research is orthogonal to assumptions about the time-line, number of temporal dimen-
sions, representations of time, and data model. But for simplicity, we make the following
assumptions.

We use a discrete time-line, with chronons ranging from time −∞ to time ∞.
There is only one time dimension.
We assume a relational data model (as either sets or bags of tuples) in which every tuple
in every relation is annotated with temporal metadata that records the lifetime of the
tuple in some time dimension. That is, it is a tuple-timestamped model [20].

2.2 Temporal Query Semantics
Sequenced and nonsequenced semantics were introduced as different semantics for the evalu-
ation of a temporal operation such as a query or data modification, and both semantics are
important [19]. Böhlen and Jensen trace the history and meaning of sequenced semantics [2],
but, put simply, sequenced semantics evaluates an operation in each time instant using
only the data alive at that time. Nonsequenced semantics, in contrast, means that an
operation explicitly references and manipulates the timestamps in the data [5]. In some
sense, nonsequenced semantics is the absence of a implicit temporal semantics, only explicit,
direct manipulation of the timestamps is supported.

One important benefit of both semantics is that they reduce to non-temporal semantics.
For sequenced semantics, the reducibility is called snapshot reducibility [23] or S-reducibility [4].
The temporal semantics is defined in terms of a (presumably easily understood) slice of
temporal to non-temporal, and the non-temporal semantics of query evaluation (also, well
understood).

TIME 2023
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Figure 5 Log segments on a time-line.

Nonsequenced semantics is also reductive. The time information is converted to data,
and the non-temporal operation is evaluated on the data. Since time plays no special role
in the evaluation, each tuple in the result has no (implicit) time. Instead, the times are
manipulated through temporal functions, temporal predicates, and temporal constructors
specified in the query. Some of the constructors can convert the data back into time.

Traditionally, the two semantics have been seen as different, though proposals for recon-
ciling the differences exist [16].

2.3 Log-segmented Timestamps

Most temporal database research and implementation uses period timestamps to annotate
data with temporal metadata [22]. Period timestamping appends a timestamp to each
data item to represent its lifetime. A variation of tuple-timestamped models is attribute
timestamping where timestamps are appended to each attribute in a tuple rather than to the
entire tuple [25].

Period timestamps are a poor fit for architectures that need to partition large data sets
into smaller shards to process, e.g., mapreduce architectures [21] or hash joins in a DBMS.
Consider, for instance a hash join operation. Data items that have the same join values hash
to a common bucket, and the buckets are joined. The strategy is efficient since it ensures
that only data items that actually will join are put into a bucket. A temporal join adds a
further condition that two data items join only on the times at which they are both alive.
For period timestamps this is computed as the temporal intersection of the timestamps. If
the intersection is empty, the items do not join since they do not coexist at any point in time.
The problem is that periods cannot be directly mapped to buckets in a way that ensures
that the items within a bucket temporally intersect. Consider the periods [1,2], [8,9], and
[0,10]. [1,2] and [8,9] should be placed in different buckets since they do not intersect,
and hence, never represent data that coexists. But [0,10] intersects both, it has to be
placed into both. Since a period of size n has n(n + 1)/2 sub-periods that could intersect,
every period potentially needs to belong to many buckets.

To address this challenge we developed a log-segmented timestamp [13]. The timestamp
uses a labelling scheme for pre-determined periods on a time-line. A label is a binary number
that has the following meaning.
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Table 1 Some example labels for the time-line 0. . .15.

Label Period tx ty

1 0 – 15 0 15 = 0 + (24 − 1)
10 0 – 7 0 = 0 ∗ 24 8 = 0 + (23 − 1)

110 8 – 11 8 = 1 ∗ 23 11 = 8 + (22 − 1)
1101 10 – 11 10 = 1 ∗ 23 + 1 ∗ 21 11 = 10 + (21 − 1)

10011 3 – 3 3 = 1 ∗ 21 + 1 ∗ 20 3 = 3 + (20 − 1)

0 1

0 1

0 1

0 1

0 1 0 1 0 1

0 10 1 0 1 0 10 1 0 1 0 1 0 1

1-11

2-3
1

Times

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5-6

Figure 6 Log segments for the times in the relations in Figure 2 a) and b).

▶ Definition 1 (Log-segment Label). Let a (discrete) time-line consist of the times t0, . . . , tn,
where n = 2k − 1. Note that n can be represented using a binary number of length k with
each digit set to 1. A label is a binary number, b0. . .bj , and b0 is always 1. The label 1b1. . .bj ,
j ≤ k, represents the time period tx to ty where tx = b12k−1 + b22k−2 + . . . bj2k−j and
ty = tx + (2k−j − 1).

The log segments for a time-line from 0 to 15 are depicted in Figure 5. The chronons in
the time-line are numbered at the bottom of the figure. Each gray rectangle in the figure is
a segment. A label for a segment is the concatenation of 1’s and 0’s along the path from the
root to a segment. Some example labels are shown in Table 1. Note that only 2n − 1 of the
(n + 1)(n + 2)/2 possible periods in the timeline are labelled.

A log-segmented timestamp is the minimal set of segments that spans a given period.
For example, the log-segmented timestamp representing the period [3,11] is {10011, 101,
110} (naming the periods {[3,3], [4,7], [8,11]}, respectively). The log-segmented
timestamps for the times in the relations in Figure 2 a) and b) is graphically depicted in
Figure 6.

Log-segmented timestamps have the following properties.
Comprehensive - A time-line of size n has at most 2n − 1 labels. Each label will have
a maximum length of 1 + ⌈log2(n)⌉ bits. So a label of 64 bits (the size of a long long
scalar in C++) can represent a time-line of 263 − 1 time values, which encompasses a
time-line longer than current estimates of the lifetime of the universe to the granularity
of microseconds [17].
Compact - The maximum number of segments in a log-segmented timestamp for a period,
[tx,ty], is 2 ∗ ⌈log2((1 + ty) − tx)⌉. So assuming 64 bit labels, a log-segmented timestamp
has at most 2*64 labels.

TIME 2023
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Data Time Metadata
Dept Start Stop s1 s2 s4 s8 s1x s2x s4x s8x
... 1 11 10001 1001 101 110
... 2 3 1001
... 5 6 10101 10110

Figure 7 Example segment columns for the periods in Figure 6.

3 Timestamp Representation and Temporal Predicates

To process nonsequenced log-segmented queries, we choose to represent log segments by
adding additional columns (attributes) to a table (relation). There are two kinds of additional
columns, which we describe in this section: segment columns and prefix columns. It may
seem counter intuitive to add columns in order to improve evaluation efficiency, but, in effect,
we are trading space for time since the columns that we add will be indexed and the indexes
used to lower the time cost.

3.1 Segment Columns

A segment column is a column that stores a log segment as an integer. We observe that a
log segmented timestamp has at most two segments with the same length. For instance in
Figure 6 there are two segments with the same length, 101 and 110, in the set of segments
for the period [1-11]. Hence 2log2(n) columns are required to store all of the segments.
Moreover, each column can be distinguished by the length of the segment that it stores, i.e.,
a segment with length n can be stored in the segmentn column, and the second segment (if
present) in the segmentnx column. An example is shown in Figure 7. It depicts the segments
for the log-segmented timestamps in Figure 6. The segment columns (e.g., s1) are appended
to each row in the table. We assume a timeline for this example of only 16 chronons. An
s16 column is not needed since the entire timeline can be represented by the segments in s8
and s8x.

Any missing segment column value is null, hence the additional columns will be relatively
sparsely populated. Most modern DBMSs do not store null values, rather no space is allocated
for a null, instead the column is marked as no size in the row header.

3.2 Prefix Columns

The prefix columns record each segment that contains the starting (stopping) chronon of a
period. For any given segment, the segment is contained is each segment that is a labelled
with a prefix. For instance the segment 1101 is contained within the segments 110, 11, and 1.

Prefix columns are appended to each row in a table to store the prefixes for the start and
stop chronons. Each prefix must have a different length, hence the length of the label can be
used in the name of the column, e.g., p4 for a start chronon prefix of length 4 and p2e for a
stop chronon of length 2. Figure 8 shows the prefixes for the log-segmented timestamps in
Figure 6.



C. E. Dyreson 13:7

Data Time Metadata
Dept Start Stop p1 p2 p4 p8 p1e p2e p4e p8e
... 1 11 10001 1000 100 10 11011 1101 110 11
... 2 3 10010 1001 100 10 10011 1001 100 10
... 5 6 10101 1010 101 10 10110 1011 101 10

Figure 8 Example prefix columns for the periods in Figure 6.

3.3 Reasoning About Chronon Containment
The segment and prefix columns can be used to determine whether a start (or stop) time is
contained within a period. Let chronon x have prefixes p1, p2, p4, . . . , pn and period [z, y]
have segments s1, s2, s4, . . . , sn, s1x, s2x, . . . , snx, then x is contained in [z, y] if

∃i(pi = si ∨ pi = six)

As examples consider the following using the segments of Figure 7 and the prefixes of Figure 8.
Is 2 contained in [1-11]? The segments of [1-11] are

Dept Start Stop s1 s2 s4 s8 s1x s2x s4x s8x
... 1 11 10001 1001 101 110

and the prefixes of 2 are as given below.

Dept Start Stop p1 p2 p4 p8 p1e p2e p4e p8e
... 2 10010 1001 100 10

Since p2 = s2, it is contained within.
Is 2 contained in [5-6]? The segments of [5-6] are

Dept Start Stop s1 s2 s4 s8 s1x s2x s4x s8x
... 5 6 10101 10110

and the prefixes of 2 are as given below.

Dept Start Stop p1 p2 p4 p8 p1e p2e p4e p8e
... 2 10010 1001 100 10

There is no i such that pi = si or pi = six, hence it is not contained.

3.4 Temporal Predicates
Log-segmented timestamps give an alternative to using the start and stop times in a period
to implement some temporal predicates. Examples include the following.

x OVERLAPS y - If the start chronon in x is contained in the period y or vice-versa then
period x overlaps period y. Figure 9 shows the SQL to add to the WHERE clause to express
an OVERLAPS predicate, assuming a timeline of 219 chronons. Note that the query could
be rewritten using UNION or UNION-ALL to break up the large disjunctive condition in the
WHERE clause.

TIME 2023
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WHERE ...
(x.s1 = y.p1 OR r.s2 = y.p2 OR ... OR x.s19 = y.p19

OR x.s1 = y.p1e OR r.s2 = y.p2e OR ... OR x.s19 = y.p19e
OR y.s1 = x.p1 OR y.s2 = x.p2 OR ... OR y.s19 = x.p19
OR y.s1 = x.p1e OR y.s2 = x.p2e OR .. OR y.s19 = x.p19e)

Figure 9 SQL for computing OVERLAPS in a time-line of 219.

WHERE ...
(x.start = y.start AND x.stop <> y.stop AND
(y.s1 = x.p1e OR y.s2 = x.p2e OR ... OR y.s19 = x.p19e)

)

Figure 10 SQL for computing STARTS in a time-line of 219.

x STARTS y - If x and y have the same start chronons and different end chronons and
the stop chronon of x is contained in period y then x starts y. Figure 10 shows the SQL
to add to the WHERE clause to express a STARTS predicate, assuming a timeline of 219

chronons.
x CONTAINS y - If the start and stop chronons of y are contained within x then x contains
y.

Note that log segments do not provide an alternative for predicates that only involve period
endpoints, such as MEETS. These predicates can still be evaluated using the start and stop
chronons in the timestamp.

3.5 DBMS Implementation

It is highly unlikely that a user could manually manage the prefix and segment columns,
for instance, populating these columns when inserting a tuple. To better support users we
envision a stratum approach to implementation whereby a user interacts with the DBMS
through a layer of middleware layer. The layer provides three key services.
1. Query rewriting - We observe that the schema supports query evaluation on both log-

segmented timestamps and normal timestamps (it is not an either-or choice, both can
be supported simultaneously). A query will be rewritten by replacing the nonsequenced
and sequenced predicates and constructors in the query in two ways. First the query
will be rewritten to evaluate with respect to the normal (non-log segmented timestamps).
For example an overlaps predicate will be replaced with the SQL to compare start
and stop timestamps. Note that this is how non-sequenced query evaluation is usually
implemented. Second the query will be rewritten to use the log segmented timestamps.
Both rewritten queries will be submitted to the query optimizer to determine which has
an (estimated) lower cost, and that query evaluation plan will be chosen.

2. Schema modification - Schema modification statements, e.g., CREATE TABLE will be
rewritten to manage the prefix and segment columns automatically. All indexes for the
additional columns will be created or dropped as needed.

3. Data modification - Data modification statements will be rewritten to manage the prefix
and segment columns automatically. Note that computing log segments is a simple
calculation that can be done using an SQL function [14].
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4 Evaluation

Log segments add columns to a relation and complicate the expression of temporal predicates,
but they provide one key benefit: the segment and prefix columns can be indexed and the
indexes can be utilized by the query optimizer to lower the time cost of query evaluation.
This section describes an experimental evaluation of temporal predicates using log segmented
timestamps.

4.1 Experiment Environment
The experiments were run on an Intel Core i7 CPU, 1.8 GHz clock speed, 16 GB of memory
and 1 TB SSD drive running Windows 10 Pro 64-bit as the operating system. We used
Postgres, version 14, and did not change any installation or configuration parameters from
the standard (default) installation.

4.2 Schema for Experiments
We tested with two schemas: periodStamped and segmentStamped. The periodStamped
schema has one table, an Employee table with the schema given below.

Employees(id, name, department, start, stop)

The id column is the primary key of the table (the snapshot versus temporal key is not
relevant to the experiments) and an integer type, the name and department columns are
string types, and the start and stop columns are integers. The segmentStamped schema
has one table, an Employee table with the schema given below.

Employees(id, name, department, start, stop,
s1, s2, ..., s19, s1x, s2x, ..., s19x,
p1, p2, ..., p19, p1e, p2e, ..., p19e)

The added segment and prefix columns are integer types. We chose to represent a log segment
using the time of the first chronon in the segment.

4.3 Database Generation
We synthetically generated a database for each of the schemas. We used 100 different
departments and 90% (of the total number of tuples) different names when populating the
table. We chose a timeline of 219 (enough to represent a span of 60 years to a granularity of
seconds) and used timestamps randomly chosen within the timeline and of random length
(from 1 to 28). We used test cases of 10000, 20000, 30000, 40000, and 50000 tuples and
created one column indexes for every timestamp column (start through p19e) as well as a
two column index on the start and stop columns. The resulting database sizes are shown in
Figure 11. The log segmented tables are roughly twice the size of the period stamped tables,
but the indexes for the log segmented tables approximately quadruple the storage cost.

4.4 Measuring Query Cost
To mitigate the impact of database buffering, we used the query cost as estimated by the
Postgres query optimizer using EXPLAIN. The optimizer computes the cost in units that do
not have an exact correspondence to running time, i.e., a cost of 100 does not mean 100 ms
of time taken to evaluate a query, but rather are used to determine cheaper versus more
expensive queries.

TIME 2023
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segmentStamped table and indexes

Figure 11 Size of data in database (in MBs).

We also measured actual query time using EXPLAIN ANALYZE. We took the minimum cost
query over five runs (the variance was inconsequential). The measurements were taken with
respect to a warm cache.

4.5 Predicate Evaluation
We measured the cost of three predicates on a fully temporal join, i.e., joining the two
relations only on the temporal attributes. The first experiment measure the cost of overlaps.
The results are shown in Figure 12. The log-segmented cost is estimated by the compiler
to be much lower than that of the period stamped relations. The reason is a different
query execution plan. The query execution plan for the period stamped relations was given
previously (see Figure 4). Figure 16 shows the relevant part of the log segmented query
execution plan. The compiler generates an efficient plan that uses bitmap indexes for matches
between segment and prefix columns, yielding a lower cost query plan. The actual timings of
the queries shown in Figure 14 show that the query optimizer produced an accurate estimate,
and that the bitmap index use does speed up queries.

The second experiment measures the cost of contains. The results are shown in Figure 13.
Contains is slightly more efficient for both period and log-segmented timestamped relations.
Note that in the log-segmented plot the cost of the 50K join is less than that of the 40K cost.
This reflects a change in the optimization strategy chosen by the query optimizer; at 50K
tuples the optimizer chooses a parallel scan so gets some performance improvement. Figure 15
shows that the measured query times have the same profile as the estimates produced by the
query optimizer.

The third experiment measures the cost of starts. The results are shown in Figure 17.
Note that overall the costs are orders of magnitude lower than the other two predicates. This
is because both the period and log segmented queries use an equality comparison on the
start time, e.g., r.start = s.start, together with a test to determine whether the stop
time is less. The start time condition can take advantage of the start index for both kinds of
timestamp, and this in effect determines the cost of the query. The cost of testing end stop
time is slightly worse for the log segmented timestamp, which increases its cost slightly. Note
that the cost of the 50K case is better than the 40K case for the log segmented timestamps
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Figure 12 Optimizer estimate for overlaps.
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Figure 13 Optimizer estimate for contains.
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Figure 14 Measured Time for overlaps.
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Figure 15 Measured Time for contains.

due to parallelization in the query execution plan. Figure 18 shows that period timestamped
query have slightly lower times than the log-segmented timestamped, as predicted by the
query optimizer.

4.6 Discussion of Results
Appending columns to a relation to store log segments and prefixes of the start and stop
chronons effectively doubles the size of a relation with few data columns. Adding indexes on
the segment and prefix columns further increases the cost. But, in practice relations with 10
to 100 data columns are more common, so the storage cost difference would often be less
in real-world situations. In some cases the query optimizer can use the added columns and
indexes to generate a lower cost query evaluation plan at the cost of increasing the size and
complexity of the WHERE clause predicate. But in many cases using the start and stop times
and indexes offers a better plan as shown by the third experiment (the starts experiment).
Utilizing log segments can be seen as a potential optimization technique that increases the
space of potential plans, and the query optimizer can examine other constraints in the query
to choose the best, lowest cost plan.

TIME 2023
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Nested Loop (cost=12.13..102716.47 rows=120094 width=20)
-> Seq Scan on empt r (cost=0.00..417.00 rows=10000 width=176)
-> Bitmap Heap Scan on empt s (cost=12.13..18.11 rows=18 width=84)
Recheck Cond: ((s1 = r.p1) OR (s2 = r.p2) ... OR (s262144 = r.p262144x)

OR (s524288 = r.p524288x))
-> BitmapOr (cost=12.13..12.13 rows=18 width=0)

-> Bitmap Index Scan on foos1 (cost=0.00..0.30 rows=1 width=0)
Index Cond: (s1 = r.p1)

-> Bitmap Index Scan on foos2 (cost=0.00..0.30 rows=1 width=0)
Index Cond: (s2 = r.p2)

-> Bitmap Index Scan on foos4 (cost=0.00..0.30 rows=1 width=0)
...
-> Bitmap Index Scan on foos524288x (cost=0.00..0.30 rows=1 width=0)

Index Cond: (s524288 = s_1.p524288)

Figure 16 Query execution plan using indexes on the segment and prefix columns for a temporal
join.
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Figure 17 Optimizer for starts.
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Figure 18 Measured time for starts.

5 Related Work

There are many temporal extensions of query languages, c.f., [7,18,23,24]. This paper focuses
on temporal SQL. The extensions have been broadly characterized in various ways but
sequenced vs. nonsequenced distinguishes extensions, in part, by whether the time metadata is
manipulated implicitly or explicitly. This paper is about nonsequenced semantics. Temporal
languages have also been characterized as abstract vs. concrete based on whether their syntax
and semantics depends on a specific representation of the time metadata [8]. This paper
describes an abstract semantics, and proposes a concrete representation to optimize some
nonsequenced queries.

Two implementation approaches are common for SQL-like temporal query languages. A
stratum-approach adds a source-to-source translation layer to translate a query in a temporal
extension into an equivalent query in the original, non-extended language [26, 27]. Some
constructs prove not possible to translate using period timestamps, e.g., sequenced outer
join, so the only feasible approach is to extend the DBMS itself [11]. A related approach is to
translate to a non-standard variant of SQL [15], in anticipation that SQL will one day evolve to
incorporate the variant. We adopt a stratum approach in this paper whereby a nonsequenced
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query is translated to a (non-temporal) SQL query and evaluated on a unmodified relational
DBMS. We know of no other papers that explore optimization of nonsequenced queries using
non-temporal indexes or without making other changes to the DBMS.

Hierarchical partitioning of intervals into smaller segments, similar to log segments, for
the purposes of indexing has been explored recently [9]. Our research [13,14] predates this
effort and supports indexing by B-tree indexes.

There are several papers that also support the use of B-tree indexes in evaluating temporal
constructors and predicates c.f., [1, 6, 10, 12]. In particular, it was proposed that a range
query on a B-tree index combined with a UNION could be used to efficiently compute a
non-sequenced join using an overlaps predicate [12]. While we found also found that UNION,
or more specifically UNION-ALL, was useful in optimizing queries with an OR predicate in
the WHERE clause, but care had to be taken to preserve duplicates or not over-produce
duplicates in the query result. The UNION-ALL optimization could also be used for log
segmented timestamps which have many OR predicates in overlap joins. One key difference
is that we do not use range index queries, rather we use point index queries to evaluate the
join. Techniques to augment the DBMS evaluation engine for improved join strategies [1]
go beyond the scope of this paper, we focused on not altering the DBMS query evaluation
engine.

6 Conclusion and Future Work

The primary contribution of this paper is to show a novel method for optimizing nonsequenced
SQL queries. Temporal query languages often extend a non-temporal language by adding
temporal predicates, constructors, and functions which directly manipulate the time metadata
that annotates the data. A query is said to be nonsequenced if it explicitly includes one of
these added temporal features. When a nonsequenced query is evaluated, the nonsequenced
part of the query is evaluated against the time metadata, e.g., a temporal overlaps predicate
checks if two timestamps overlap in time.

A tuple-timestamped relational database appends to each tuple a period timestamp for
each temporal dimension. The start and stop times in the timestamp can be indexed, and
often a query execution plan can use the indexes to lower the cost of query execution. This
paper proposes adding a log-segmented timestamp to each tuple, in addition to a period
timestamp. A log-segmented timestamp divides the time-line into segments of known length.
Any temporal period can be represented by a small number of such segments. The segments
can be used as an alternative to determining containment of a start or stop chronon within a
period. We described how a relation can be extended with segment and prefix columns and
how these columns can be used in the nonsequenced evaluation of temporal predicates such
as OVERLAPS. We experimentally showed that an off-the-shelf relational DBMS can index the
segments and the query optimizer can use the indexed segments to generate a lower cost
query evaluation plan, though with higher space cost.

In future we plan to continue to investigate log segmented timestamps. We observe that
such segments can be used to improve temporal hash joins with a specialized temporal hash
join operator that can be added to a DBMS. The idea is that each tuple is first hashed to
a data bucket, and if that data bucket becomes full, then further hashed to different time
buckets within a data bucket by using log segments as the hash function. A time bucket
joins with all time buckets within a data bucket that are prefixes of the segment. A second
avenue to explore is prefix-based indexing. In this paper, we proposed precomputing the
prefixes and storing them as additional columns, but the prefixes are actually visited in the
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traversal of a B+ tree that stores the segments. By modifying the traversal, it should be
possible to avoid precomputation and storage of the prefixes. A third area of future work
is temporal constructors and functions. We believe that it is straightforward to articulate
temporal constructors, such as the OVERLAPS constructor, but have yet to articulate the
details. Finally, we are investigating the use of log segments in other temporal query languages
such as temporal graph query languages.
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