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Abstract
In stream reasoning, the task is to derive high level abstractions of large data streams with minimal
latency, as required by contemporary applications. This work presents an Event Calculus-based
approach to stream reasoning, highlighting its core features and recent extensions.
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Motivation

Modern applications require the processing of large, high-velocity data streams that are being
generated continuously. A stream reasoning system derives instances of spatio-temporal
pattern satisfaction, based on the actions/events reported in such data streams, with minimal
latency. These spatio-temporal patterns may define a set of situations of interest in the
target application domain. In maritime situational awareness, e.g., a stream reasoning system
can be used to detect vessel activities that may be suspicious, illegal, dangerous or have a
negative environmental impact, based the position and velocity signals that are continuously
being emitted by sailing vessels [7]. For instance, spatio-temporal patterns may specify an
illegal fishing activity in a prohibited area or an unexpected halt in signal transmissions.

There are several requirements for effective stream reasoning. First, a stream reasoning
system should be based on a formal pattern specification language, in order to allow the user
to express situations of interest without ambiguity. Second, this language has to be expressive
enough to support all situations of interest that need to be detected in the target application.
Third, the system should be equipped with highly-efficient algorithms for detecting these
patterns, taking into consideration that input actions/events cannot be stored in memory en
masse when operating in a streaming setting.

The Event Calculus for Run-Time Reasoning

Towards addressing the requirements of stream reasoning, we proposed “The Event Calculus
for Run-Time Reasoning” (RTEC), a logic-based, formal computational framework that is
optimised for stream reasoning [2, 6, 5]. RTEC is based on a logic programming implementa-
tion of the Event Calculus [3], a temporal formalism for representing and reasoning about
events and their effects. The Event Calculus dialect used by RTEC is many-sorted and
includes events, fluents, i.e., properties that may have different values at different points
in time, and a linear time model with integer time-points. The built-in Event Calculus
predicates of RTEC are used to express event occurrences and changes in the values of fluents,
and specify the time periods during which fluent-value pairs (FVPs) hold continuously.
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happensAt(E , T ) denotes that event E takes place at time-point T , while initiatedAt(F = V , T )
(resp. terminatedAt(F = V , T )) expresses that a time period during which fluent F has the
value V is initiated (terminated) at time-point T . holdsFor(F = V , I ) states that fluent F has
the value V continuously in the maximal intervals included in list I. Finally, holdsAt(F = V , T )
states that fluent F has the value V at time-point T . Moreover, RTEC adopts the specifica-
tion of the common-sense law of inertia used in the Event Calculus, expressing that FVPs
persist through time, unless an event that affects the value of the fluent takes place.

RTEC features two types of fluents, called “simple” and “statically determined”. The
conditions under which event occurrences may affect the values of simple fluents are expressed
through domain-specific initiatedAt and terminatedAt rules. Given the “initiation points” and the
“termination points” of some simple fluent F with value V , RTEC computes holdsFor(F = V , I ),
i.e., the maximal intervals I in which F = V holds continuously. In the case of a statically
determined fluent F , RTEC the maximal intervals of F = V directly, i.e., without computing
the initiation and termination points of F = V , using an domain-specific holdsFor(F = V , I )
rule, defining the maximal intervals I of F = V in terms of the maximal intervals of other
FVPs via interval operations, such as union, intersection and relative complement.

RTEC supports stream reasoning applications by integrating the aforementioned represent-
ation and reasoning formalism with caching, indexing, windowing and a “forget” mechanism
that removes redundant events and FVP intervals from its knowledge base. Moreover, RTEC
is restricted to hierarchical knowledge bases that allow bottom-up processing, thus avoiding
re-computations. The complexity analysis of RTEC is available in [2].

Recent Extensions

The specifications of modern applications may include cyclic dependencies. In maritime
situational awareness, e.g., a fishing trip consists of several stages, such as approaching
a fishing area, fishing and returning to a port. These stages form a cycle, as each stage
depends on the previous one. Moreover, situations of interest are often defined as temporal
combinations of other situations, which are typically durative and take place within temporal
intervals. The corresponding patterns can be expressed using Allen’s interval relations [1].
For instance, we may detect the suspicious situation where a vessel stops signal transmissions
while being close to another vessel using the “during” Allen relation.

We extended RTEC for expressing patterns featuring cyclic dependencies and Allen
relations [6, 5]. Our theoretical analysis of the resulting framework highlighted its semantics,
correctness and complexity, while our empirical evaluation demonstrated its effectiveness
when reasoning over large streams of benchmark and real data from modern applications.
This extended version of RTEC is publicly available1.

Further Work

Uncertainty is inherent in modern applications. In maritime situational awareness, e.g.,
malfunctions in signal transmitters may lead to data streams that include empty fields or
erroneous field values. A recent work tackles uncertainty be associating input stream items
with probability values, serving as a confidence estimate, and then employing probabilistic
reasoning to derive the probabilities of pattern satisfaction instances based on such an input [4].
In the future, we would like to extend RTEC with probabilistic reasoning techniques.

1 https://github.com/aartikis/RTEC

https://github.com/aartikis/RTEC
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