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Abstract
We describe SSTRESED, a prototype focused on the real-time, online detection of simple, durative
events over streaming movement data. It is the first prototype that establishes a direct connection
between semantic trajectory extraction and simple event detection. SSTRESED is highly scalable
by incorporating parallel processing in two separate, but connected, training and event detection
pipelines implemented on state-of-the-art platforms, directly deployable in cloud environments.
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1 Introduction & Motivation

Detecting Simple, Derived Events (SDEs) is the first step towards Complex Event Recognition
(CER) [3, 4, 5]. In time critical-applications [1, 6], such as safe robot navigation in dynamic
smart factory environments, SDE detection should be performed continuously over voluminous
streams of movement data arriving at high speeds. In such scenarios, extracting SDEs out of
raw streams is a challenging task engaging (a) online neural network training for continuously
maintaining an up-to-date model for SDE labelling purposes and (b) semantic-aware trajectory
processing for identifying homogeneous movement portions, defining the SDE duration, before
using the neural model for labelling it. By definition, output SDEs are simple pieces of
information (Listing 2), but the volume and velocity of the original raw streams (Listing 1)
in large scale smart factory applications call for scaling out (parallelizing) the computation
to a number of machines to ensure real-time processing. Therefore, both (a) and (b) should
be set up in state-of-the-art, relevant platforms [7, 9] to allow for direct deployment over
computer clusters and/or the cloud. To tackle these challenges we develop SSTRESED, a
prototype for scalable SDE detection over streaming movement data. For the first time,
SSTRESED establishes a direct connection between semantic trajectory computation and
SDE detection in the streaming context. This is in contrast to prior art [9, 10] which uses
predetermined, application-defined time windows to a priori restrict eligible SDE durations.

2 The SSTRESED Prototype

SSTRESED (Figure 1) composes two connected pipelines distributed across worker machines
running in the cloud. In the robotic scenario of Section 1, truthful, timestamped and
labeled movement streams are continuously produced by robotic simulators, such as https:
//github.com/rock-simulation, as SDEs and their raw features, per robot (Listing 1).
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Figure 1 SSTRESED Architecture. Training (blue) and SDE Detection (red) Pipelines.

Listing 1 Example training stream for a single simulated robot. Unlabelled movement streams
lack a SDE label (last column in the figure). Thousands of such streams can be ingested by
SSTRESED in large scale applications.
time . . . pos_x pos_y pos_z . . . rot_w SDE
8.35 . . . −3.626 14 .921 0 .258 . . . 0 .9951 stopped at Stat ion1
30 .57 . . . . . . . . . . . . . . . . . . . . .
41 .15 . . . −7.446 23 .866 0 .257 . . . 0 .0977 moves to Stat ion3
41 .12 . . . −7.444 23 .867 0 .258 . . . 0 .0972 r o t a t i n g

The training pipeline (blue-colored path in Figure 1) continuously receives these robot
movement time series ingested in Apache Kafka partitions of the Training Topic. The
Training Topic is read by parallel PyTorch Learners. Each such learner, utilizes an
identical neural model (specified by the application), but performs the training process on a
separate set of robots. The local models learned at each Learner i (top of Figure 1) are
synchronized into a global neural model maintained by a Parameter Server [2]. At a global
model update, new weights of the neural network are written to a Weights Topic of Kafka.

The SDE detection pipeline (red-colored path in Figure 1) receives raw, unlabeled stream-
ing movement data, partitioned in the Movement Streams Kafka Topic. These incoming
tuples, ingested directly from the application field, have the same schema as those of the
Training Topic, but lack a label/SDE field. Ingested Movement Streams of robots (or,
optionally, samples of them [8, 11]) are processed by a distributed version of SeTraStream [12]
developed in Apache Flink. Distributed SeTraStream uses each parallel Segmentor i to
continuously identify homogeneous movement portions based on the ingested features per
robot, thus semantically and temporally segmenting each trajectory. In that, the duration
of a SDE is determined, which also bounds the feature tensors that should then be used
for labeling the SDE. Each parallel Segmentor i writes the result of its processing to an
intermediate Kafka topic connecting Distributed SeTraStream with a PyTorch Semantic
Tagger in the red-colored path. Each parallel Tagger i (bottom of Figure 1) of the Semantic
Tagger, at any given time instance, reads the up-to-date weights from the Weights Topic
and uses the updated neural model to label SDEs. The final SSTRESED output goes to the
SDEs Kafka topic in the form of tuples as illustrated in Listing 2 (per robot).
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Listing 2 SSTRESED output SDE Stream for the movement of a single robot.
Time_from Time_to SDE
4.25 8 .35 moving to Stat ion2
8 .35 8 .36 stopped at Stat ion2
. . . . . . . . .
39 .00 41 .15 r o t a t i n g
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