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Abstract
Linear Temporal Logic over finite traces (LTLf) has proved itself to be an important and effective
formalism in formal verification as well as in artificial intelligence. Pure past LTLf (pLTL) is the
logic obtained from LTLf by replacing each (future) temporal operator by a corresponding past one,
and is naturally interpreted at the end of a finite trace. It is known that each property definable in
LTLf is also definable in pLTL, and vice versa. However, despite being extensively used in practice,
to the best of our knowledge, there is no systematic study of their succinctness.

In this paper, we investigate the succinctness of LTLf and pLTL. First, we prove that pLTL can
be exponentially more succinct than LTLf by showing that there exists a property definable with a
pLTL formula of size n such that the size of all LTLf formulas defining it is at least exponential in n.
Then, we prove that LTLf can be exponentially more succinct than pLTL as well. This result shows
that, although being expressively equivalent, LTLf and pLTL are incomparable when succinctness
is concerned. In addition, we study the succinctness of Safety-LTL (the syntactic safety fragment
of LTL over infinite traces) with respect to its canonical form G(pLTL), whose formulas are of the
form G(α), G being the globally operator and α a pLTL formula. We prove that G(pLTL) can be
exponentially more succinct than Safety-LTL, and that the same holds for the dual cosafety fragment.
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1 Introduction

In this paper, we study the succinctness of Linear Temporal Logic over finite words (LTLf) with
respect to pure past LTLf (pLTL) and prove two lower bounds that show the incomparability
of LTLf and pLTL as far as succinctness is concerned. In addition, we investigate some
succinctness properties of the safety and cosafety fragments of Linear Temporal Logic over
infinite words (LTL) with respect to their canonical forms (resp., G(pLTL) and F(pLTL)).
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2:2 LTLf Can Be Exponentially More Succinct Than pLTL, and vice versa

LTLf is a modal logic that extends classic Boolean Logic with temporal modalities for
reasoning about time and it is interpreted over finite sequences of states (called traces or
words). LTLf is extensively used in many areas of Artificial Intelligence (AI), like automated
synthesis [10, 12, 23], planning [4–6], and business process management [19, 20]. In last years,
also pLTL, the pure past version of LTLf , gained momentum in AI. As a matter of fact, while
all properties expressible in LTLf are also expressible in pLTL and vice versa (pLTL and LTLf
have been shown to be expressively equivalent [9, 16,25]), some properties like, e.g., those
characterizing planning problems (“to reach a goal while always obeying to a safety rule”)
are more natural and easy to express using past modalities [16]. Moreover, pLTL has been
advocated as a suitable declarative, logic programming language [3, 14]. Last but not least,
arguably the most important feature of pLTL is enjoying a compilation into deterministic
finite automata of singly exponential size [8,9], a result that cannot be achieved for LTLf [11].

In spite of the success of LTLf and pLTL, to the best of our knowledge, there is no
systematic study of their succinctness, that is, the study of which properties (if any) are
definable in one logic with formulas of small, polynomial size, but such that all formulas
in the other logic would require exponential size or more. The importance of studying
succinctness is twofold. On the one hand, it is an important theoretical tool, that joins the
study of computational complexity and expressive power (cf. e.g. the work by Hella and
Vilander [15], comparing first-order logic with basic modal logic and µ-calculus in terms of
succinctness, by means of formula size games). On the other hand, it may help in choosing
the right formalism when solving problems like model checking and reactive synthesis.

The main contributions of the paper are the following ones.
First, we prove that pLTL can be exponentially more succinct than LTLf , that is, there

exists a family of properties definable with pLTL formulas of size n such that the size of all
LTLf formulas defining them is at least exponential in n.

Second, by exploiting the fact that each trace recognized by a pLTL formula is the reverse1

of a trace recognized by an LTLf formula, we derive that LTLf can be exponentially more
succinct than pLTL as well. This has three important consequences:
1. it shows that, despite being expressively equivalent, LTLf and pLTL are incomparable

when succinctness is concerned;
2. it confirms the conjecture formulated in [2], derived from the complexity gap between

the realizability problem of LTLf , which is 2EXPTIME-complete, and pLTL, which is
EXPTIME-complete;

3. it proves that any translation from LTLf to pLTL (and vice versa), for which we only have
a triply exponential upper bound [9], has at least an exponential complexity in the size
of the initial formula.

Third, we study the succinctness of the syntactic safety fragment of LTL over infinite
traces (denoted as Safety-LTL) with respect to its canonical form G(pLTL), which is the
set of formulas of the form G(α), where G is the globally modality of LTL and α is a pLTL
formula [7]. We show that G(pLTL) can be exponentially more succinct than Safety-LTL. By
a duality argument, we derive the same result for the syntactic cosafety fragment of LTL
(coSafety-LTL) and its canonical form (F(pLTL)). Whether Safety-LTL (resp., coSafety-LTL)
can be exponentially more succinct than G(pLTL) (resp., F(pLTL)) is, to the best of our
knowledge, still an open question.

1 By “reverse” of a trace σ, we mean the trace obtained by σ considering its last state as the first one.
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The paper is organized as follows. In Section 2, we provide the necessary background.
Sections 3 and 4 prove, respectively, that pLTL can be exponentially more succinct than LTLf ,
and vice versa. In Section 5, we show the succinctness of G(pLTL) and F(pLTL) with respect
to the safety and cosafety fragments of LTL, respectively. We conclude with Section 6, where
we recap the results of the paper and we point out some future research directions.

2 Background

In this section, we give the necessary background on linear-time temporal logic and finite-state
automata.

2.1 Linear-time Temporal Logic
Given a set Σ of proposition letters, an LTL+P formula ϕ is generated as follows:

ϕ := p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ Boolean connectives
| Xϕ | X̃ϕ | ϕ U ϕ | ϕ R ϕ future modalities
| Yϕ | Ỹϕ | ϕ S ϕ | ϕ T ϕ past modalities

where p ∈ Σ, and we call: X, next; X̃, weak next; U, until; R, releases; Y, yesterday; Ỹ,
weak yesterday; S, since; T, triggers. Note that, w.l.o.g., our definition of LTL+P considers
formulas already in Negation Normal Form (NNF), that is, negations are applied only to
proposition letters. For any formula ϕ, the size of ϕ (denoted with |ϕ|) is the size of the
(smallest) syntax tree of ϕ.

Let σ ∈ (2Σ)+ ∪ (2Σ)ω be a word over 2Σ (or trace over 2Σ). We define the length of σ
as |σ| = n, if σ = ⟨σ0, . . . , σn−1⟩ ∈ (2Σ)+ (in this case we say that σ is a finite trace); or
|σ| = ω, if σ ∈ (2Σ)ω (in this case we say that σ is an infinite trace). We call any subset of
(2Σ)∗ a language of finite words over 2Σ. Similarly, a language of infinite words over 2Σ is
any subset of (2Σ)ω.

The satisfaction of an LTL+P formula ϕ by σ at time 0 ≤ i < |σ|, denoted by σ, i |= ϕ, is
defined as follows:

σ, i |= p iff p ∈ σi;
σ, i |= ¬p iff p ̸∈ σi;
σ, i |= ϕ1 ∨ ϕ2 iff σ, i |= ϕ1 or σ, i |= ϕ2;
σ, i |= ϕ1 ∧ ϕ2 iff σ, i |= ϕ1 and σ, i |= ϕ2;
σ, i |= Xϕ iff i+ 1 < |σ| and σ, i+ 1 |= ϕ;
σ, i |= X̃ϕ iff either i+ 1 = |σ| or σ, i+ 1 |= ϕ;
σ, i |= Yϕ iff i > 0 and σ, i− 1 |= ϕ;
σ, i |= Ỹϕ iff either i = 0 or σ, i− 1 |= ϕ;
σ, i |= ϕ1 Uϕ2 iff there exists i ≤ j < |σ| such that σ, j |= ϕ2, and σ, k |= ϕ1 for all k, with
i ≤ k < j;
σ, i |= ϕ1 S ϕ2 iff there exists j ≤ i such that σ, j |= ϕ2, and σ, k |= ϕ1 for all k, with
j < k ≤ i;
σ, i |= ϕ1 R ϕ2 iff either σ, j |= ϕ2 for all i ≤ j < |σ|, or there exists i ≤ k < |σ| such that
σ, k |= ϕ1 and σ, j |= ϕ2 for all i ≤ j ≤ k;
σ, i |= ϕ1 Tϕ2 iff either σ, j |= ϕ2 for all 0 ≤ j ≤ i, or there exists k ≤ i such that σ, k |= ϕ1
and σ, j |= ϕ2 for all i ≥ j ≥ k.

TIME 2023
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We say that σ is a model of ϕ (written as σ |= ϕ) iff σ, 0 |= ϕ. The language of infinite
(resp., finite) traces of ϕ, denoted by L(ϕ), is the set of traces σ ∈ (2Σ)ω (resp., σ ∈ (2Σ)+)
such that σ |= ϕ.

We use the standard shortcuts for ⊤ := p ∨ ¬p, ⊥ := p ∧ ¬p (for some p ∈ Σ) and other
temporal operators: Fϕ := ⊤ U ϕ (eventually), Gϕ := ⊥ R ϕ (globally), Oϕ := ⊤ S ϕ (once),
and Hϕ := ⊥ T ϕ (historically).

From now on, given a linear-time temporal logic L, with some abuse of notation, we
denote with L also the set of formulas of L. A pure future (resp., pure past) formula is an
LTL+P formula without occurrences of past (resp., future) modalities. We denote by LTL
(resp., pLTL) the set of pure future (resp., pure past) formulas. In the following, we use the
subscript f to denote a logic interpreted on finite traces. Thus, e.g., with LTLf we denote
LTL interpreted on finite traces. Note that, if ϕ belongs to pLTL (i.e. pure past fragment of
LTL+P), then we interpret ϕ only on finite words and we say that σ ∈ (2Σ)+ is a model of ϕ
if and only if σ, |σ| − 1 |= ϕ, that is, each ϕ in pLTL is interpreted at the last state of a finite
word. It holds that LTLf and pLTL are expressively equivalent.

▶ Proposition 1 (see [9, 16, 25]). For any alphabet Σ and for any language L ⊆ Σω, it holds
that: there exists a formula ϕ ∈ LTLf such that L(ϕ) = L iff there exists a formula ϕ′ ∈ pLTL
such that L(ϕ′) = L.

In the following, we denote by Safety-LTL (also called the syntactic safety fragment of
LTL) the set of LTL formulas whose temporal operators are restricted to X̃, G, and R [7,21,24].
Similarly, we define coSafety-LTL (the syntactic cosafety fragment of LTL) as the set of
LTL formulas whose temporal operators are restricted to X, F, and U. Finally, we denote
by G(pLTL) (resp., F(pLTL)) the set of LTL+P formulas of the form Gα (resp., Fα), with
α ∈ pLTL. A fundamental theorem by Chang, Manna, and Pnueli [7], based on the results
found by Zuck [25], establishes the expressive equivalence of Safety-LTL with G(pLTL), and
of coSafety-LTL and F(pLTL), when interpreted over infinite traces.

We now define what it means, for two linear-time temporal logics L and L′, that L can be
exponentially more succinct than L′. We use the Ω-notation f(n) ∈ Ω(g(n)) to denote that
the function f is asymptotically bounded from below by g. Similarly, we use the O-notation
f(n) ∈ O(g(n)) to denote that f is asymptotically bounded from above by g.

▶ Definition 2. Given two linear-time temporal logics L and L′, we say that L can be
exponentially more succinct than L′ over infinite trace (resp., over finite traces) iff there
exists an alphabet Σ and a family of languages {Ln}n>0 ⊆ (2Σ)ω (resp., {Ln}n>0 ⊆ (2Σ)∗)
such that, for any n > 0:

there exists a formula ϕ ∈ L over Σ such that its language over infinite traces (resp., over
finite traces) is Ln and |ϕ| ∈ O(n); and
for all formulas ϕ′ ∈ L′ over Σ, if the language of ϕ′ over infinite traces (resp., finite
traces) is Ln, then |ϕ′| ∈ 2Ω(n).

2.2 Finite-state Automata
A Nondeterministic Finite Automaton (NFA, for short) is a tuple A = (2Σ, Q, I,∆, F ), where:
2Σ is a finite (nonempty) alphabet; Q is a finite set of states; I ⊆ Q is the set of initial states;
∆ ⊆ Q × 2Σ × Q is the transition relation; F ⊆ Q is the set of final states. We define the
size of A, denoted with | A |, as the number of its states (|Q|).

A run π of A over the word σ = ⟨σ0, σ1, . . . , σn−1⟩ ∈ (2Σ)∗ is a finite sequence of states
π = ⟨q0, q1, . . . , qn⟩ such that (qi, σi, qi+1) ∈ ∆, for all 0 ≤ i < n−1. A run π = ⟨q0, q1, . . . , qn⟩
is accepting if qn is a final state of A, that is qn ∈ F .
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Given an NFA A = (2Σ, Q, I,∆, F ), a word σ ∈ (2Σ)∗ is accepted by A iff there exists an
accepting run of A over σ. The language of A, denoted with L(A), is the set (finite) words
accepted by A.

For each LTLf+P formula ϕ of size n over the set of proposition letters Σ, we can effectively
build an NFA whose language is exactly L(ϕ) and its size is at most exponential in n [11].

▶ Proposition 3 (see [11]). For any formula ϕ of LTLf+P of size n, there exists an NFA A
such that L(ϕ) = L(A) and | A | ∈ 2O(n).

3 pLTL can be exponentially more succinct than LTLf

In this section, we prove the first main result of this paper, i.e. that pLTL can be exponentially
more succinct than LTLf .

Let Σ = {p0, p1, . . . , pn} be a finite set of proposition letters. Consider the following
family of languages over the alphabet 2Σ, where n > 0.

An := {σ ∈ (2Σ)+ | ∃k > 0 . (
n∧

i=0
(pi ∈ σk ↔ pi ∈ σ0))} (1)

For any n > 0, the language An is the set of finite words over 2Σ containing a position which
agrees with the initial state on the evaluation of all proposition letters in Σ (cf. Figure 1).

σ0
· · ·

σk

· · ·
σ|σ|−1

p0
¬p1
p2

p0
¬p1
p2

T

Figure 1 Example of a word σ in A2.

We shall prove that all formulas of LTLf defining An are at least of size exponential in n.
Conversely, as shown by the following lemma, An can be expressed in pLTL with formulas of
linear size in n, for any n > 0.

▶ Lemma 4. For any n > 0, there exists a formula ϕ ∈ pLTL such that L(ϕ) = An and
|ϕ| ∈ O(n).

Proof. For any n > 0, we define the formula ϕAn as

O(
n∧

i=0
(pi ↔ YO(Ỹ⊥ ∧ pi)))

Note the crucial role of the weak yesterday operator, and in particular of the subformula
Ỹ⊥, for hooking the initial state of a word. We prove that L(ϕAn

) = An. For any σ ∈ (2Σ)+

and for any n > 0, it holds that σ ∈ An if and only if ∃k > 0 .
∧n

i=1(σk |= pi ↔ σ0 |= pi.
This, in turn, is equivalent to ∃k < |σ| . (k ̸= 0 ∧

∧n
i=1(σk |= pi ↔ σ0 |= pi)) and

thus to ∃k < |σ| .
∧n

i=1(σk |= pi ↔ (∃h . (h < k ∧ h = 0 ∧ σh |= pi))). Therefore,
σ |= O(

∧n
i=0(pi ↔ YO(Ỹ⊥ ∧ pi))). Clearly, |ϕAn

| ∈ O(n). ◀

To prove that An is not expressible in LTLf with formulas of size less than 2Ω(n) (for
any n > 0), we make use of an auxiliary family of languages. For each n > 0, we define the
language Bn over the alphabet 2Σ with Σ = {p0, p1, . . . , pn} as follows:

Bn := {σ ∈ (2Σ)+ | ∃h ≥ 0 . ∃k > h . (
n∧

i=0
(pi ∈ σk ↔ pi ∈ σh))}

TIME 2023



2:6 LTLf Can Be Exponentially More Succinct Than pLTL, and vice versa

For any n > 0, Bn is the set of finite words over 2Σ containing two (distinct) positions that
agree on the interpretation of all the proposition letters in Σ (cf. Figure 4). Clearly, An ⊆ Bn,
for any n > 0.

σ0
· · ·

σh

· · ·
σk

· · ·
σ|σ|−1

p0
¬p1
p2

p0
¬p1
p2

T

Figure 2 Example of a word σ in B2.

We now show that, if An was expressible in LTLf in space less than exponential in n, then
the property Bn would be expressible in LTLf in space less than exponential as well.

▶ Lemma 5. If there exists a formula of LTLf for An of size less than exponential in n, then
there exists a formula of LTLf for Bn of size less than exponential in n.

Proof. Let ψAn
be a formula of LTLf for An of size less than exponential in n. Consider

the formula F(ψAn
): we prove that its language is exactly Bn. For any σ ∈ (2Σ)+ and for

any n > 0, it holds that σ |= F(ψAn
) iff ∃k ≥ 0 . σ[k,−] |= ψAn

, where σ[k,−] is the suffix of σ
starting from i. This means: ∃k ≥ 0 . ∃h > k . (

∧n
i=0(σk |= pi ↔ σh |= pi)). Equivalently,

σ ∈ Bn. Moreover F(ψAn) belongs to LTLf and it is of size less than exponential in n. ◀

We show that there cannot exist formulas of LTLf (and, in general, of LTLf+P) defining
Bn whose size is less than exponential in n. In order to prove it, we first show that any NFA
accepting Bn is of size at least doubly exponential in n.

▶ Lemma 6. For any n > 0 and for any NFA A over the alphabet 2Σ, if L(A) = Bn then
| A | ∈ 22Ω(n) .

Proof. Let n > 0 and let ⟨a0, . . . , a2n−1⟩ be any permutation of the 2n subsets of {p1, . . . , pn}
(note that this set does not include the proposition letter p0 ∈ Σ). Let K be any subset of
{0, . . . , 2n − 1} and let K be the complement set of K. We define bK

i in this way: bK
i := ai,

if i ∈ K; and bK
i := ai ∪ {p0}, otherwise. We define σK as the sequence ⟨bK

0 , b
K
1 , . . . , b

K
2n−1⟩.

Suppose by contradiction that there exists an NFA A for Bn of size less than doubly
exponential in n. Consider the words σK · σK (obtained by concatenating σK with itself),
σK ·σK (the concatenation of σK with itself), and σK ·σK (the concatenation of σK with σK).
By construction, both σK · σK and σK · σK contain (at least) two positions that agree on the
interpretation of all symbols in Σ and thus they both belong to Bn, while σK · σK contains
no such positions and so it does not belong to Bn. Therefore, for any K ⊆ {0, . . . , 2n − 1}:
1. σK · σK is accepted by A;
2. σK · σK is accepted by A;
3. σK · σK is not accepted by A.
Now let π (resp., π′) be any accepting run of A over the word σK ·σK (resp., σK ·σK). Let q
(resp., q′) be the 2n-th state of π (resp., π′). Suppose that q = q′ and let π′′ be the sequence
obtained by appending the suffix of π′ starting from its 2n-th state to the prefix of π of
length 2n − 1, i.e.: π′′ := ⟨π0, . . . , π2n−1, π

′
2n , π′

2n+1, . . .⟩. By construction, π′′ is an accepting
run of the automaton A over the word σK · σK , which is a contradiction. Therefore, the
2n-th states of π and π′ must be distinct. This means that the automaton A has to contain
at least a state for choice of K ⊆ {0, . . . , 2n − 1}. Since there are 22n of such possible choices,
this means that A has to contain at least 22Ω(n) states. ◀
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By exploiting the singly exponential translation of LTLf+P formulas into equivalent NFAs
(Proposition 3), we can prove that (for any n > 0) the language Bn is not expressible in
LTLf+P (and, in particular, in LTLf) in space less than exponential.

▶ Lemma 7. For any formula ϕ ∈ LTLf+P, if L(ϕ) = Bn then |ϕ| ∈ 2Ω(n).

Proof. Suppose by contradiction that this does not hold, i.e. there exists a formula ϕ ∈
LTLf+P such that L(ϕ) = Bn and |ϕ| is less than exponential in n. Then, by Proposition 3,
it holds that there exists an NFA A such that L(A) = Bn and | A | is less than doubly
exponential in n, which is a contradiction with Lemma 6. ◀

Directly from Lemmas 5 and 7, it follows that the family of languages An cannot be
expressed in LTLf with formulas of size less than exponential in n.

▶ Theorem 8. For any n > 0 and for any formula ϕ ∈ LTLf , if L(ϕ) = An then |ϕ| ∈ 2Ω(n).

The following corollary is a direct consequence of Lemma 4 and Theorem 8.

▶ Corollary 9. pLTL can be exponentially more succinct than LTLf .

Comparison with Markey’s proof about LTL+P and LTL

In [18], Markey proves that LTL+P can be exponentially more succinct than LTL. In
particular, he exploits the result by Etessami, Vardi, and Wilke [13] that there are no Büchi
automata of size less than doubly exponential for the family of languages In (for all n > 0),
defined as the language of infinite traces in which any two positions that agree on p1, . . . , pn,
agree also on p0.

One could, in principle, use In interpreted over finite trace (let us call it I<ω
n ) to prove

that any NFA recognizing I<ω
n is at least of doubly exponential size in n, and use it as a base

for proving that pLTL can be exponentially more succinct than LTLf . This would require
to restate and reprove the theorem by Etessami, Vardi, and Wilke [13] to work over finite
traces. While we believe this is possible, we followed a simpler (and more useful) path by
showing that there is another family of properties, in our case Bn (which is arguably simpler
than In and I<ω

n ), for which each NFA explodes double-exponentially.

4 LTLf can be exponentially more succinct than pLTL

In this section, we show the second main result of this paper, i.e. that LTLf can be exponentially
more succinct than pLTL. Together with Corollary 9, this shows that LTLf and pLTL, despite
being expressively equivalent, are incomparable when succinctness is considered.

4.1 The Reverse Lemma
We first define the notions of reverse language and reverse logic. Given an alphabet Σ and a
language L ⊆ (2Σ)+ of finite words over 2Σ, we define the reverse language of L as the set:

L− = {σ′ ∈ (2Σ)+ | σ′
i = σn−i, for σ = σ0 . . . σn ∈ L and 0 ≤ i ≤ n}.

We then define reverse logics as follows.

▶ Definition 10 (Reverse Logics). Given two linear-time temporal logics L and L−, we say
that L− is a reverse logic of L iff:
1. for any formula ϕ ∈ L, there is a formula ϕ′ ∈ L− so that L(ϕ) = L(ϕ′)− and |ϕ′| = |ϕ|;
2. for any formula ϕ′ ∈ L−, there is a formula ϕ ∈ L so that L(ϕ′) = L(ϕ)− and |ϕ| = |ϕ′|.

TIME 2023



2:8 LTLf Can Be Exponentially More Succinct Than pLTL, and vice versa

Clearly, being a reverse logic is a symmetric property: L is a reverse logic of L− iff L− is
a reverse logic of L.

As an example, consider the logic pLTL and any formula ϕ ∈ pLTL. By replacing in ϕ the
temporal operators Y, Ỹ, S, and T with X, X̃, U, and R, respectively, one obtains a formula
ϕ′ such that: (i) it belongs to LTLf ; (ii) its size is |ϕ|; (iii) it is such that L(ϕ) = L(ϕ′)−.
Therefore, LTLf is a reverse logic of pLTL, and vice versa.

The next lemma proves that, for any two linear-time temporal logics L and L− such that
L is a reverse logic of L−, if a language L with a compact definition in L is not succinctly
definable in L−, then L− (i.e., the reverse language of L) is compactly definable in L−, but
its definitions exponentially blow-up in L.

▶ Lemma 11 (Reverse Lemma). Let L and L− be two linear-time temporal logics such that
L− is a reverse logic of L. Moreover, let ϕ ∈ L be such that, for every ψ ∈ L−, L(ψ) = L(ϕ)
implies |ψ| ∈ 2Ω(|ϕ|). Then, for some ϕ′ ∈ L−, we have: (i) L(ϕ′) = L(ϕ)−; (ii) |ϕ′| = |ϕ|;
and (iii) for every ψ ∈ L, L(ψ) = L(ϕ′) implies |ψ| ∈ 2Ω(|ϕ′|).

Proof. Suppose that ϕ ∈ L is a formula such that, for any ψ ∈ L−, if L(ψ) = L(ϕ)
then |ψ| ∈ 2Ω(|ϕ|). Now suppose by contradiction that for any formula ϕ′ ∈ L′, such that
L(ϕ′) = L(ϕ)− and |ϕ′| = |ϕ|, there exists a formula ψ ∈ L such that L(ψ) = L(ϕ′) and |ψ|
is sub-exponential in |ϕ′|. Since L− is a reverse logic of L, this means that for any formula
ϕ′ ∈ L−, such that L(ϕ′) = L(ϕ)− and |ϕ′| = |ϕ|, there exists a formula ϕR ∈ L and a
formula ψR ∈ L− such that:

L(ϕR)− = L(ϕ′) and thus L(ϕR) = L(ϕ);
L(ψR)− = L(ϕ′) and thus L(ψR) = L(ϕ);
|ϕR| = |ϕ′| and thus |ϕR| = |ϕ|;
|ψR| = |ψ| and thus |ψR| is sub-exponential in |ϕR|.

It follows that for any ϕR ∈ L there exists ψR ∈ L′ such that L(ϕR) = L(ψR) and |ψR| is
sub-exponential in ϕR. But this is a contradiction with the hypothesis. Therefore, it has to
hold that there exists a formula ϕ′ ∈ L′, such that L(ϕ′) = L(ϕ)− and |ϕ′| = |ϕ| and, for all
ψ ∈ L, if L(ψ) = L(ϕ′) then |ψ| ∈ 2Ω(|ϕ′|). ◀

From Lemma 11, one obtains a concrete family of languages that are definable with LTLf
formulas of polynomial size but such that any pLTL formula for them requires at least an
exponential amount of space. In particular, for any n > 0, recall An from the previous
section, and consider A−

n (cf. Figure 3):

A−
n := {σ ∈ (2Σ)+ | ∃k < |σ| − 1 . (

n∧
i=0

(pi ∈ σk ↔ pi ∈ σ|σ|−1))}

σ0
· · ·

σk

· · ·
σ|σ|−1

p0
¬p1
p2

p0
¬p1
p2

T

Figure 3 Example of a word σ in A−
2 .

For each n > 0, A−
n can be expressed in LTLf in space linear in n with the formula

F(
n∧

i=0
(pi ↔ XF(X̃⊥ ∧ pi))).

However, since LTLf is a reverse logic of pLTL, by Lemma 11 every formula of pLTL for A−
n

requires an amount of space at least exponential in n. This leads directly to the following.
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▶ Theorem 12. For any n > 0 and for any formula ϕ ∈ pLTL, if L(ϕ) = A−
n then |ϕ| ∈ 2Ω(n).

▶ Corollary 13. LTLf can be exponentially more succinct than pLTL.

4.2 Some meaningful implications of the incomparability
We have shown that the logics LTLf and pLTL, despite being expressively equivalent (Propos-
ition 1), are incomparable when succinctness is considered. Here below, we point out some
implications of this incomparability that are worth discussing.

Succinctness and Realizability

Realizability is the problem of establishing whether there is a strategy implementing a given
formula. That is, given a formula ϕ ∈ LTLf (resp., ϕ ∈ pLTL) over a set of variables C ∪ U
(with C and U sets of controllable and uncontrollable variables, respectively), the realizability
problem of LTLf (resp., pLTL) is the problem of establishing whether there exists a strategy
s : (2U )+ → 2C such that, for all sequences ⟨U0,U1, . . .⟩ ∈ (2U )+, it holds that there exists
k ∈ N so that the prefix from 0 up to k of ⟨U0 ∪ s(⟨U0⟩),U1 ∪ s(⟨U0,U1⟩), . . .⟩ is a model of ϕ.

Despite having the same expressive power, LTLf and pLTL have different complexity for the
realizability problem: while LTLf realizability is 2EXPTIME-complete [12], pLTL realizability
is EXPTIME-complete [2]. This is due to the fact that, starting from any LTLf formula ϕ of
size n, it is not possible to construct a Deterministic Finite Automaton (DFA) recognizing
L(ϕ) of singly exponential size in n, whereas for pLTL formulas this is possible, thanks to the
fact that “since past already happened”, there is no need to introduce nondeterminism [2,8,9].

In [2], the exponential gap between the two complexities, and the fact that LTLf and pLTL
are expressively equivalent, led to the conjecture that any translation from LTLf formulas
to equivalent pLTL ones requires at least an exponential blowup in the size of the resulting
formulas. The results proved in this paper (in particular Theorem 12) confirm this conjecture:
any translation in pLTL of the LTLf formula F(

∧n
i=0(pi ↔ XF(X̃⊥ ∧ pi))), which defines the

language A−
n , requires at least an exponential blowup.

Succinctness helps in choosing the most convenient formalism for realizability

The succinctness results between LTLf and pLTL can help in choosing the right formalism to
express a property when the time complexity of realizability is considered. As a matter of
fact, consider the family of languages An (Equation (1)), and suppose one wants to solve the
realizability problem for An, for a given partition of the variables p0, . . . , pn into controllable
and uncontrollable. There are two possibilities:

(i) either formalize An in pLTL (in linear size) and use pLTL realizability algorithms (which
are singly exponential in the worst case);

(ii) or formalize the language in LTLf (with at least an exponential blowup, by Theorem 8)
and use LTLf realizability algorithms (which are doubly exponential in the worst case).

While the former point requires only a singly exponential amount of time in the worst case,
the latter requires a triply exponential amount of time, in the worst case. This shows how
the results on the succinctness of LTLf and pLTL can tremendously help choosing the best
performing algorithm.

The fact that LTLf can be exponentially more succinct than pLTL has an important
implication as well. The realizability problem for the family of language A−

n has the same
worst-case time complexity (doubly exponential in n) irrespectively of whether we choose to
formalize A−

n in LTLf or we choose pLTL as the target formalism. In other words, the family
of languages A−

n cancels out the advantages of the past in realizability.

TIME 2023
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Translation of LTLf into pLTL

Recall that LTLf and pLTL are expressively equivalent (Proposition 1). To the best of our
knowledge, the most efficient translation of LTLf into pLTL is the one reported in [9] that
performs the following steps:
1. build the corresponding NFA for the initial formula;
2. determinize the NFA into a DFA;
3. build a pLTL formula from the DFA using the Krohn-Rhodes cascaded decomposition [17];
Since all three steps may introduce an exponential blow up in the worst case, the whole
translation is triply exponential in the size of the initial formula. Maler and Pnueli prove
that this translation (in particular the third step) has an exponential lower bound [17]. In
this respect, Corollary 13 proves that any translation from LTLf to pLTL (not only the above
one) has at least an exponential lower bound.

5 Succinctness of safety and cosafety fragments of LTL+P

In this section, we show our last main results, i.e. that, when interpreted over infinite traces,
G(pLTL) can be exponentially more succinct than Safety-LTL, and that F(pLTL) can be
exponentially more succinct than coSafety-LTL.

5.1 G(pLTL) can be exponentially more succinct than Safety-LTL

The proof of this case follows from the result by Markey that LTL+P can be exponentially
more succinct than LTL, when interpreted over infinite traces [18]. In the following, we show
the details of the proof.

Let Σ = {p0, . . . , pn} be a set finite set of proposition symbols. Consider the family
of languages Mn over the alphabet 2Σ proposed by Markey in [18]: for each n > 0, Mn

comprises all and only those infinite traces in which any position of the trace that agrees on
p1, . . . , pn with the initial state also agrees on p0. Formally, for each n > 0, we define:

Mn := {σ ∈ (2Σ)ω | ∀k > 0(∀i, 1 ≤ i ≤ n (pi ∈ σk ↔ pi ∈ σ0) ↔ (p0 ∈ σk ↔ p0 ∈ σ0))}

In [18], Markey proves that, for any n > 0, any formula of LTL expressing Mn is at least of
size exponential in n. Since Safety-LTL is a proper subfragment of LTL (i.e. each Safety-LTL
formula is also an LTL formula), it follows that, for any n > 0, any formula of Safety-LTL
expressing Mn is at least of size exponential in n.

▶ Lemma 14. For any n > 0 and any formula ϕ ∈ Safety-LTL, if L(ϕ) = Mn then |ϕ| ∈ 2Ω(n).

However, for each n > 0, there is a formula in G(pLTL) of size linear in n expressing Mn,
such as the following:

G((
n∧

i=1
(pi ↔ O(Ỹ⊥ ∧ pi))) ↔ (p0 ↔ O(Ỹ⊥ ∧ p0)).)

Note again the crucial role of the subformula Ỹ⊥ for hooking the initial state of the trace.
This theorem directly follows.

▶ Theorem 15. G(pLTL) can be exponentially more succinct than Safety-LTL.
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5.2 F(pLTL) can be exponentially more succinct than coSafety-LTL
We now dualize the previous result to the cosafety case, and obtain the succinctness lower
bound of F(pLTL) with respect to coSafety-LTL. We first prove a more general result on
“dual” temporal logics (which we define here below), and then we instantiate the result to
the specific case of F(pLTL) and G(pLTL). We define dual logics as follows.

▶ Definition 16 (Dual Logics). Given two linear-time temporal logics L and L, we say that
L is a dual logic of L iff:
1. for any formula ϕ ∈ L, the transformation in negation normal form of ¬ϕ (denoted as

nnf(¬ϕ)) belongs to L, and
2. for any formula ϕ ∈ L, the transformation in negation normal form of ¬ϕ (denoted as

nnf(¬ϕ)) belongs to L.
As for the case of reverse logics, also being a dual logic is a symmetric property.

The following lemma proves that duality (as for Definition 16) preserves succinctness.

▶ Lemma 17 (Duality Lemma). For any linear-time temporal logics L and L′, if L can be
exponentially more succinct than L′, then L can be exponentially more succinct than L′,
where L (resp., L′) is a dual logic of L (resp., L′).

Proof. Since by hypothesis L can be exponentially more succinct than L′, there exists a
formula ϕ ∈ L of size n such that, for all ϕ′ ∈ L′, if L(ϕ′) = L(ϕ) than |ϕ′| ∈ 2Ω(n).

Let ϕ be the negation normal form of ¬ϕ, i.e. ϕ = nnf(¬ϕ). By definition:
1. ϕ belongs to L;
2. L(ϕ) = L(¬ϕ); and
3. |ϕ| ∈ O(n).
Suppose by contradiction that the thesis does not hold, that is, for all formulas ψ ∈ L of
size s = |ψ| there exists a formula ψ′ ∈ L′ such that L(ψ) = L(ψ′) and |ψ′| is less than
exponential in s. In particular, for ψ := ϕ, this means that there exists a formula ψ′ in L′

such that L(ψ′) = L(ϕ) and |ψ′| is less than exponential in n (recall that n is the size of ϕ).
Now, let χ′ be the negation normal form of ¬ψ′ in negated normal form. It holds that:

1. χ′ is a formula in L;
2. L(χ′) = L(ϕ); and
3. |χ′| ∈ O(|ψ′|).
Since the size of ψ′ is less than exponential in n, the size of |χ′| is less than exponential
in n as well. This means that L(ϕ) can be defined in L′ with a formula of size less than
exponential in n, which is a contradiction with the hypothesis. ◀

Since, by definition, F(pLTL) and coSafety-LTL are dual logics of G(pLTL) and Safety-LTL,
respectively, by Lemma 17 and Theorem 15, this result follows.

▶ Theorem 18. F(pLTL) can be exponentially more succinct than coSafety-LTL.

5.3 Open Problems
To complete the picture, we give a conjecture on the succinctness of the (co)safety fragments
of LTL. To the best of our knowledge, it is still an open question whether coSafety-LTL (resp.,
Safety-LTL) can be exponentially more succinct than F(pLTL) (resp., G(pLTL)).

We conjecture that coSafety-LTL can be n! (n factorial) more succinct than F(pLTL). Let
Σ = {pi}n

i=1 ∪ {qi}n
i=1 be a finite alphabet. Consider the following family of languages Cn

over the alphabet Σ, where n > 0:

Cn := {σ ∈ (2Σ)ω | ∃k ≥ 0 .
n∧

i=1
(∃h > k . (qi ∈ σh ∧ ∀k ≤ l < h . pi ∈ σl))}.
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For any n > 0, Cn comprises the infinite traces for which there exists a time point k such
that, for each i ∈ {1, . . . , n}, qi will eventually be realized in the future of k and pi holds
until (and excluding) that point (cf. Figure 4).

σ0
· · ·

σk

· · ·
σh2

· · ·
σh0

· · ·
σh1

· · ·
σ|σ|−1

p1
p0
p2 q2 q0 q1

p2

p0

p1

Figure 4 Example of a word σ in C2.

While Cn is definable in coSafety-LTL with a formula of linear size in n, for example
F(

∧n
i=1(pi U qi)), using F(pLTL) one is forced to enumerate all possible orders between

q1, . . . , qn with a formula of this type:

F
( ∨

π∈Π
(qπ(1)∧Y(pπ(1)) S (pπ(1) ∧ qπ(2)∧

Y(pπ(1) ∧ pπ(2)) S (pπ(1) ∧ pπ(2) ∧ qπ(3) ∧ . . .

Y(
n−1∧
i=1

pπ(i)) S (qπ(n) ∧
n∧

i=1
pπ(i))) . . . )))

)
where Π is the set of permutations of {1, . . . , n}. This, in turn, forces the formula to be at
least of size n!.

▶ Conjecture 19. For any n > 0, the language Cn is not expressible in F(pLTL) with a
formula of size less than n!.

We conjecture the same for dual case of Safety-LTL and G(pLTL).

6 Conclusions

We proved the incomparability between the succinctness of LTLf and of pLTL. We started by
proving that the family of properties An admits a formalization in pLTL with formulas of
linear size, while all formulas in LTLf for An are at least of exponential size. By using the
Reverse Lemma, we derived that also the vice versa holds, that is, LTLf can be exponentially
more succinct than pLTL. This result allowed us to confirm the conjecture left open in [2]
about the lower bound for the complexity of translating LTLf into pLTL. We finally showed
that G(pLTL) and F(pLTL) (i.e. the canonical forms of the safety and cosafety fragments of
LTL) can be exponentially more succinct than Safety-LTL and coSafety-LTL, respectively.

The study of the maximal fragment of LTLf that does not incur in the exponential blow-up
in the translation into pLTL is surely a problem worth studying, both for its theoretical
implications and for its applications in reactive synthesis.

Proving Conjecture 19 is also an interesting future direction, which may require more
sophisticated techniques for proving the lower bound, such as Ehrenfeucht-Fraïssé games [22]
or Adler-Immermann games [1].

Finally, while we know that the lower bound between the translation of LTLf into pLTL is
at least exponential, we have an upper bound which is triply exponential. The possibility of
tighter lower bounds, or more efficient algorithms for this problem, is worth investigating.
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