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Abstract
The concept of prime implicant is a fundamental tool in Boolean algebra, which is used in Boolean
circuit design and, recently, in explainable AI. This study investigates an analogous concept in
qualitative spatial and temporal reasoning, called prime scenario. Specifically, we define a prime
scenario of a qualitative constraint network (QCN) as a minimal set of decisions that can uniquely
determine solutions of this QCN. We propose in this paper a collection of algorithms designed to
address various problems related to prime scenarios. The first three algorithms aim to generate
a prime scenario from a scenario of a QCN. The main idea consists in using path consistency to
identify the constraints that can be ignored to generate a prime scenario. The next two algorithms
focus on generating a set of prime scenarios that cover all the scenarios of the original QCN: The first
algorithm examines every branch of the search tree, while the second is based on the use of a SAT
encoding. Our last algorithm is concerned with computing a minimum-size prime scenario by using
a MaxSAT encoding built from countermodels of the original QCN. We show that this algorithm
is particularly useful for measuring the robustness of a QCN. Finally, a preliminary experimental
evaluation is performed with instances of Allen’s Interval Algebra to assess the efficiency of our
algorithms and, hence, also the difficulty of the newly introduced problems here.
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1 Introduction

The role of prime implicants is pivotal in various domains, including knowledge compilation [2,
5], Boolean circuit simplification [21, 22, 17], and diagnosis [7, 28]. Additionally, many recent
research works have employed prime implicants to explain decisions by compiling machine
learning classifiers into Boolean circuits [30, 9, 10, 11, 4].

Qualitative Spatial and Temporal Reasoning (QSTR) focuses on reasoning about space
and time using qualitative human-like descriptions, e.g., x {is north of } y, as opposed to
quantitative ones [15]. QSTR is a rich symbolic AI framework concerned with studying
various types of spatial and temporal relationships, such as the relative position of objects [14],
the ordering and duration of events [1], and the mereotopology of regions [23]. By employing
qualitative representations, QSTR allows modeling and reasoning about complex entities
and phenomena in a more flexible and intuitive way without resorting to, often prohibitively
expensive, numerical precision.
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(c) A prime scenario of the QCN.

Figure 1 An illustration of the knowledge compilation notion of prime scenario of a qualitative
constraint network (QCN) (see also Definition 4); a set of prime scenarios can form a prime scenario
cover of a QCN, for such a cover, here, we only need to additionally consider the prime scenario in
Figure 1c with tasky {equals} taskz instead of tasky {before} taskz.

In this study, we introduce a novel notion, called prime scenario, that serves as the QSTR
analogue of the notion of prime implicant. A prime scenario is defined as a minimal set
of decisions that can only lead to solutions of the original qualitative constraint network
(QCN); see Figure 1. While the notion of prime implicant shares similarities with that of
prime scenarios, there are significant distinctions that hinder the direct application of prime
implicant computation approaches to our context. Notably, prime scenarios are based on
binary relations between variables, while prime implicants rely on truth values of variables.
For instance, any literal entailed by a prime implicant belongs to that implicant; in contrast,
singleton constraints entailed by prime scenarios do not have this property. To better grasp
this point, consider the following constraints: x {before} y, y {before, equals} z, and x {before,
after} z (Figure 1a); although the two first constraints entail x {before} z, this constraint does
not belong to the prime scenario {x {before} y, y {before} z} (Figure 1c): it is redundant.

It is worth mentioning that our notion of prime scenario has some relation to that of
prime sub-QCN introduced in [13]. Specifically, the constraints that are not included in
the prime scenario are redundant when we require the instantiated part within the prime
scenario. In particular, for every atomic QCN, the prime scenarios are the prime sub-QCNs.
Intuitively, the difference between prime scenarios and prime sub-QCNs bears a resemblance
to the difference between prime implicants and the formulas resulting from the elimination
of redundant clauses in propositional formulas expressed in conjunctive normal form.

To illustrate the motivation behind our novel work here, consider the example of machine
learning classifiers that can be compiled into QCNs, much like as in the ongoing research
involving Boolean circuits that we mentioned in the beginning. In this case, the solutions
correspond to positive decisions, while the remaining interpretations correspond to negative
ones. To explain the decisions made by these classifiers, prime scenarios can be used in a
similar way as prime implicants are used to explain decisions of classifiers compiled into
Boolean circuits. In particular, a prime scenario that covers a solution can be seen as a
sufficient reason behind the decision associated with this solution. What is more, the notions
of prime scenario and prime scenario cover that we introduce here (Figure 1), form a step
towards compiling QCNs and open new avenues for research in this field: Prime scenarios
can be used in the context of compilation of spatio-temporal knowledge bases, and prime
scenario covers would be a classical way to perform such compilations.

With regard to the discussion above, our main contributions are fivefold: (i) We define the
notion of prime scenario of a QCN and propose three algorithms for computing it (Section 3);
(ii) we introduce and study the related problem of prime scenario cover of a QCN and present
two distinct algorithms for solving it, a constraint- and a SAT-based one (Section 4); (iii) we
focus on obtaining a minimum-size prime scenario of a QCN and devise a countermodel-
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Figure 2 A representation of the 13 base relations b of IA, each one relating two potential intervals
x and y as in x b y; the converse of b, i.e., b−1, can be denoted by bi and is omitted in the figure.

based MaxSAT encoding to tackle this task, and (iv) we show how the minimum-size prime
scenarios are useful for measuring the robustness of a QCN (Section 5); and finally (v) we
experimentally evaluate all our algorithms and make our code available for any interested
researcher to use (Section 6).

2 Preliminaries

A qualitative spatial or temporal constraint language is based on a finite set B of jointly
exhaustive and pairwise disjoint relations, called base relations, and defined over an infinite
domain D [15] (e.g., R). The base relations of such a language can be used to represent the
definite knowledge between any two of its entities (e.g., x contains y). The set B contains the
identity relation Id, and is closed under the converse operation (−1). Indefinite knowledge
can be specified by a union of possible base relations, and is represented by the set containing
them. Hence, 2B represents the total set of relations. The set 2B is equipped with the usual
set-theoretic operations of union and intersection, the converse operation, and the weak
composition operation, denoted by ⋄ [15]. For all r ∈ 2B, we have that r−1 =

⋃
{b−1 | b ∈ r}.

The weak composition (⋄) of two base relations b, b′ ∈ B is defined as the smallest (i.e., most
restrictive) relation r ∈ 2B that includes b ◦ b′, or, formally, b ⋄ b′={b′′ ∈ B | b′′∩(b ◦ b′) ̸= ∅},
where b◦b′={(x, y) ∈ D×D | ∃z ∈ D such that (x, z) ∈ b∧(z, y) ∈ b′} is the (true) composition
of b and b′. For all r, r′ ∈ 2B, we have that r ⋄ r′ =

⋃
{b ⋄ b′ | b ∈ r, b′ ∈ r′}.

As an illustration, consider the well-known qualitative temporal constraint language of
Interval Algebra (IA) [1]. IA considers time intervals (as temporal entities) and the set of
base relations B = {eq (= Id), b, bi, m, mi, o, oi, s, si, d, di, f , fi} to encode knowledge
about the temporal relations between intervals on the real line, as described in Figure 2.

Finally, representing and reasoning about qualitative spatio-temporal information can be
facilitated by a qualitative constraint network (QCN); we recall the following definition:

▶ Definition 1. A qualitative constraint network (QCN) is a tuple (V, C) where:
V = {v1, . . . , vn} is a finite set of variables over some infinite domain D (e.g., R);
and C is a mapping C : V × V → 2B associating a relation with each pair of variables s.t.
C(v, v) = {Id} for all v ∈ V , and C(v, v′) = (C(v′, v))−1 for all v, v′ ∈ V .

For convenience, we often consider that the set of variables of a QCN consists of integers,
and we use [[N ]] to denote the set {(i, j) ∈ V × V : i < j}.

A QCN N = (V, C) is said to be trivially inconsistent iff ∃v, v′ ∈ V such that C(v, v′) = ∅.
A solution of a QCN N = (V, C) is a mapping σ : V → D such that ∀v, v′ ∈ V ,

∃b ∈ C(v, v′) such that (σ(v), σ(v′)) ∈ b; N is said to be consistent iff it admits a solution.
A sub-QCN N ′ of N , denoted by N ′ ⊆ N , is a QCN (V, C ′) such that, ∀u, v ∈ V ,

C ′(u, v) ⊆ C(u, v). (This term is also known as a refined QCN in the literature.)
A scenario of N is a consistent atomic sub-QCN S of N , where a QCN S = (V, C ′) is

atomic iff ∀v, v′ ∈ V , |C(v, v′)| = 1. To refer to the set of scenarios of N , we employ the
notation Scenarios(N ).

TIME 2023
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Throughout the paper, we use the following notational conventions for a QCN N = (V, C):
For two variables v, v′ ∈ V , we use N [v, v′] to denote the relation C(v, v′).
For two variables v, v′ ∈ V and a relation r ∈ 2B, we use v r v′ to denote that C(v, v′) = r

when there is no ambiguity about the considered QCN.
For two variables v, v′ ∈ V and a relation r ∈ 2B, we use N[v,v′]/r to denote the result of
substituting C(v, v′) with r in N , i.e., N[v,v′]/r is the QCN (V, C ′) defined by C ′(v, v′) = r,
C ′(v′, v) = r−1 and, ∀(u, u′) ∈ (V × V ) \ {(v, v′), (v′, v)}, C ′(u, u′) = C(u, u′).

A counter-scenario of a QCN N = (V, C) is a consistent atomic QCN S over V that is
not a scenario of N , i.e., there exist i, j ∈ V such that S[i, j] ̸⊆ N [i, j]. We denote the set of
counter-scenarios of N as CounterS(N ).

In general, there exists only one type of QCNs that do not admit any counter-scenario:
those in which every constraint is universal, i.e., it contains all base relations. In such cases,
we use N⊤ to denote the universal QCN when the set of variables is assumed to be known,
or to refer to this type of QCNs.

Given a set of variables V , we define a q-assignment over V as a partial function f from
{(i, j) : i, j ∈ V and i < j} to B. We use N f

V to denote the QCN (V, C) defined as follows:
for each (i, j) ∈ dom(f), C(i, j) = {f(i, j)}; and
for each i, j ∈ V with i < j and (i, j) /∈ dom(f), C(i, j) = B.

Given a QCN N , we use min(N ) to denote the equivalent minimal sub-QCN of N [26],
i.e., the sub-QCN that contains only the feasible base relations of the original one.

It is important to note that in this paper, we focus on calculi with the following property:
▶ Note 2. For any q-assignment f over V , the closure of N f

V under path consistency (with
weak composition, or, equivalently, under algebraic closure [25]) yields min(N f

V ).
This property holds for many widely adopted qualitative calculi, such as IA [1] (mentioned

earlier) and RCC8 [23]; a fuller listing is provided in the proof of Theorem 2 in [16].
As a direct consequence of the aforementioned property, we also have that, for any

q-assignment f over V , path consistency decides the consistency of N f
V .

Given a consistent atomic QCN S = (V, C), we say that a q-assignment f over V covers
S if S is a scenario of N f

V .
In the sequel, we also represent a q-assignment as a set of expressions of the form (i, j) 7→ b:

f corresponds to the set {(i, j) 7→ f(i, j) : (i, j) ∈ dom(f)}.

3 Prime Scenarios

In this section, we introduce the concept of prime scenario, which can be thought of as
analogous to that of prime implicant in propositional logic.

▶ Definition 3 (Convergent Q-Assignment). A convergent q-assignment (CQA) of a QCN
N = (V, C) is a q-assignment π over V where (1) N π

V is consistent, and (2) every scenario
of N π

V is a scenario of N .

Convergent q-assignments are similar in concept to implicants in propositional logic.
Property 1 states that a CQA maintains consistency, and Property 2 says that a CQA cannot
lead to a scenario that does not satisfy the original QCN. By virtue of this second property,
π(i, j) ∈ C(i, j) holds for every (i, j) ∈ dom(π).

▶ Definition 4 (Prime Scenario). A prime scenario of a QCN N is a convergent q-assignement
π of N where for every D ⊊ dom(π), π|D is not a convergent q-assignment.
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Algorithm 1 FindOnePS_1(N ,S).

in : A QCN N = (V, C) and a complete scenario S of N
out : A prime scenario π that covers S

1 π ← {(i, j) 7→ b : (i, j) ∈ [[N ]], b ∈ S[i, j],N [i, j] ̸= B};
2 for (i, j) ∈ [[N ]] do
3 N ′ ← PathConsistency(N π

V [i,j]/B);
4 if N ′ ⊆ N then
5 π ← π|dom(π)\{(i,j)};
6 return π

In other words, a prime scenario is a CQA that has a minimal domain (w.r.t. set inclusion).
We use PSes(N ) to denote the set of prime scenarios of N .

To distinguish between prime scenarios and standard scenarios more clearly, we will refer
to the latter as complete scenarios.

▶ Proposition 5. The problem of determining whether a q-assignment is a prime scenario
of a QCN is tractable.

Proof. We show that we can determine whether a q-assignment is a prime scenario by linearly
applying the polytime procedure of path consistency. Let N = (V, C) be a QCN and π a
q-assignment of N . To determine whether π is a prime scenario, we first need to check that
N π

V is consistent, which can be done using path consistency (see Note 2 and the discussion
after). Using, again, path consistency, we can determine whether every complete scenario of
N π

V is a complete scenario of N (see Note 2). Indeed, we only have to show N ′ ⊆ N , where
N ′ is the result of applying path consistency on N π

V . Similarly, to show that π is minimal
w.r.t. set inclusion, we can use path consistency to show that, for every (i, j) ∈ dom(π),
Nij ̸⊆ N , where Nij is the result of applying path consistency on N π|dom(π)\{(i,j)}

V . ◀

Let us recall that a prime implicant of a propositional formula is a minimal consistent
conjunction of literals whose Boolean models are models of this formula. This definition
clearly shows that prime implicants and prime scenarios are similar in concept. However,
a closer examination reveals that there are significant differences between them, making
the study of prime scenarios highly compelling and of great interest. First, prime scenarios
are more complex structures by involving constraints and qualitative relations. Secondly,
universal constraints, which are analogous to tautologies in the case of propositional logic, can
be involved in prime scenarios, whereas tautologies can be simply ignored in prime implicant
computation. Consider, for instance, the QCN N in Point Algebra PA [33] (B = {<, =, >})
that corresponds to the following constraints: i{<, =, >}j, j{<, =, >}k and i{<}k; we obtain
that π = {(i, j) 7→<, (j, k) 7→<} is a prime scenario of N even though the two involved
constraints in π are universal in N . Thirdly, unlike entailed literals in the case of prime
implicants, the singleton constraints entailed from a prime scenario do not belong to it.
The prime implicants benefit significantly from this advantage, as it enables the use of unit
propagation to efficiently compute them.

Computing One Prime Scenario
The focus here is on the computation of a prime scenario that covers a given complete scenario.
We propose three different algorithms that are centered around the idea of computing a
prime scenario from a precomputed CQA.

TIME 2023
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Algorithm 2 FindOnePS_2(N ,S).

in : A QCN N = (V, C) and a complete scenario S of N
out : A prime scenario π that covers S

1 N ′ ← N⊤;
2 P ← [[N ]];
3 while N ′ ̸⊆ N do
4 Let (i, j) ∈ P s.t. |N ′[i, j]| > 1 and N [i, j] ̸= B;
5 N ′ ← PathConsistency(N ′

[i,j]/S[i,j]);
6 P ← P \ {(i, j)}
7 π ← {(i, j) 7→ b : (i, j) ∈ [[N ]] \ P, b ∈ S[i, j]};
8 for (i, j) ∈ [[N ]] \ P do
9 N ′ ← PathConsistency(N π

V [i,j]/B);
10 if N ′ ⊆ N then
11 π ← π|dom(π)\{(i,j)};
12 return π

Algorithm 3 FindOnePS_3(N ,S).

in : A QCN N = (V, C) and a complete scenario S of N
out : A prime scenario π that covers S

1 N ′ ← N ;
2 min← 1;
3 max← n;
4 while min ̸= max do
5 v ← (max + min)/2;
6 N ′′ ← PathConsistency(N ′

[i1,j1]/S[i1,j1],...,[iv,jv ]/S[iv,jv ]);
7 if N ′′ ⊆ N then
8 max← v;
9 else

10 min← v + 1;
11 N ′ ← N ′′;
12 π ← {(ik, jk) 7→ bk : 1 ≤ k ≤ min, b ∈ S[i, j]};
13 for k ∈ 1, . . . , min do
14 if PathConsistency(N π

V [ik,jk]/B) ⊆ N then
15 π ← π|dom(π)\{(i,j)};
16 return π

Algorithm 1 starts by obtaining a CQA from a given complete scenario: its domain
corresponds to the set of non-universal constraints in the original QCN. It then iterates over
this CQA, applying path consistency to determine if the domain can be reduced.

Algorithm 2 begins by constructing a more compact CQA compared to Algorithm 1. It
achieves this by using a while loop, which adds a constraint at each iteration using the given
complete scenario until it reaches a CQA. Then, similarly to algorithm 1, it uses a for loop
to compute a prime scenario from the obtained CQA.

Algorithm 3 is described by fixing {(i, j) ∈ [[N ]] : N [i, j] ̸= B} = {(i1, j1), . . . , (in, jn)}.
Similar to Algorithm 2, it starts by computing a CQA and then utilizes a for loop to
obtain a prime scenario from the computed CQA. However, unlike Algorithm 2, Algorithm 3
incorporates a dichotomic search to compute a CQA, which might enable it to perform the
search more efficiently.



Y. Salhi and M. Sioutis 5:7

Algorithm 4 ComputePSCover(N ,N ′, π).

in : Two QCNs N = (V, C) and N ′(V, C′), and q-assignment π over V

out : A PS cover of N by assigning N⊤ to N ′ and ∅ to π

1 N ′′ ← PathConsistency(N ′);
2 if ∃(i, j) ∈ [[N ]] \ dom(π),N ′′[i, j] ∩N [i, j] = ∅ then
3 return ∅;
4 if N ′′ ⊆ N then
5 return {FindOnePS(N , π)};
6 Let (i, j) ∈ [[N ]] \ dom(π) s.t. N ′′[i, j] ̸⊆ N [i, j];
7 R← ∅;
8 for b ∈ N ′′[i, j] ∩N [i, j] do
9 R← R ∪ {FindPSCover(N ,N ′′

[i,j]/b, π ∪ {(i, j) 7→ b})};
10 return R

By employing three distinct algorithms, we can benefit from the advantages and the
strength of each approach. Our experiments have revealed that these algorithms exhibit
varying levels of accuracy and efficiency for specific instances. Note that the considered
approaches are similar to some approaches used in propositional logic for computing prime
implicants, prime implicates, and minimal unsatisfiable cores (e.g., see [29, 18, 8]).

4 Prime Scenario Cover

Prime implicant cover is a key knowledge compilation concept in the realm of Boolean circuit
design, as it allows us to simplify complex Boolean functions: a function is represented as a
disjunction of prime implicants that cover all its models. In this section, we investigate a
similar concept in QSTR, called prime scenario cover.

We define a prime scenario cover of a QCN N as any set C of prime scenarios of N such
that each complete scenario of N is covered by at least one element of C.

A prime scenario cover provides a simplified representation of the original QCN. It can
also be regarded as a compact representation of all complete scenarios of the initial QCN.

Computing A Prime Scenario Cover

We propose two distinct approaches for computing a prime scenario cover of a given QCN.
The first approach considers every branch of the search tree to cover all scenarios, while the
second is based on an encoding in the SAT problem.

Constraint-based Approach

Algorithm 4 generates a prime scenario cover by recursively exploring the search tree and
including a prime scenario for each found CQA. To obtain a prime scenario cover, we need to
invoke ComputePSCover by assigning N⊤ to N ′ and ∅ to π. The code in Lines 2–3 ensures
that search-subtrees without any CQA are not considered. The code in Lines 4–5 generates a
prime scenario from a found CQA using one of the approaches described previously. Finally,
the code in Lines 6–9 selects a constraint in the current QCN to continue exploring the
search tree by making new decisions.

TIME 2023
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Algorithm 5 ComputePSCover(N ).

in : A QCN N = (V, C)
out : A PS cover C of N

1 C ← ∅;
2 Φ← SATEnc(N );
3 while SAT(Φ) do
4 π ← FindOnePS(N ,Sω);
5 C ← C ∪ {π};
6 Φ← ϕ ∧

∨
(i,j)∈dom(π) ¬p

π(i,j)
ij

7 return C

SAT-based Approach

To define our second algorithm, we use a SAT encoding of the consistency problem [19, 35]. For
every (i, j) ∈ [[N ]] and every b ∈ B, we associate a distinct propositional variable pb

ij . Then,
we define the encoding SATEnc(N ) as follows: (1)

∑
b∈C(i,j) pb

ij = 1 for each (i, j) ∈ [[N ]];
and (2)

∧
b1∈C(i,j)
b2∈C(j,k)

(pb1
ij ∧ pb2

jk →
∨

b3∈(b1⋄b2)∩C(i,k) pb3
ik) for every (i, j), (j, k) ∈ [[N ]].

Note that the sum constraints in Formula (1) can be linearly encoded as CNF formulas
in several ways (e.g., see [31]).

For every model ω of SATEnc(N ), the associated complete scenario of N , denoted Sω, is
defined as follows: for every (i, j) ∈ [[N ]], Sω[i, j] = {b : ω(pb

ij) = 1}.
Algorithm 5 allows us to compute a prime scenario cover by ensuring that each newly found

prime scenario covers at least one complete scenario that is not covered by the previously
obtained prime scenarios. Indeed, in each iteration of the while loop, the computed complete
scenario is not covered by the prime scenarios found in the previous iterations, thanks to the
addition of blocking clauses in Line 6.

5 Minimum-Size Prime Scenarios

The minimum-size prime scenarios are those that have the smallest possible domains. We
think that, like minimum-size prime implicants, minimum-size prime scenarios can be applied
in various contexts. In this section, after describing our algorithm for computing minimum-
size prime scenarios, we introduce a novel application by showing that these prime scenarios
can be useful for analyzing and reasoning about robustness. Specifically, they can help us to
define a robustness measure that provides insights into the number of critical constraints.

Computing a Minimum-Size Prime Scenario: PMaxSAT-based Approach
Given two QCNs N and N ′ over the same set of variables V , we use comp(N , N ′) to denote
the set {(i, j) 7→ b : (i, j) ∈ [[N ]] and b ∈ N [i, j] \ N ′[i, j]}.

A hitting set is a subset of a collection of sets that intersects with every element in the
collection. A hitting set is said to be minimal if it cannot be reduced in size without ceasing
to be a hitting set.

The following theorem shows that all prime scenarios can be obtained from the minimal
hitting sets of collections of sets built from the counter-scenarios.

▶ Theorem 6. A q-assignment π is a prime scenario of N iff π is a minimal hitting set of
H = {comp(N , N ′) : N ′ ∈ CounterS(N )} and N π

V is consistent.
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Algorithm 6 MinimumSizePS(N ).

in : A QCN N = (V, C)
out : A minimum-size prime scenario of N

1 Let S0 an arbitrary counter-scenario of N ;
2 H ← {comp(N ,S0)};
3 while true do
4 π ← getHS(MaxSATMH(H,N ));
5 N ′ ← PathConsistency(N π

V );
6 if N ′ ⊆ N then
7 return π

8 Let S be an arbitrary scenario of N ′ where S[i, j] ̸⊆ N [i, j] for some (i, j) ∈ [[N ]];
9 H ← H∪ {comp(N ,S)};

Proof. First, we prove the “if” part. Let π be a q-assignment such that N π
V is consistent

and π is a minimal hitting set of H. We assume for the sake of contradiction that N π
V is

satisfied by a counter-scenario N ′ of N . This implies that π ∩ comp(N , N ′) = ∅. However,
this contradicts the assumption that π is a hitting set of H. Therefore, π must be a CQA of
N . To prove that π is a prime scenario, we must show that its domain is minimal w.r.t. set
inclusion. This follows directly from the fact that π is a minimal hitting set of H. Indeed,
any proper subset π′ of π does not hit at least one element of H, which means that N π′

V is
satisfied by at least one counter-scenario of N . Consequently, π is a prime scenario of N .

Now, we move to the “only if” part. Let π be a prime scenario of N . Suppose that there
is counter-scenario N ′ of N s.t. π ∩ comp(N , N ′) = ∅. Thus N ′ is a complete scenario of
N π

V , which leads to a contradiction. Therefore, π is a hitting set of H. Just as in the “if”
part, the minimality of π as a hitting set is implied by its minimality as a CQA. ◀

To some extent, Theorem 6 is similar to the minimal hitting set duality between prime
implicants and prime implicates in the case of propositional logic [24, 27, 20].

Our algorithm generates candidate solutions by utilizing a Partial MaxSAT encoding
to compute specific minimal hitting sets. We denote this encoding by MaxSATMH(H′, N ),
where N = (V, C) is a QCN and H′ ⊆ {comp(N , N ′) : N ′ ∈ CounterS(N )}. In addition to
the variables used to define the SATEnc(N ) encoding, described in Section 4, we associate
a distinct propositional variable qb

ij with every (i, j) 7→ b ∈
⋃

H′. The hard part of
MaxSATMH(H′, N ) corresponds to the conjunction of SATEnc(N ) and the following formulas:
(1)

∨
(i,j) 7→b∈e qb

ij for each e ∈ H; and (2) qb
ij → pb

ij for each (i, j) 7→ b ∈
⋃

H′.
Formula (1) guarantees that each solution of the encoding hits all elements of H′, and

Formula (2) forces the truth values of the variables representing a complete scenario of N to
match those of the variables of the form qb

ij .
The soft part of MaxSATMH(H′, N ) corresponds to the set of unit clauses {¬qb

ij : (i, j) 7→
b ∈

⋃
H′}. This allows us to minimize the size of the hitting set.

Given a solution ω of MaxSATMH(H′, N ), its associated q-assignment is πω = {(i, j) 7→
b ∈

⋃
H′ : ω(qb

ij) = 1}. Clearly, πω is one of the smallest hitting sets of H′ such that N πω

V is
consistent and covers a scenario of N .

Theorem 6 shows that every minimum-size prime scenario π of N is a minimum-size
hitting set of H = {comp(N , N ′) : N ′ ∈ CounterS(N )} where (1) N π

V is consistent, and
(2) every complete scenario of N π

V is a complete scenario of N . Consequently, if π is one of
the smallest hitting sets of a subset H′ ⊆ H that satisfies Properties 1 and 2, then π is a
minimum-size prime scenario of N . This is because every hitting set of H is also a hitting
set of H′. Algorithm 6 uses this property to generate a minimum-size prime scenario. In
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each iteration of the while loop, Algorithm 6 employs the encoding MaxSATMH(H′, N ) to
compute π, one of the smallest hitting sets that satisfies Property 1 (Line 4). It then uses
path consistency to check whether π satisfies also Property 2 (Lines 5–6). If π satisfies both
properties, then π is a minimum-size prime scenario and is returned; otherwise, the algorithm
adds an element obtained from a new counter-scenario of N to the collection of sets H. In
the worst case, all counter-scenarios of N will be considered in H, and this necessarily allows
the algorithm to obtain a minimum-size prime scenario.

Algorithm 6 shares some similarities with the approach used in [6] for solving the MaxSAT
problem. This approach leverages the duality between minimal correction subsets and minimal
unsatisfiable subsets.

An Application of Minimum-Size Prime Scenarios: Robustness Measure
Now, we demonstrate one possible use of minimum-size prime scenarios in reasoning about
robustness in QCNs, cf. [32] and [34]. With respect to our terminology here, QCN robustness
refers to the ability of a QCN to withstand perturbations, i.e., eliminations of base relations,
without needing to transform counter-scenarios into scenarios: the scenarios that result after
perturbation are also scenarios of the original QCN. In other words, a robust QCN can
maintain its consistency when facing perturbations. Although certain robustness notions
have been studied in [32] and [34], robustness measures that can be used to compare different
QCNs with one another have not been formalized or introduced; in fact, those notions only
compare the different scenarios (or refined QCNs) with one another of a single QCN.

We define a robustness measure as a function from the set of QCNs to positive real
numbers. Our robustness measure, denoted RP S , is defined as follows:

RP S(N ) = max{|[[N ]]| − |dom(π)| : π ∈ PSes(N )}

where max ∅ = 0. For consistent QCNs, we clearly have RP S(N ) = |[[N ]]| − min{|dom(π)| :
π ∈ PSes(N )}; It follows that RP S can be computed from any minimum-size prime scenario.

Our measure captures the fact that the robustness increases by decreasing the number of
the constraints that we need to instantiate to get a complete scenario of the given QCN.

To formally establish the suitability of our robustness measure, we present a result that
lists interesting properties that can be considered as necessary for any robustness measure.

▶ Proposition 7. The following properties are satisfied:
1. for any inconsistent QCN N , RP S(N ) = 0;
2. RP S(N⊤) = |[[N⊤]]|;
3. for all two QCNs N and N ′ with Scenarios(N ) = Scenarios(N ′), RP S(N ) = RP S(N ′);
4. for all two QCNs N and N ′ with Scenarios(N ) ⊆ Scenarios(N ′), RP S(N ) ≤ RP S(N ′).

Proof. Property 1 holds since every inconsistent QCN does not admit any prime scenario.
Property 2 follows from the fact that π = ∅ is a prime scenario of N⊤. The fact that the
QCNs having the same complete scenarios have also the same prime scenarios leads to
Property 3. Property 4 stems from the observation that PSes(N ) ⊆ PSes(N ′) holds when
Scenarios(N ) ⊆ Scenarios(N ′). ◀

The first two properties state that the minimum robustness value is associated with
inconsistent QCNs, while the maximum value corresponds to QCNs where all relations are
trivial, viz., N⊤. The third property ensures that identical complete scenarios lead to the
same robustness value. The last property guarantees that the robustness value does not
decrease as more complete scenarios are considered.
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Table 1 Assessing the performance of obtaining (minimum) prime scenarios, the format being
min | avg.(µ) | max prime index

min | avg.(µ) | max # of oracle calls (# of timeouts); a timeout occurs after 1 200s, and it is im-

portant to note that the oracle calls for the FindOnePS variants concern the application of path
consistency, whereas the ones for MinimumSizePS the solving of a Partial MaxSAT instance.

d FindOnePS_1 FindOnePS_2 FindOnePS_3 MinimumSizePS

9 0.2 | 0.3 | 0.4

45 | 45.0 | 45

0.2 | 0.29 | 0.36

26 | 38.24 | 52

0.2 | 0.3 | 0.38

34 | 45.11 | 50

0.2 | 0.26 | 0.31

0.9k | 2.2k | 4.2k
(34)

8 0.23 | 0.34 | 0.45

40 | 40.0 | 40

0.23 | 0.33 | 0.43

28 | 39.02 | 54

0.23 | 0.34 | 0.45

23 | 41.03 | 45

0.23 | 0.29 | 0.35

1.5k | 2.9k | 5.7k
(45)

7 0.29 | 0.4 | 0.66

35 | 35.0 | 35

0.29 | 0.39 | 0.66

26 | 39.98 | 60

0.29 | 0.4 | 0.57

27 | 37.39 | 40

0.26 | 0.33 | 0.46

1.7k | 3.4k | 5.3k
(64)

6 0.3 | 0.47 | 0.6

30 | 30.0 | 30

0.3 | 0.46 | 0.6

26 | 39.60 | 54

0.33 | 0.46 | 0.63

21 | 32.89 | 34

0.3 | 0.38 | 0.47

2.7k | 4.1k | 5.5k
(85)

5 0.4 | 0.57 | 0.76

25 | 25.0 | 25

0.4 | 0.57 | 0.76

28 | 37.92 | 46

0.4 | 0.57 | 0.8

23 | 28.3 | 29

0.36 | 0.45 | 0.56

2.2k | 4.3 | 6.2k
(88)

4 0.5 | 0.69 | 0.85

20 | 20.0 | 20

0.5 | 0.69 | 0.85

24 | 34.1 | 40

0.5 | 0.7 | 0.9

21 | 23.57 | 24

0.45 | 0.52 | 0.55

3.6k | 5.6k | 7.0k
(97)

3 0.67 | 0.83 | 1.0

15 | 15.0 | 15

0.67 | 0.83 | 1.0

22 | 28.14 | 30

0.67 | 0.84 | 1.0

16 | 17.96 | 18

0.6 | 0.63 | 0.67

5.0k | 5.0k | 5.0k
(98)

Table 2 Assessing the performance of obtaining prime scenario covers, the format being avg.
# of oracle calls; it is important to note that the oracle calls for ComputePSCover concern the
application of path consistency, whereas the ones for ComputePSCover(SAT) the solving of a
SAT instance, and that avg. cover size = avg. # of oracle calls of ComputePSCover(SAT)− 1
(each oracle call in line 3 of Algorithm 5 computes a prime scenario in the cover, minus the last one).

d = 9 8 7 6 5 4 3

ComputePSCover 0.2k 0.3k 0.5k 1.0k 2.3k 3.0k 3.5k

ComputePSCover(SAT) 16.05 25.04 56.21 0.1k 0.4k 0.7k 1.0k

6 Experimentation

In this section, we perform a preliminary evaluation to assess the efficiency of our algorithms
and, hence, also the difficulty of the introduced problems that they tackle. Our expectation
is that: the FindOnePS variants should run really fast as they involve a number of
path consistency applications that is linear to the number of constraints of a QCN, the
ComputePSCover variants should run comparatively quite slower as they explore the
search space of a QCN and mirror model counting algorithms, and the MinimumSizePS
algorithm should be the slowest of all as it is not only dealing with finding a prime scenario
for each of the exponentially many scenarios of a QCN, but one that is minimal too (there
are many possibilities for a single scenario).

Dataset, Measures, & Setup

To be able to have results that are comparable between fast polytime methods (the Fin-
dOnePS variants) and methods for hard optimization problems (the MinimumSizePS
algorithm), we consider QCNs of IA of 10 variables with a maximum of 2 base relations per
non-universal constraint, for every avg. degree d ∈ (9, 8, . . . , 3) of their constraint graphs
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Figure 3 Assessing the runtime of our algorithms for the problems pertaining to prime scenarios.

(i.e., going from complete graphs to sparse ones). Specifically, we generate two arbitrary
IA scenarios that we then proceed to unify; then, we create all the QCNs that result by
considering one sub-graph of the initially complete constraint graph for every degree d in the
aforementioned range, each with an avg. degree d. We consider 100 QCNs with an initially
complete constraint graph, each yielding 6 more (sparser ones), hence a total of 700 QCNs.
The size of the networks is relatively consistent with what has been used in the literature for
similar optimization problems in order to present results that are as complete as possible (e.g.,
[3]), see also Table 1; in addition, a QCN of IA of n variables enumerates O(2n·log n) scenarios
(qualitative solutions) [12], which translates to roughly 10 billion scenarios in our case.

All of the used measures are clear and intuitive, with the exception of prime index : this is
the ratio of the # of non-universal constraints in a prime scenario to the # of non-universal
constraints in the original QCN and, thus, takes values in (0, 1]. Clearly, the denser the
network, the more opportunities there are to obtain a low measure of this type.

For the experiments we used an Intel®Core®CPU i7-12700H @ 4.70GHz, 16 GB of RAM,
and the Ubuntu Linux 22.04 LTS OS. All coding/running was done in Python 3.10.6; the
code is available at: https://seafile.lirmm.fr/d/9c0cbd2cd0954252ab96/.

Results & Remarks

The results are shown in Tables 1 and 2 and Figure 3, and confirm our expectations; we detail
as follows. Regarding (minimum) prime scenario computation, the polytime FindOnePS
variants are extremely fast, and among those variants the simpler FindOnePS_1 has the
best performance overall; in the case of computing a prime scenario that is also minimal,
we can see that MinimumSizePS can reduce the min, avg., and max prime index values,
but at a huge cost as the number of scenarios that this algorithm has to consider becomes
detrimental to its runtime performance (see # of timeouts in Table 1 and runtime in Figure 3
in particular). Regarding prime scenario cover computation, the constraint-based and the
SAT-based ComputePSCover algorithms perform very similarly, with the SAT variant, viz.,
ComputePSCover(SAT), performing better overall with respect to runtime performance
(see Figure 3 in particular); here, we must note that we did not find any notable differences
in the size of the covers that these algorithms computed (the same result applies to both, see
the caption of Table 2), even though such differences may exist in general.

https://seafile.lirmm.fr/d/9c0cbd2cd0954252ab96/
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7 Conclusion and Perspectives

We introduced the novel notion of prime scenario to QSTR, which is analogous to that of
prime implicant in the case of classical logic. In sum, we made five major contributions: first,
we described three methods for computing one prime scenario; secondly, we presented two
methods for computing a prime scenario cover, which is a set of prime scenarios that cover all
the scenarios of a given QCN; thirdly, we proposed a method for computing a minimum-size
prime scenario and, fourthly, demonstrated how this notion can be used to reason about
robustness; and, fifthly, we experimentally evaluated all our algorithms and made our code
available for any interested researcher to use. Our study opens up new perspectives by
revealing previously unexplored ways to extend the notion of prime implicants to QSTR.
Specifically, it sheds light on the possible use of prime scenarios to explain the decisions made
by classifiers compiled into QCNs, in the same way as prime implicants [30, 9, 10, 11, 4], and
opens new avenues for research in the field of knowledge compilation in the context of QSTR.
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