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Abstract
We study the expressiveness of the pointwise interpretations (i.e. over timed words) of some predicate
and temporal logics with metric and counting features. We show that counting in the unit interval
(0, 1) is strictly weaker than counting in (0, b) with arbitrary b ≥ 0; moreover, allowing the latter
indeed leads to expressive completeness for the metric predicate logic Q2MLO, recovering the
corresponding result for the continuous interpretations (i.e. over signals). Exploiting this connection,
we show that in contrast to the continuous case, adding “punctual” predicates into Q2MLO is still
insufficient for the full expressive power of the Monadic First-Order Logic of Order and Metric
(FO[<, +1]). Finally, we propose a generalisation of the recently proposed Pnueli automata modalities
and show that the resulting metric temporal logic is expressively complete for FO[<, +1].
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1 Introduction

Timed logics. Metric Temporal Logic (MTL) [22] is a natural extension of Linear Temporal
Logic (LTL) [31] with the capability of expressing real-time constraints by allowing intervals
I to be specified with the “until” (U) and “since” (S) modalities of LTL. Intuitively, p UI q

holds at a position i if there is a position j in the future where q holds, the time difference
between i and j is within I, and p holds at all the points between i and j. While MTL
provides a convenient and intuitive syntax for timing constraints, the problem of whether
a given MTL formula has a model (behaviour) that satisfies it is undecidable [3,29] – this
makes MTL infeasible as a specification formalism for practical verification tasks. To remedy
this issue, Alur, Feder, and Henzinger proposed in a seminal work [1] a syntactic fragment of
MTL called Metric Interval Temporal Logic (MITL) where intervals associated with modalities
are “non-punctual”, i.e. non-singular. They showed that the satisfiability and model-checking
problems for MITL are decidable with ExpSpace-complete complexity. In other words, by
sacrificing perfect timing precision, we obtain a fully decidable timed specification formalism
capable of expressing many practical properties of interest (see, e.g., [35]).

Expressiveness. Pnueli conjectured in the early 1990s that the trivial property “p and then
q will happen in the next time unit’ is not expressible in timed temporal logics like MTL and
MITL. The conjecture (in different forms) is proved in [5, 12, 13, 30] and has led to several
decidable extensions of MITL; one of the most notable extensions amongst them is Hirshfeld
and Rabinovich’s Q2MLO [12]. It is straightforward to express the counting modalities and
Pnueli modalities (a more general form of the aforementioned conjecture) in Q2MLO, and it
admits a very simple and natural metric temporal logic characterisation: the extension of
MITL with counting modalities is expressively complete for Q2MLO [16]. However, most of
these results only hold for the continuous interpretations (i.e. over signals) of these logics
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7:2 More Than 0s and 1s: Metric Quantifiers and Counting over Timed Words

C(0,1)MTL
1⃝
≡ C0MTL

2⃝
≡ CMTL

3⃝
≡ PQ2MLO

4⃝
≡ FO[<, +1] .

C(0,1)MITL
5⃝
≡ C0MITL

6⃝
≡ CMITL

7⃝
≡ Q2MLO .

Figure 1 The relevant expressiveness results in the continuous semantics. 2⃝ is trivial,
e.g., C2

(1,2) p ⇐⇒ F=1 C2
(0,1) p. 1⃝ can similarly be seen to hold by an easy case analysis,

e.g., C2
(0,2) p ⇐⇒ C2

(0,1) p ∨ F=1(C2
(0,1) p) ∨

(
C1

(0,1) p ∧ F=1(p ∨ C1
(0,1) p)

)
. 3⃝ and 4⃝ are proved

in [20]. 5⃝, 6⃝, and 7⃝ follow from [14,16] and [19].

C(0,1)MTLfut
1⃝
⊊ C0MTLfut

2⃝
⊊ CMTLfut

3⃝
⊆ PQ2MLO ⊆ PGQMLO ⊆ FO[<, +1] .

C(0,1)MITLfut
4⃝
⊊ C0MITLfut

5⃝
⊊ CMITLfut

6⃝
⊆ Q2MLO .

Figure 2 The relevant known expressiveness results in the pointwise semantics (where the
subscript “fut” stands for the future-only fragments). 1⃝, 2⃝, 4⃝, and 5⃝ are proved in [24]. 3⃝ and
6⃝ follow from [19]. The rest are syntactic inclusions.

and do not hold for the pointwise interpretations (i.e. over timed words). This is unfortunate
from a practical point of view, as the latter is usually more amenable to automata-based
implementations (e.g., Uppaal [27]).

Contributions. The present work focusses on the expressiveness of these logics. We show
that, as opposed to the situation in the continuous semantics, counting in (0, b⟩ is strictly
more expressive than counting in (0, 1), and by allowing this modest generalisation we can
actually recover the expressive completeness result for Q2MLO; this is also in stark contrast
with the future-only fragments of these logics in the pointwise semantics, where counting in
(0, b⟩ is still insufficient for the expressiveness of (future) Q2MLO [24]. Similarly, we show
that Q2MSO (the second-order version of Q2MLO) is characterised by MITL with counting
modalities and untimed automata modalities. Finally, we show that Q2MLO with punctual
predicates is still strictly less expressive than FO[<, +1] (once again in stark contrast with the
continuous case), and we propose an extension to achieve the full expressiveness of FO[<, +1].

Related work. Compared to the situation in the continuous semantics, there are very
few expressive completeness results regarding timed temporal logics like MTL and MITL in
the pointwise semantics in the literature. D’Souza and Tabareau [8] showed that “vanilla”
MITL is expressively complete for a restricted fragment of the Monadic First-Order Logic of
Order and Metric (FO[<, +1]) in the pointwise semantics. It is shown in [17] that MTL with
counting modalities is still strictly less expressive than FO[<, +1] in the pointwise semantics.
On the practical side, counting modalties appear to be amenable to implementations, e.g.,
Bersani, Rossi, and San Pietro [4] proposed an SMT-based tool for deciding the satisfiability
of MITL with counting modalities.

2 Preliminaries

We give a brief introduction to (linear-time) timed logics and some technical tools and
notations used in the paper. For more detailed reviews and comparisons of relevant results,
we refer the readers to [6, 15].
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C(0,1)MTL
1⃝
⊊ C0MTL ≡ CMTL

2⃝
≡ PQ2MLO

3⃝
⊊ PGQMLO ⊆ PGQMLOfrac 4⃝

≡ FO[<, +1] .

C(0,1)MITL
5⃝
⊊ C0MITL ≡ CMITL

6⃝
≡ Q2MLO .

Figure 3 The results of this paper (in the pointwise semantics). 1⃝ and 5⃝ follow from Theorem 9.
2⃝ and 6⃝ follow from Theorem 13. 3⃝ is Corollary 16, and 4⃝ is Theorem 17.

Timed languages. A timed word over a finite alphabet Σ is an ω-sequence of events
(σi, τi)i≥1 over Σ × R≥0 with (τi)i≥1 an increasing sequence of non-negative real numbers
(“timestamps”) such that for any r ∈ R≥0, there is some position j ≥ 1 with τj ≥ r (i.e. we
consider strictly monotonic timed words and require them to be “non-Zeno”).1 We denote
by ρ[i, j] the finite timed word formed by the sequence of events (σℓ, τℓ)i≤ℓ≤j . We denote by
TΣω the set of all timed words over Σ. A timed language is a subset of TΣω.

Metric predicate logics. We start by defining Monadic Second-Order Logic of Order and
Metric (MSO[<, +1]), which encompasses all the timed logics discussed in this paper.

▶ Definition 1 (MSO[<, +1] [3, 33]). Monadic Second-Order Logic of Order and Metric
(MSO[<, +1]) formulae are generated by

ϑ ::= ⊤ | X(x) | x < x′ | d(x, x′) ∈ I | ϑ1 ∧ ϑ2 | ¬ϑ | ∃x ϑ | ∃X ϑ

where X is an atomic proposition, x, x′ are first-order variables, d is the distance predicate,
I ⊆ R≥0 is an interval with endpoints in N≥0 ∪ {∞}, and ∃x, ∃X are first- and second-order
quantifiers, respectively.2

As a convention we write, e.g., (0, b⟩, to refer to (0, b) or (0, b]. The fragment of MSO[<, +1]
without second-order quantifiers is the Monadic First-Order Logic of Order and Metric
(FO[<, +1]). The fragment of MSO[<, +1] without the distance predicate is the Monadic
Second Logic of Order (MSO[<]). The fragment of FO[<, +1] without the distance predicate
is the Monadic First-Order Logic of Order (FO[<]).

▶ Definition 2 (Q2MLO [12]). Q2MLO is the smallest fragment of FO[<, +1] obtained from
FO[<] by the following rules:

All FO[<] formulae with a single free variable are Q2MLO formulae (note that they may
use Q2MLO formulae as atomic propositions).
If ϑ(x0, x) is an FO[<] formula where x0 and x are the only free first-order variables,
then ∃x

(
x0 < x ∧ d(x0, x) ∈ I ∧ ϑ(x0, x)

)
and ∃x

(
x < x0 ∧ d(x0, x) ∈ I ∧ ϑ(x0, x)

)
, where

I is non-singular, are also Q2MLO formulae (with free first-order variable x0).
We denote by Q2MLO0,∞ the fragment of Q2MLO with only intervals of the forms (0, b⟩
or ⟨a, ∞), and Q2MLO0 is the even more restricted fragment where only intervals of the
form (0, b⟩ are allowed.3 We also define Q2MSO [26], the smallest fragment of MSO[<, +1]
obtained from MSO[<] by the rules in the previous definition (replacing FO[<] by MSO[<]).

1 We restrict ourselves to strictly monotonic timed words to simplify the definitions of metric predicate
logics; all the results carry over to the case of non-strictly monotonic timed words as well.

2 Following [33], we use d(x, x′) in place of a “+1” function symbol.
3 Note that non-metric FO[<] formulae are still allowed in these fragments.

TIME 2023
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▶ Definition 3 (PQ2MLO [20]). PQ2MLO (where “P” stands for “punctual”) is obtained
from Q2MLO by adding the rule:

∃x
(
x0 < x ∧ d(x0, x) ∈ I ∧ ϑ(x)

)
where I is a singular interval and ϑ(x) is a Q2MLO formula with a single free variable x.

Metric temporal logics. We start by defining Extended Metric Temporal Logic (EMTL) [33]
where all operators are defined by non-deterministic finite automata (NFAs). An NFA over
Σ is a tuple A = ⟨Σ, S, s0, ∆, F ⟩ where S is a finite set of locations, s0 ∈ S is the initial
location, ∆ ⊆ S × Σ × S is the transition relation, and F is the set of final locations. We say
that A is deterministic (a DFA) iff for each s ∈ S and σ ∈ Σ, |{(s, σ, s′) | (s, σ, s′) ∈ ∆}| ≤ 1.
A run of A on σ1 . . . σn ∈ Σ+ is a sequence of locations s0s1 . . . sn where there is a transition
(si, σi+1, si+1) ∈ ∆ for each i, 0 ≤ i < n. A run of A is accepting iff it ends in a final location.
A finite word is accepted by A iff A has an accepting run on it.

▶ Definition 4 (EMTL [33]). Extended Metric Temporal Logic (EMTL) formulae over a
finite set of atomic propositions AP are generated by

φ ::= ⊤ | p | φ1 ∧ φ2 | ¬φ | AI(φ1, . . . , φn) |←AI (φ1, . . . , φn)

where p ∈ AP, A is an NFA over the n-ary alphabet {1, . . . , n}4, and I ⊆ R≥0 is an interval
with endpoints in N≥0 ∪ {∞}

As a convention, modalities with left arrows above them denote their “past” versions [2, 33].
We omit the subscript I when I = (0, ∞) and write pseudo-arithmetic expressions for lower
or upper bounds, e.g., “< 3” for (0, 3). We also omit the arguments φ1, . . . , φn and simply
write AI or ←AI , if clear from the context. EMITL [33] is the fragment of EMTL with only
non-singular intervals. EMITL0,∞ is the fragment of EMITL with only intervals of the forms
(0, b⟩ or ⟨a, ∞).

▶ Definition 5 (MTL [22]). Metric Temporal Logic (MTL) is the fragment of EMTL with
only the “until” and “since” modalities defined by the NFA AU below:

φ1

φ2

MTL formulae are usually written in infix notation as φ1 UI φ2 and φ1 SI φ2. We also use
the usual shortcuts like FI φ ≡ ⊤ UI φ and GI φ ≡ ¬ FI ¬φ. Metric Interval Temporal Logic
(MITL) [1] is the fragment of MTL with only non-singular intervals (or, equivalently, the
fragment of EMITL with only the “until” and “since” modalities). MITL0,∞ is the fragment
of MITL with only intervals of the forms (0, b⟩ or ⟨a, ∞) (or, equivalently, the fragment of
EMITL0,∞ with only the “until” and “since” modalities). Linear Temporal Logic (LTL) [31]
is the fragment of MITL0,∞ where all operators are labelled by (0, ∞).5

▶ Definition 6 (CMTL [14, 16]). CMTL is obtained from MTL by adding the counting
modalities Ck

I defined by the MSO[<, +1] formula

ϑC,k
I (x, X) = ∃x1 . . . ∃xk

(
x < x1 < · · · < xk ∧ d(x, x1) ∈ I ∧ d(x, xk) ∈ I ∧

∧
1≤i≤k

X(xi)
)

4 For clarity, we use φ1, . . . , φn directly as transition labels (instead of 1, . . . , n) in the figures.
5 We adopt the strict semantics for U and S, which subsumes the usual “next” and “previous” operators.
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as well as
←
Ck

I defined by the past counterpart of ϑC,k
I (x, X).6 C0MTL is the fragment of CMTL

where the counting modalities use only intervals of the form (0, b⟩ where b ∈ N>0 ∪ {∞}.

C(0,1)MTL is the fragment of C0MTL where the counting modalities use only (0, 1). We
will freely combine notations to refer to various fragments of metric temporal logics, e.g.,
C(0,1)MITL is obtained from MITL by adding Ck

I and
←
Ck

I with I = (0, 1).

Semantics of MSO[<, +1]. With each timed word ρ = (σi, τi)i≥1 over ΣAP = 2AP we
associate a structure Mρ whose universe Uρ is {i | i ≥ 1}. The order relation < and atomic
propositions in AP are interpreted in the expected way, e.g., P (i) holds in Mρ iff P ∈ σi.
The distance predicate d(x, x′) ∈ I holds iff |τx − τx′ | ∈ I. The satisfaction relation for
MSO[<, +1] is defined inductively in the usual way. We write ρ, j1, . . . , jm, J1, . . . , Jn |=
ϑ(x1, . . . , xm, X1, . . . , Xn) if j1, . . . , jm ∈ Uρ, J1, . . . , Jn ⊆ Uρ, and ϑ(j1, . . . , jm, J1, . . . , Jn)
holds in Mρ. We say that two MSO[<, +1] formulae ϑ1(x) and ϑ2(x) are equivalent if for all
timed words ρ = (σi, τi)i≥1 and j ∈ Uρ,

ρ, j |= ϑ1(x) ⇐⇒ ρ, j |= ϑ2(x) .

Semantics of EMTL. EMTL can be embedded into MSO[<, +1] through Büchi-Elgot-
Trakhtenbrot theorem [25], but we can also define the satisfaction relation directly. Given an
EMTL formula φ over AP, a timed word ρ = (σi, τi)i≥1 over ΣAP and i ≥ 1, define ρ, i |= φ

as follows:
ρ, i |= ⊤;
ρ, i |= p iff p ∈ σi;
ρ, i |= φ1 ∧ φ2 iff ρ, i |= φ1 and ρ, i |= φ2;
ρ, i |= ¬φ iff ρ, i ̸|= φ;
ρ, i |= AI(φ1, . . . , φn) iff there exists j ≥ i such that (i) τj − τi ∈ I and (ii) there is an
accepting run of A on ai . . . aj where ρ, ℓ |= φaℓ

(aℓ ∈ {1, . . . , n}) for each ℓ, i ≤ ℓ ≤ j.
ρ, i |=←AI (φ1, . . . , φn) is defined symmetrically.

We say that ρ satisfies φ (written ρ |= φ) iff ρ, 1 |= φ.

Ehrenfeucht-Fraïssé games for CMTL. An m-round CMTL Ehrenfeucht-Fraïssé (EF) game
starts with round 0 and ends with round m. The game is played by two players (Spoiler and
Duplicator) on a pair of timed words ρ = (σi, τi)i≥1 and ρ′ = (σ′i, τ ′i)i≥1. A configuration
is a pair of positions (i, j), respectively in ρ and ρ′. In each round r (0 ≤ r ≤ m), the
game proceeds as follows. Spoiler first checks whether the two events that correspond to
the current configuration (ir, jr) in ρ and ρ′ satisfy the same atomic propositions. If this is
not the case then Spoiler wins the game. Otherwise if r < m, Spoiler chooses I ⊆ R≥0 with
endpoints in N≥0 ∪ {∞} and plays either of the following moves:

UI-move: Spoiler chooses one of the two timed words (say ρ) and picks i′r such that
ir < i′r and τi′

r
−τir

∈ I (if there is no such i′r then Duplicator wins the game). Duplicator
must choose j′r such that τ ′j′

r
− τ ′jr

∈ I – if this is not possible then Spoiler wins the game.
Otherwise, Spoiler plays either of the following “parts”:

F-part: The game proceeds to the next round with (ir+1, jr+1) = (i′r, j′r).

6 Note that Ck
I and

←
Ck

I are subsumed by EMTL even when inf I ̸= 0 [19].

TIME 2023
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U-part: If j′r = jr + 1 the game proceeds to the next round with (ir+1, jr+1) = (i′r, j′r).
If i′r = ir + 1 but j′r ̸= jr + 1 then Spoiler wins the game. Otherwise, Spoiler picks j′′r
such that jr < j′′r < j′r; Duplicator has to choose i′′r such that ir < i′′r < i′r in response
– if this is not possible then Spoiler wins the game. Otherwise, the game proceeds to
the next round with (ir+1, jr+1) = (i′′r , j′′r ).

SI-move: Defined symmetrically.
Ck

I -move: Spoiler chooses one of the two timed words (say ρ) and picks i1
r, . . . , ik

r such
that ir < i1

r < · · · < ik
r and τiℓ

r
− τir ∈ I for all ℓ, 1 ≤ ℓ ≤ k (if there are no such i1

r, . . . , ik
r

then Duplicator wins the game); Duplicator must choose j1
r , . . . , jk

r such that τ ′jℓ
r

−τ ′jr
∈ I

for all ℓ, 1 ≤ ℓ ≤ k – if this is not possible then Spoiler wins the game. Spoiler then picks
j′′r = jℓ

r for some ℓ, 1 ≤ ℓ ≤ k, Duplicator chooses i′′r = iℓ
r for some ℓ, 1 ≤ ℓ ≤ k, and the

game proceeds to the next round with (ir+1, jr+1) = (i′′r , j′′r ).
←
CI-move: Defined symmetrically.

We say that Duplicator has a winning strategy for the m-round CMTL EF game on ρ and ρ′

that starts from configuration (i, j) if and only if, no matter how Spoiler plays, Duplicator
can always win the m-round CMTL EF game on ρ and ρ′ with (i0, i0) = (i, j). If this is not
the case then we say that Spoiler has a winning strategy. The following theorem relates the
number of rounds of CMTL EF games to the modal depth (i.e., the maximal depth of nesting
of modalities) of CMTL formulae.

▶ Theorem 7 ([24, 30]). For timed words ρ, ρ′ and a CMTL formula φ of modal depth ≤ m,
if Duplicator has a winning strategy for the m-round CMTL EF game on ρ, ρ′ with (i0, j0) =
(1, 1), then

ρ |= φ ⇐⇒ ρ′ |= φ .

Note that the theorem above can also be specialised to sublogics of CMTL; for example, the
corresponding theorem for C(0,1)MITL is obtained by forcing I = (0, 1) in Ck

I -moves.

Expressiveness. We say that a metric logic L′ is expressively complete for a metric logic
L iff for any formula ϑ(x) ∈ L, there is an equivalent formula φ(x) ∈ L′.7 We say that L′

is at least as expressive as (or more expressive than) L (written L ⊆ L′) iff for any formula
ϑ(x) ∈ L, there is an initially equivalent formula φ(x) ∈ L′ (i.e., ϑ(1) and φ(1) evaluate
to the same truth value for any timed word). We say that L′ and L are equally expressive
(written L′ ≡ L) iff L ⊆ L′ and L′ ⊆ L. If L ⊆ L′ but L′ ⊈ L then we say that L′ is strictly
more expressive than L (or L is strictly less expressive than L′).

3 Expressive completeness for Q2MLO

Counting in (0, 1). We argue that counting in (0, 1) is not sufficiently expressive in the
pointwise semantics; in particular, counting in (0, b⟩ cannot be expressed in MTL extended
with Ck

(0,1) and
←
Ck

(0,1), and it turns out to be essential for achieving the full expressiveness of
Q2MLO. This is in stark contrast with the situation in the continuous semantics, where LTL
extended with Ck

(0,1) and
←
Ck

(0,1) is expressively complete for Q2MLO [14,16]. We show this
by constructing two families of timed words (Mm,c) and (Nm,c) over Σ{p,q} (inspired by [30])
that can be told apart easily by a C0MTL formula using Ck

(0,b⟩, yet they are indistinguishable
by all C(0,1)MTL formulae of modal depth ≤ m, all constants ≤ c, and where all occurrences
of counting modalities Ck′

I and
←
Ck′

I have k′ ≤ k.

7 Formulae of metric temporal logics are MSO[<, +1] formulae with a single free first-order variable.
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We start by describing Nm,c for some fixed m, c ∈ N≥0. Let c′ be the least integer greater
than 5

4 · (c+3)+1 and ϵ = 1
6 . We put an ∅-event at time 0, and then a number of overlapping

segments start at time (c + 1) where each segment consists of a {p}-event and a {q}-event
(note that each {p}-event or {q}-event uniquely identifies a segment). If the {p}-event in the
ith segment is at, say, t, then its {q}-event is at t + 2 + i

3·m·c′+3 · ϵ (see Figure 4). We put a
total of 2 · m · c′ + 1 segments where {p}-events in neighbouring segments are separated by 4

5 .
Finally, we put an infinite sequence of ∅-events, equally separated by (c + 1) and starting at
(c + 1) after the {q}-event in the last segment. Mm,c is almost identical to Nm,c, except for
the middle (i.e., (m · c′ + 1)th) segment – say this segment starts at t, then in Mm,c we shift
the corresponding {q}-event to t + 2 − m·c′+1

3·m·c′+3 · ϵ instead. For convenience, we write ta for
the timestamp of the {p}-event in the middle segment (i.e. ta = (c+1)+ 4

5 ·m ·c′), tb = ta +2,
and denote the corresponding {q}-events in Mm,c and Nm,c by x and y respectively with
timestamps tx and ty (see Figure 5). It is easy to see that no {q}-event is at an integer
distance to some other {p}-event or {q}-event. This completes the description of Mm,c and
Nm,c. We say a configuration (i, j) is identical if i = j. For a position i ≥ 1 in Mm,c or Nm,c,
we write seg(i) for the segment to which the ith event belongs. For convenience we define
seg(i) = 0 if the ith event is an ∅-event.

1 1 ϵ

Figure 4 A segment in Nm,c . The white box is the {p}-event and the black box is the {q}-event.

Mm,c

Nm,c

ta tb

x x′

y′′ y′ y

4
5

1 1

Figure 5 The events near the middle segments of Mm,c and Nm,c . White boxes are {p}-events
and black boxes are {q}-events.

We are now ready to state the main technical lemma, which intuitively says that Duplicator
can either keep the configuration identical or far enough from the beginnings and the ends of
both Mm,c and Nm,c (where Spoiler can easily win the EF game).

▶ Lemma 8. In the m-round C(0,1)MTL EF game on Mm,c, Nm,c starting from (1, 1),
Duplicator has a winning strategy such that for each round 0 ≤ r ≤ n, the ith

r -event in Mm,c

and the jth
r -event in Nm,c satisfy the same atomic propositions and

if seg(ir) ̸= seg(jr), then r ≥ 1 and
seg(ir), seg(jr) ∈

[
(m − r + 1) · c′ − 1, (m + r − 1) · c′ + 3

]
.

Proof. We describe a winning strategy for Duplicator by induction on r. The basic idea
is to make the resulting configuration identical whenever possible (and thus the induction
hypothesis trivially holds); otherwise we use a copy-cat strategy (i.e. try to make seg(ir+1) −

TIME 2023



7:8 More Than 0s and 1s: Metric Quantifiers and Counting over Timed Words

seg(ir) = seg(jr+1) − seg(jr)). If that is also not possible, we must choose another event
that satisfies the same atomic propositions. In the following, we refer to the timed word that
Spoiler first chooses as ρs = (σs

i , τs
i )i≥0 (ρd = (σd

i , τd
i )i≥0 for that of Duplicator).

Base step. The induction hypothesis holds trivially for (i0, j0) = (1, 1).
Induction step. Suppose the claim holds for r < m. We prove it also holds for r + 1.

(ir, jr) = (1, 1):
Since all segments happen at time > c, Duplicator can always make (ir+1, jr+1) an
identical configuration, if necessary.
(ir, jr) ̸= (1, 1) is identical:
We may assume r > 0. Observe from Figure 5 that any two {p}-events that are 5n

segments away are separated by 4n. More specifically, since tb − ta = 2, {p}-events
whose distances to ta are integers will also have integer distances to tb. We consider
the following cases:
∗ (ir, jr) both correspond to ∅-events: since they are separated from any other events

by > c, Duplicator can always make (ir+1, jr+1) identical if necessary.
∗ (ir, jr) both correspond to {p}-events and Spoiler plays an UI -move or SI -move

and picks (say) i′r = x. Duplicator may either choose j′r = y (then Duplicator
can surely make (ir+1, jr+1) identical later) or if that is not possible, choose event
j′r = y′. In the latter case, if Spoiler plays the F-part, it is obvious that the
resulting configuration (ir+1, jr+1) would satisfy the claim. If Spoiler plays U-part,
Duplicator may either make (ir+1, jr+1) identical or seg(jr+1) − seg(ir+1) = −1.
In this latter case it is clear that the claim still holds (seg(ir+1) = m · c′ + 2 or
seg(ir+1) = m · c′ + 4). If Spoiler plays a Ck

I -move or
←
Ck

I -move, as I = (0, 1),
Duplicator can always make (ir+1, jr+1) identical if necessary.

∗ (ir, jr) corresponds to {q}-events except x and y, and Spoiler chooses, say, event
i′r = x. The reasoning is exactly similar to the case above.

∗ (ir, jr) corresponds to events x and y. If Spoiler plays an UI -move or SI -move,
chooses some event z, and forces Duplicator not to choose the corresponding event
but another one in a neighbouring segment, then that event z must be less than
(c + 1) away from tb. If it happens before tb, then ta would have distance < (c − 1)
to it. If it happens after tb, then ta would be < (c + 3) away from it. Assume
that z happens before tb. If z is a {p}-event, we divide (c − 1) by 4

5 to obtain
5
4 · (c − 1) > |seg(z) − seg(ir)| where seg(ir) = m · c′+ 1. Observe that the {p}-event
z′ that Duplicator chooses as the response will be at most one more segment away.
Then the claim holds regardless of Spoiler plays F-part or U-part (may cause a
drift of two more segments) later. If z is a {q}-event, observe that its corresponding
{p}-event in the same segment must be less than 2 + 1

5 < 3 · 4
5 away from z. Add

this to (c − 1) and divide the result by 4
5 gives 5

4 · (c − 1) + 3 < 5
4 · (c + 2). Again,

the {q}-event z′ that Duplicator chooses will be at most one more segment away.
The case for z happens after tb is similar. If Spoiler plays a Ck

I -move or
←
Ck

I -move,
as I = (0, 1), Duplicator can always make (ir+1, jr+1) identical if necessary.

(ir, jr) is not identical:
We claim that no matter how Spoiler plays, Duplicator can always either make
(ir+1, jr+1) identical or, ensure that (ir+1, jr+1) has not moved towards the nearest
end by ≥ c′ segments. In the latter case the claim holds by the induction hypothesis.
If Spoiler plays an Ck

I -move or
←
Ck

I -move, it is once again clear that Duplicator can
follow a copy-cat strategy if necessary, but this is not always the case for UI -moves
and SI -moves. In the following, we focus on UI -moves and SI -moves and assume that
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Spoiler always chooses some event that is more than two events away from the current
event, e.g., j′r > jr + 2. If j′r ≤ jr + 2, it is easy to see that Duplicator can simply
choose i′r = ir + (j′r − jr) (unless (ir, jr) are very close to one of the ends, which will
not happen).
Assume that (ir, jr) corresponds to a pair of {p}-events and (without loss of generality)
assume that Spoiler chooses a position j′r such that j′r > jr. If Duplicator can choose
i′r such that i′r = j′r, Duplicator chooses i′r = j′r. Then, if Spoiler plays F-part,
it is immediate that ir+1 = jr+1. If Spoiler plays U-part, then Duplicator makes
ir+1 = jr+1 whenever possible. Otherwise, for example, if ir < jr and Spoiler chooses
some {p}-event in (τd

ir
, τd

jr
) as ir+1, then Duplicator chooses jr+1 = jr + 2. Observe

that ir+1 has moved towards jr (and away from the nearest end). The claim holds by
the induction hypothesis. If Duplicator cannot choose i′r such that i′r = j′r, consider
the following cases:
∗ Duplicator can choose i′r such that i′r = ir + (j′r − jr): If Duplicator cannot

choose i′r = j′r, then Duplicator chooses i′r = ir + (j′r − jr). As before, we know
that τs

j′
r

< τs
jr

+ (c + 1). It is easy to see that seg(ir+1) − seg(ir) < c′ and
seg(jr+1) − seg(jr) < c′, and hence the claim holds by the induction hypothesis.

∗ Duplicator cannot choose i′r such that i′r = ir +(j′r −jr): This can only happen when
j′r corresponds to a {q}-event. Observe that all {p}-events in neighbouring segments
are separated by 4

5 . These imply that there exists t such that t − τs
jr

= n = n′ · 1
5

for some n, n′ ∈ N>0, and there exists |k1|, |k2| < 1, k1, k2 ̸= 0 such that t − τs
jr

lies
between
· τs

j′
r

− τs
jr

= n1 · 1
5 + k1 · ϵ, n1 ∈ N>0 and

· τd
ir+(j′

r−jr) − τd
ir

= n2 · 1
5 + k2 · ϵ, n2 ∈ N>0.

It is obvious that n1 = n2. If k1 · k2 > 0, since there is no integer multiple
of 1

5 that lies between, e.g., n1 · 1
5 and n1 · 1

5 + ϵ, this is a contradiction. If
k1 · k2 < 0, we must have n′ = n1 = n2. This only happens when ir + (j′r − jr) in ρd

corresponds to event x. In this case, Duplicator chooses the corresponding event in
a neighbouring segment. For example, if (ir, jr) corresponds to a pair of {p}-events,
seg(ir) = m · c′ + 1, seg(jr) = m · c′, I = (2, 3) and j′r = y′, then Duplicator chooses
i′r = x′. Now if Spoiler plays F-part, since we know that τs

j′
r

< τs
jr

+ (c + 1), the
claim holds. If Spoiler plays U-part, e.g., in the aforementioned example, Spoiler
chooses ir+1 = x, then Duplicator chooses jr+1 = y′′ – the claim also holds.

Now assume that (ir, jr) corresponds to a pair of {q}-events and assume that the
Spoiler chooses a position j′r such that j′r < jr. Most cases can be argued in very
similar ways. We consider the situation when Duplicator cannot choose i′r such that
i′r = ir + (j′r − jr). If j′r corresponds to a {p}-event then the argument is exactly
similar to above. Otherwise if j′r corresponds to a {q}-event, observe the fact that
all {q}-events in neighbouring segments, except x, are separated by 4

5 + 1
3·m·c′+3 · ϵ.

By a similar argument, if k1 · k2 < 0, Duplicator chooses the corresponding event
in a neighbouring segment. It can be argued in the same way that the claim holds
regardless of Spoiler plays F-part or U-part later. ◀

Lemma 8 implies that any C(0,1)MTL formula of modal depth ≤ m and largest constant
≤ c cannot distinguish Mm,c and Nm,c. However, from Figure 5 it is obvious that

Mm,c |= F(p ∧ C3
(0,2) q) ∧ Nm,c |̸= F(p ∧ C3

(0,2) q) ,

as each interval like (ta, tb) in Nm,c contains at most two {q}-events. We thus have the
theorem below, which can be seen as a strengthened version of a corresponding result in [24]
(which holds for the future-only fragments).
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▶ Theorem 9. C0MTL ⊊ C(0,1)MTL.

Counting in (0, b⟩. We now show that once we bridge the expressiveness gap indicated by
Theorem 9, we can derive a corresponding expressive completeness result for Q2MLO in the
pointwise semantics. Before we give the main proof, let us state a crucial observation.

▶ Theorem 10. Q2MLO0 ≡ Q2MLO.

Proof. We first note that Q2MLO0,∞ is equally expressive as Q2MLO; this can be obtained as
a simple corollary of the main result of [18] (EMITL0,∞ is already as expressive as full EMITL),
since all the automata modalities involved in the proof are counter free (aperiodic) and thus
equivalent to FO[<] formulae of the form ϑ(x0, x). To see that Q2MLO0 ≡ Q2MLO0,∞, note
that, e.g., the Q2MLO formula

∃x
(
x0 < x ∧ d(x0, x) ∈ (a, ∞) ∧ ϑ(x0, x)

)
is equivalent to an EMITL formula A(a,∞) where A is the automaton equivalent of ϑ(x0, x); we
assume (without loss of generality [34]) that A = ⟨Σ, S, s0, ∆, F ⟩ is a DFA and in particular,
at most one of the arguments holds at any position. Let Bs,φ be the automaton obtained
from A by adding a new location sF , declaring it as the only final location, and adding new
transitions s′

φa∧φ−−−→ sF for every s′
φa−−→ s in A. Let Cs be the automaton obtained from A by

adding new non-final locations s′0 and s′1, adding new transitions s′0 → s′1 (i.e. labelled with
⊤) and s′1

φa−−→ s′′ for every s
φa−−→ s′′ in A, and setting the initial location to s′0. Intuitively,

Bs,φ enforces φ at the point when s is reached in A and Cs “runs’ A from s. We can argue
that A(a,∞) is equivalent to

A(0,∞) ∧ ¬
∨
s∈S

Bs,φ
(0,a]

where φ = ¬Cs. This can be translated into a Q2MLO0 formula. ◀

We have thus reduced the problem to expressing Q2MLO0 formulae in C0MITL. The
proof below essentially follows [14, 16] with the exception that instead of the composition
method [32] we use Myhill-Nerode congruence, which appears to be more natural in a
pointwise setting. It suffices to show that we can use a C0MITL formula to express a Q2MLO0
formula of the form

∃x
(
x0 < x ∧ d(x0, x) ∈ (0, b⟩ ∧ ϑ(x0, x)

)
(1)

where ϑ(x0, x) is an FO[<] formula, as we can repeatedly apply the equivalence on the
minimal subformula until the whole formula is turned into a C0MITL formula.

We say an FO[<] formula ϑ(x0, x) is functional if for any given timed word ρ and positions
i0, i, if we have ρ, i0, i |= ϑ(x0, x) then i0 < i and i is unique for i0: if ρ, i0, i′ |= ϑ(x0, x) then
it must be the case that i′ = i. It is not hard to see that (1) remains equivalent if we replace
ϑ(x0, x) by its “functional’ counterpart

ϑ′(x0, x) = x0 < x ∧ ϑ(x0, x) ∧ ∀x′
(
x0 < x′ < x =⇒ ¬ϑ(x0, x′)

)
.

We recall some facts about functional formulae before stating the main theorem. Intuitively,
once we restrict ourselves to the case of functional ϑ(x0, x), then for any given position i0,
there can be only a bounded number of pairs of positions (i, j) such that i < i0 < j and
ρ, i, j |= ϑ(x0, x). In particular if ρ, i0, i |= ϑ(x0, x), we can make use of counting modalities
to enforce that τi − τi0 ∈ (0, b⟩.
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▶ Lemma 11. If ϑ(x0, x) is functional and i0 is a position in the timed word ρ, then
|{j | ρ, i, j |= ϑ(x0, x) and i < i0 < j}| ≤ r where r is the number of locations of the minimal
DFA equivalent to ϑ(x0, x).

Proof. Suppose to the contrary that there exists a set {(i1, j1), . . . , (ir+1, jr+1)} of r + 1
distinct pairs of positions (i, j) (where j1, . . . , jr+1 are all distinct) that satisfy the condition;
i1, . . . , ir+1 must also be all distinct as ϑ(x0, x) is functional. Let D be the minimal DFA
equivalent to ϑ(x0, x). As there are only r locations in D, it must be the case that D reaches
some specific location s after reading ρ[iu, i0] and ρ[iv, i0] for some u ̸= v, and it follows
that ρ, iu, ju |= ϑ(x0, x) and ρ, iu, jv |= ϑ(x0, x). This contradicts the fact that ϑ(x0, x) is
functional. ◀

If ϑ(x0, x) is functional, we say that a pair of positions (i1, j1) such that ρ, i1, j1 |= ϑ(x0, x)
is of ϑ-nesting depth at least m in ρ if there exist positions i1 < · · · < im < jm < · · · < j1
such that ρ, iℓ, jℓ |= ϑ(x0, x) for all ℓ ∈ {1, . . . , m}. We say (i1, j1) is of ϑ-nesting depth m in
ρ if it is of ϑ-nesting depth at least m but not m + 1 in ρ. Let

R≥m
ϑ (y1) = ∃x1, x2, . . . , xm, y2, . . . , ym

(
x1 < x2 < · · · < xm < ym < · · · < y2 < y1

∧ ϑ(x1, y1) ∧ ϑ(x2, y2) ∧ · · · ∧ ϑ(xm, ym)
)

and Rm
ϑ (y1) = R≥m

ϑ (y1) ∧ ¬R≥m+1
ϑ (y1). Intuitively, ρ, j1 |= R≥m

ϑ (y1) iff there exists i1 such
that (i1, j1) is of ϑ-nesting depth at least m in ρ.

▶ Lemma 12. If ϑ(x0, x) is functional and (i, j) is of ϑ-nesting depth m in the timed word
ρ, then if (i′, j′) where j′ < j is also of ϑ-nesting depth m in ρ (i.e. ρ, j′ |= Rm

ϑ (y1)), we
necessarily have i′ < i.

Proof. i′ > i contradicts the fact that (i, j) is of ϑ-nesting depth m in ρ, and i′ = i contradicts
the fact that ϑ(x0, x) is functional. ◀

▶ Theorem 13. C0MITL ≡ Q2MLO.

Proof. Fix a functional formula ϑ(x0, x) and a timed word ρ. Let Rm,ℓ
ϑ (x0) be the formula

that says xℓ, the ℓ-th point > x0 satisfying Rm
ϑ , also happens to satisfy ϑ(x0, xℓ), i.e.

Rm,ℓ
ϑ (x0) = ∃x1, . . . , xℓ

(
x0 < x1 < · · · < xℓ ∧ ϑ(x0, xℓ)

∧ ∀x
(
x ∈ (x0, xℓ] =⇒ (Rm

ϑ (x) ⇐⇒
∨

i∈{1,...,ℓ}

x = xi)
))

.

By Lemma 11 and Lemma 12, we know that ℓ can at most be r + 1 (where r is the number
of locations of the minimal DFA equivalent to ϑ(x0, x)). If (i0, i) satisfies ϑ(x0, x), then (i0, i)
must be of ϑ-nesting depth m in ρ for some m ≤ r. To express

∃x
(
x0 < x ∧ d(x0, x) ∈ (0, b⟩ ∧ ϑ(x0, x)

)
,

we take the disjunction over all the possible choices of m’s and ℓ’s:∨
m∈{1,...,r}

( ∨
ℓ∈{1,...,r+1}

(
∃x1, . . . , xℓ

(
x0 < x1 < · · · < xℓ ∧ d(x0, xℓ) ∈ (0, b⟩

∧
∧

i∈{1,...,ℓ}

Rm
ϑ (xi) ∧ Rm,ℓ

ϑ (x0)
)))

.
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The formula above is equivalent to∨
m∈{1,...,r}

( ∨
ℓ∈{1,...,r+1}

(
(Cℓ

(0,b⟩R
m
ϑ ) ∧ Rm,ℓ

ϑ

))
where Rm

ϑ , Rm,ℓ
ϑ are the LTL equivalents of Rm

ϑ (y1) and Rm,ℓ
ϑ (x0), respectively. ◀

▶ Corollary 14. C0MITL with untimed automata modalities is expressively complete
for Q2MSO.

4 Expressive completeness for FO[<, +1]

Generalising EMITL. We know that in the continuous semantics PQ2MLO [20] is expressively
complete for FO[<, +1]; in other words, the only expressiveness gap between (decidable)
Q2MLO and (undecidable) FO[<, +1] is the capability to express punctualities. Unfortunately,
this pleasant result does not hold in the pointwise semantics.

▶ Theorem 15. PQ2MLO is strictly less expressive than FO[<, +1].

Proof. Thanks to Theorem 13, it suffices to show that C0MTL is strictly less expressive
than FO[<, +1]. In fact, we can prove the stronger result that MTL with arbitrary rational
endpoints (which subsumes Ck

I ) is still insufficient for expressing the property below (“X

holds at the first event in I from now’):

B→I (x, X) = ∃x′
(
x < x′ ∧ d(x, x′) ∈ I ∧ X(x′) ∧ ¬∃x′′ (x < x′′ < x′ ∧ d(x, x′′) ∈ I)

)
(2)

The detailed proof can be found in the full version of this paper. ◀

The theorem above suggests that we need more involved extensions to make Q2MLO as
expressive as FO[<, +1] in the pointwise semantics; at least we must be able to specify (2).
PnEMTL [23] is a generalisation of EMTL where instead of just between the current point
and a single witness point, one can use “Pnueli automata’ modalities to specify behaviours
between multiple witness points as well. More precisely, the semantics of Pnueli automata
modalities are defined as follows:

ρ, i |= FI1,...,Ik
(A1, . . . , Ak) iff there exists j1, . . . , jk such that

1. i < j1 < · · · < jk.
2. For each ℓ ∈ {1, . . . , k}, τjℓ

− τi ∈ Iℓ.
3. For each ℓ ∈ {1, . . . , k}, there is an accepting run of Aℓ on ajℓ−1 . . . ajℓ

(ℓ > 1) or
ai . . . ajℓ

(ℓ = 1) such that for each m, jℓ−1 ≤ m ≤ jℓ (or i ≤ m ≤ jℓ), ρ, m |= φam

(am ∈ {1, . . . , nℓ} where nℓ is the arity of the alphabet of Aℓ).
ρ, i |= PI1,...,Ik

(A1, . . . , Ak) (the past counterpart) is defined symmetrically.
In [23], it is also shown that PnEMTL is expressively equivalent to PGQMSO, a generalisation
of PQ2MSO with the following rule:

if ϑ1(x0, x1), . . . , ϑk(x0, xk) are MSO[<] formulae where for each ϑℓ(x0, xℓ) (ℓ ∈
{1, . . . , k}), x0 and xℓ are the only free first-order variables, then ∃x1 . . . ∃xk

(
x0 <

x1 < · · · < xk ∧ d(x0, x1) ∈ I1 ∧ · · · ∧ d(x0, xk) ∈ Ik ∧ ϑ(x0, x1) ∧ · · · ∧ ϑ(x0, xk)
)

and
the past counterpart, where I1, . . . , Ik are (possibly singular) intervals with endpoints in
N≥0 ∪ {∞}, are also PGQMSO formulae (with free first-order variable x0).

As we can easily express (2) in PGQMLO (the first-order fragment of PGQMSO) [23, Theorem
6.4], we have the following corollary.

▶ Corollary 16. PQ2MLO ⊊ PGQMLO.
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Order of fractional parts. While we have not been able to prove or disprove whether
PGQMLO ≡ FO[<, +1], we can show that a simple extension of PnEMTL, where one is
allowed to specify orders of fractional parts of witnesses, can capture the full expressiveness
of FO[<, +1]. Let F frac,N

I1,...,Ik
(A1, . . . , Ak) be the new modalities where

A1, . . . , Ak are all counter free (aperiodic).
Each of I1, . . . , Ik is a left-closed, right-open subinterval of [−N, N) with integer endpoints
and length 1 (e.g., [3, 4) or [−7, −6)).

The intended semantics when evaluated at position i0 is as follows:
There exists k “witness’ points i1, . . . , ik such that iℓ ∈ Iℓ for all ℓ ∈ {1, . . . , k}.
The fractional parts of the witnesses are in this order, i.e. frac(τi1) < · · · < frac(τik

).
For each ℓ ∈ {1, . . . , k}, Aℓ has an accepting run on the “stacked’ word [17] formed by
all events in τi0 + [−N, N) with the fractional parts in [τiℓ−1 , τiℓ

). More precisely, the
transitions of A are partitioned into 2N sets, where each set is only enabled for events in
the corresponding unit subinterval of τi0 + [−N, N).

In the same way we define the past counterpart P frac and its semantics, and denote by
PGQMLOfrac the extension of PGQMLO with these modalities.

▶ Theorem 17. PGQMLOfrac ≡ FO[<, +1].

Proof (sketch). Following [21], the main challenge is to express formulae of the form

∃z0 . . . ∃zn−1

(
x = z0 < · · · < zn−1 ∧ d(x, zn−1) < 1

∧
∧

{Φi(zi) : 0 ≤ i < n}

∧
∧

{∀u
(
zi < u < zi+1 =⇒ Ψi(u)

)
: 0 ≤ i < n − 1}

∧ ∀u
(
zn−1 < u ∧ d(x, u) < 1 =⇒ Ψn−1(u)

))
where Φi and Ψi are Boolean combinations of atomic formulae. This is readily possible with
F frac and subformulae of the forms F=1 p and

←
F=1 p. ◀

5 Conclusion and future work

The general consensus in the real-time verification community is that the continuous inter-
pretations of timed logics are more well behaved and admit more robust characterisations.
The present paper showed that by allowing a mild generalisation of the counting modalities,
we can recover the pleasant expressive completeness result for Q2MLO – one of the most
expressive decidable fragments of FO[<, +1] – in the pointwise semantics as well. On the
other hand, we also showed that as opposed to the situation in the continuous semantics, the
full expressiveness of FO[<, +1] cannot be achieved by simply adding punctual predicates –
we remedy this by proposing a more involved variant of PnEMTL, which we showed to be
expressively complete for FO[<, +1]. We list some possible future directions below.

The expressive completeness for FO[<, +1] is achieved with a family of modalities that
enable one to specify the relative orders of the fractional parts of the points involved.
This begs the question of whether this feature is really necessary; in other words, is
PGQMLO strictly less expressive than FO[<, +1]?
Is it possible to add (or perhaps restricted versions of) the modalities F frac and P frac to
GQMLO while retaining the decidability of the satisfiability problem?
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It is known that the pointwise and continuous interpretations of FO[<, +1] are actually
equally expressive [9], if one considers a special “timed word’ form of signals [5, 7, 28].
Does a similar result hold for Q2MLO as well?
There are some existing SMT-based tools for checking the satisfiablity of CMITL in the
continuous semantics (e.g., [4]), although they require a predetermined bound k on the
variability of signals. In light of the recent developments in back-end algorithms [10,11],
it would be interesting to see how a timed-automata-based implementation compares in
terms of practical performance.
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