More Than 0s and 1s: Metric Quantifiers and Counting over Timed Words

Hsi-Ming Ho \square ©
Department of Informatics, University of Sussex, UK
Khushraj Madnani \square (
Max Planck Institute for Software Systems, Kaiserslautern, Germany

Abstract

We study the expressiveness of the pointwise interpretations (i.e. over timed words) of some predicate and temporal logics with metric and counting features. We show that counting in the unit interval $(0,1)$ is strictly weaker than counting in $(0, b)$ with arbitrary $b \geq 0$; moreover, allowing the latter indeed leads to expressive completeness for the metric predicate logic Q2MLO, recovering the corresponding result for the continuous interpretations (i.e. over signals). Exploiting this connection, we show that in contrast to the continuous case, adding "punctual" predicates into Q2MLO is still insufficient for the full expressive power of the Monadic First-Order Logic of Order and Metric (FO[$<,+1]$). Finally, we propose a generalisation of the recently proposed Pnueli automata modalities and show that the resulting metric temporal logic is expressively complete for $\mathrm{FO}[<,+1]$.

2012 ACM Subject Classification Theory of computation \rightarrow Logic and verification
Keywords and phrases Temporal Logic, Expressiveness, Automata
Digital Object Identifier 10.4230/LIPIcs.TIME.2023.7

1 Introduction

Timed logics. Metric Temporal Logic (MTL) [22] is a natural extension of Linear Temporal Logic (LTL) [31] with the capability of expressing real-time constraints by allowing intervals I to be specified with the "until" (\mathbf{U}) and "since" (\mathbf{S}) modalities of LTL. Intuitively, $p \mathbf{U}_{I} q$ holds at a position i if there is a position j in the future where q holds, the time difference between i and j is within I, and p holds at all the points between i and j. While MTL provides a convenient and intuitive syntax for timing constraints, the problem of whether a given MTL formula has a model (behaviour) that satisfies it is undecidable [3, 29] - this makes MTL infeasible as a specification formalism for practical verification tasks. To remedy this issue, Alur, Feder, and Henzinger proposed in a seminal work [1] a syntactic fragment of MTL called Metric Interval Temporal Logic (MITL) where intervals associated with modalities are "non-punctual", i.e. non-singular. They showed that the satisfiability and model-checking problems for MITL are decidable with ExpSpace-complete complexity. In other words, by sacrificing perfect timing precision, we obtain a fully decidable timed specification formalism capable of expressing many practical properties of interest (see, e.g., [35]).

Expressiveness. Pnueli conjectured in the early 1990s that the trivial property " p and then q will happen in the next time unit' is not expressible in timed temporal logics like MTL and MITL. The conjecture (in different forms) is proved in [5,12, 13, 30] and has led to several decidable extensions of MITL; one of the most notable extensions amongst them is Hirshfeld and Rabinovich's Q2MLO [12]. It is straightforward to express the counting modalities and Pnueli modalities (a more general form of the aforementioned conjecture) in Q2MLO, and it admits a very simple and natural metric temporal logic characterisation: the extension of MITL with counting modalities is expressively complete for Q2MLO [16]. However, most of these results only hold for the continuous interpretations (i.e. over signals) of these logics

© Hsi-Ming Ho and Khushraj Madnani;
licensed under Creative Commons License CC-BY 4.0
30th International Symposium on Temporal Representation and Reasoning (TIME 2023).
Editors: Alexander Artikis, Florian Bruse, and Luke Hunsberger; Article No. 7; pp. 7:1-7:15
Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Figure 1 The relevant expressiveness results in the continuous semantics. (2) is trivial, e.g., $\mathbf{C}_{(1,2)}^{2} p \Longleftrightarrow \mathbf{F}_{=1} \mathbf{C}_{(0,1)}^{2} p$. (1) can similarly be seen to hold by an easy case analysis, e.g., $\mathbf{C}_{(0,2)}^{2} p \Longleftrightarrow \mathbf{C}_{(0,1)}^{2} p \vee \mathbf{F}_{=1}\left(\mathbf{C}_{(0,1)}^{2} p\right) \vee\left(\mathbf{C}_{(0,1)}^{1} p \wedge \mathbf{F}_{=1}\left(p \vee \mathbf{C}_{(0,1)}^{1} p\right)\right)$. (3) and (4) are proved in [20]. (5), (6), and (7) follow from [14, 16] and [19].

Figure 2 The relevant known expressiveness results in the pointwise semantics (where the subscript "fut" stands for the future-only fragments). (1), (2), (4), and (5) are proved in [24]. (3) and (6) follow from [19]. The rest are syntactic inclusions.
and do not hold for the pointwise interpretations (i.e. over timed words). This is unfortunate from a practical point of view, as the latter is usually more amenable to automata-based implementations (e.g., Uppaal [27]).

Contributions. The present work focusses on the expressiveness of these logics. We show that, as opposed to the situation in the continuous semantics, counting in $(0, b\rangle$ is strictly more expressive than counting in $(0,1)$, and by allowing this modest generalisation we can actually recover the expressive completeness result for Q2MLO; this is also in stark contrast with the future-only fragments of these logics in the pointwise semantics, where counting in $(0, b\rangle$ is still insufficient for the expressiveness of (future) Q2MLO [24]. Similarly, we show that Q2MSO (the second-order version of Q2MLO) is characterised by MITL with counting modalities and untimed automata modalities. Finally, we show that Q2MLO with punctual predicates is still strictly less expressive than $\mathrm{FO}[<,+1]$ (once again in stark contrast with the continuous case), and we propose an extension to achieve the full expressiveness of $\mathrm{FO}[<,+1]$.

Related work. Compared to the situation in the continuous semantics, there are very few expressive completeness results regarding timed temporal logics like MTL and MITL in the pointwise semantics in the literature. D'Souza and Tabareau [8] showed that "vanilla" MITL is expressively complete for a restricted fragment of the Monadic First-Order Logic of Order and Metric ($\mathrm{FO}[<,+1]$) in the pointwise semantics. It is shown in [17] that MTL with counting modalities is still strictly less expressive than $\mathrm{FO}[<,+1]$ in the pointwise semantics. On the practical side, counting modalties appear to be amenable to implementations, e.g., Bersani, Rossi, and San Pietro [4] proposed an SMT-based tool for deciding the satisfiability of MITL with counting modalities.

2 Preliminaries

We give a brief introduction to (linear-time) timed logics and some technical tools and notations used in the paper. For more detailed reviews and comparisons of relevant results, we refer the readers to $[6,15]$.

Figure 3 The results of this paper (in the pointwise semantics). (1) and (5) follow from Theorem 9. (2) and (6) follow from Theorem 13. (3) is Corollary 16, and (4) is Theorem 17.

Timed languages. A timed word over a finite alphabet Σ is an ω-sequence of events $\left(\sigma_{i}, \tau_{i}\right)_{i \geq 1}$ over $\Sigma \times \mathbb{R}_{\geq 0}$ with $\left(\tau_{i}\right)_{i \geq 1}$ an increasing sequence of non-negative real numbers ("timestamps") such that for any $r \in \mathbb{R}_{\geq 0}$, there is some position $j \geq 1$ with $\tau_{j} \geq r$ (i.e. we consider strictly monotonic timed words and require them to be "non-Zeno"). ${ }^{1}$ We denote by $\rho[i, j]$ the finite timed word formed by the sequence of events $\left(\sigma_{\ell}, \tau_{\ell}\right)_{i \leq \ell \leq j}$. We denote by $T \Sigma^{\omega}$ the set of all timed words over Σ. A timed language is a subset of $T \Sigma^{\omega}$.

Metric predicate logics. We start by defining Monadic Second-Order Logic of Order and Metric ($\mathrm{MSO}[<,+1]$), which encompasses all the timed logics discussed in this paper.

- Definition 1 (MSO[$<,+1$] 3,33$]$). Monadic Second-Order Logic of Order and Metric (MSO[$<,+1]$) formulae are generated by

$$
\vartheta::=\top|X(x)| x<x^{\prime}\left|d\left(x, x^{\prime}\right) \in I\right| \vartheta_{1} \wedge \vartheta_{2}|\neg \vartheta| \exists x \vartheta \mid \exists X \vartheta
$$

where X is an atomic proposition, x, x^{\prime} are first-order variables, d is the distance predicate, $I \subseteq \mathbb{R}_{\geq 0}$ is an interval with endpoints in $\mathbb{N}_{\geq 0} \cup\{\infty\}$, and $\exists x, \exists X$ are first- and second-order quantifiers, respectively. ${ }^{2}$

As a convention we write, e.g., $(0, b\rangle$, to refer to $(0, b)$ or $(0, b]$. The fragment of $\mathrm{MSO}[<,+1]$ without second-order quantifiers is the Monadic First-Order Logic of Order and Metric $(\mathrm{FO}[<,+1])$. The fragment of $\mathrm{MSO}[<,+1]$ without the distance predicate is the Monadic Second Logic of Order $(\mathrm{MSO}[<])$. The fragment of $\mathrm{FO}[<,+1]$ without the distance predicate is the Monadic First-Order Logic of Order ($\mathrm{FO}[<]$).

Definition 2 (Q2MLO [12]). Q2MLO is the smallest fragment of $\mathrm{FO}[<,+1]$ obtained from $\mathrm{FO}[<]$ by the following rules:

- All $\mathrm{FO}[<]$ formulae with a single free variable are Q2MLO formulae (note that they may use Q2MLO formulae as atomic propositions).
- If $\vartheta\left(x_{0}, x\right)$ is an $\mathrm{FO}[<]$ formula where x_{0} and x are the only free first-order variables, then $\exists x\left(x_{0}<x \wedge d\left(x_{0}, x\right) \in I \wedge \vartheta\left(x_{0}, x\right)\right)$ and $\exists x\left(x<x_{0} \wedge d\left(x_{0}, x\right) \in I \wedge \vartheta\left(x_{0}, x\right)\right)$, where I is non-singular, are also Q2MLO formulae (with free first-order variable x_{0}).
We denote by Q2MLO $0_{0, \infty}$ the fragment of Q2MLO with only intervals of the forms $(0, b\rangle$ or $\langle a, \infty)$, and Q2MLO 0_{0} is the even more restricted fragment where only intervals of the form $(0, b\rangle$ are allowed. ${ }^{3}$ We also define Q2MSO [26], the smallest fragment of $\mathrm{MSO}[<,+1$] obtained from $\mathrm{MSO}[<]$ by the rules in the previous definition (replacing $\mathrm{FO}[<]$ by $\mathrm{MSO}[<]$).

[^0]- Definition 3 (PQ2MLO [20]). PQ2MLO (where" " stands for "punctual") is obtained from Q2MLO by adding the rule:
- $\exists x\left(x_{0}<x \wedge d\left(x_{0}, x\right) \in I \wedge \vartheta(x)\right)$
where I is a singular interval and $\vartheta(x)$ is a Q2MLO formula with a single free variable x.

Metric temporal logics. We start by defining Extended Metric Temporal Logic (EMTL) [33] where all operators are defined by non-deterministic finite automata (NFAs). An NFA over Σ is a tuple $\mathcal{A}=\left\langle\Sigma, S, s_{0}, \Delta, F\right\rangle$ where S is a finite set of locations, $s_{0} \in S$ is the initial location, $\Delta \subseteq S \times \Sigma \times S$ is the transition relation, and F is the set of final locations. We say that \mathcal{A} is deterministic (a DFA) iff for each $s \in S$ and $\sigma \in \Sigma,\left|\left\{\left(s, \sigma, s^{\prime}\right) \mid\left(s, \sigma, s^{\prime}\right) \in \Delta\right\}\right| \leq 1$. A run of \mathcal{A} on $\sigma_{1} \ldots \sigma_{n} \in \Sigma^{+}$is a sequence of locations $s_{0} s_{1} \ldots s_{n}$ where there is a transition $\left(s_{i}, \sigma_{i+1}, s_{i+1}\right) \in \Delta$ for each $i, 0 \leq i<n$. A run of \mathcal{A} is accepting iff it ends in a final location. A finite word is accepted by \mathcal{A} iff \mathcal{A} has an accepting run on it.

- Definition 4 (EMTL [33]). Extended Metric Temporal Logic (EMTL) formulae over a finite set of atomic propositions AP are generated by

$$
\varphi::=\top|p| \varphi_{1} \wedge \varphi_{2}|\neg \varphi| \mathcal{A}_{I}\left(\varphi_{1}, \ldots, \varphi_{n}\right) \mid \overleftarrow{\mathcal{A}}_{I}\left(\varphi_{1}, \ldots, \varphi_{n}\right)
$$

where $p \in \mathrm{AP}, \mathcal{A}$ is an NFA over the n-ary alphabet $\{1, \ldots, n\}^{4}$, and $I \subseteq \mathbb{R}_{\geq 0}$ is an interval with endpoints in $\mathbb{N}_{\geq 0} \cup\{\infty\}$

As a convention, modalities with left arrows above them denote their "past" versions [2,33]. We omit the subscript I when $I=(0, \infty)$ and write pseudo-arithmetic expressions for lower or upper bounds, e.g., " <3 " for $(0,3)$. We also omit the arguments $\varphi_{1}, \ldots, \varphi_{n}$ and simply write \mathcal{A}_{I} or $\overleftarrow{\mathcal{A}}_{I}$, if clear from the context. EMITL [33] is the fragment of EMTL with only non-singular intervals. EMITL $_{0, \infty}$ is the fragment of EMITL with only intervals of the forms $(0, b\rangle$ or $\langle a, \infty)$.

- Definition 5 (MTL [22]). Metric Temporal Logic (MTL) is the fragment of EMTL with only the "until" and "since" modalities defined by the NFA \mathcal{A}^{U} below:

MTL formulae are usually written in infix notation as $\varphi_{1} \mathbf{U}_{I} \varphi_{2}$ and $\varphi_{1} \mathbf{S}_{I} \varphi_{2}$. We also use the usual shortcuts like $\mathbf{F}_{I} \varphi \equiv \top \mathbf{U}_{I} \varphi$ and $\mathbf{G}_{I} \varphi \equiv \neg \mathbf{F}_{I} \neg \varphi$. Metric Interval Temporal Logic (MITL) [1] is the fragment of MTL with only non-singular intervals (or, equivalently, the fragment of EMITL with only the "until" and "since" modalities). MITL ${ }_{0, \infty}$ is the fragment of MITL with only intervals of the forms $(0, b\rangle$ or $\langle a, \infty)$ (or, equivalently, the fragment of $\mathrm{EMITL}_{0, \infty}$ with only the "until" and "since" modalities). Linear Temporal Logic (LTL) [31] is the fragment of $\mathrm{MITL}_{0, \infty}$ where all operators are labelled by $(0, \infty) .{ }^{5}$

- Definition 6 (CMTL $[14,16])$. CMTL is obtained from MTL by adding the counting modalities \mathbf{C}_{I}^{k} defined by the $\mathrm{MSO}[<,+1]$ formula

$$
\vartheta_{I}^{\mathbf{C}, k}(x, X)=\exists x_{1} \ldots \exists x_{k}\left(x<x_{1}<\cdots<x_{k} \wedge d\left(x, x_{1}\right) \in I \wedge d\left(x, x_{k}\right) \in I \wedge \bigwedge_{1 \leq i \leq k} X\left(x_{i}\right)\right)
$$

[^1]as well as $\overleftarrow{\mathbf{C}}_{I}^{k}$ defined by the past counterpart of $\vartheta_{I}^{\mathbf{C}, k}(x, X) .{ }^{6} \mathrm{C}_{0} \mathrm{MTL}$ is the fragment of CMTL where the counting modalities use only intervals of the form $(0, b\rangle$ where $b \in \mathbb{N}_{>0} \cup\{\infty\}$.
$\mathrm{C}_{(0,1)} \mathrm{MTL}$ is the fragment of $\mathrm{C}_{0} \mathrm{MTL}$ where the counting modalities use only $(0,1)$. We will freely combine notations to refer to various fragments of metric temporal logics, e.g., $\mathrm{C}_{(0,1)}$ MITL is obtained from MITL by adding \mathbf{C}_{I}^{k} and $\overleftarrow{\mathbf{C}}_{I}^{k}$ with $I=(0,1)$.

Semantics of $\mathrm{MSO}[<,+1]$. With each timed word $\rho=\left(\sigma_{i}, \tau_{i}\right)_{i \geq 1}$ over $\Sigma_{\mathrm{AP}}=2^{\mathrm{AP}}$ we associate a structure M_{ρ} whose universe U_{ρ} is $\{i \mid i \geq 1\}$. The order relation $<$ and atomic propositions in AP are interpreted in the expected way, e.g., $P(i)$ holds in M_{ρ} iff $P \in \sigma_{i}$. The distance predicate $d\left(x, x^{\prime}\right) \in I$ holds iff $\left|\tau_{x}-\tau_{x^{\prime}}\right| \in I$. The satisfaction relation for $\mathrm{MSO}[<,+1]$ is defined inductively in the usual way. We write $\rho, j_{1}, \ldots, j_{m}, J_{1}, \ldots, J_{n} \models$ $\vartheta\left(x_{1}, \ldots, x_{m}, X_{1}, \ldots, X_{n}\right)$ if $j_{1}, \ldots, j_{m} \in U_{\rho}, J_{1}, \ldots, J_{n} \subseteq U_{\rho}$, and $\vartheta\left(j_{1}, \ldots, j_{m}, J_{1}, \ldots, J_{n}\right)$ holds in M_{ρ}. We say that two $\mathrm{MSO}[<,+1]$ formulae $\vartheta_{1}(x)$ and $\vartheta_{2}(x)$ are equivalent if for all timed words $\rho=\left(\sigma_{i}, \tau_{i}\right)_{i \geq 1}$ and $j \in U_{\rho}$,

$$
\rho, j \models \vartheta_{1}(x) \Longleftrightarrow \rho, j \models \vartheta_{2}(x) .
$$

Semantics of EMTL. EMTL can be embedded into MSO[$<,+1$] through Büchi-ElgotTrakhtenbrot theorem [25], but we can also define the satisfaction relation directly. Given an EMTL formula φ over AP, a timed word $\rho=\left(\sigma_{i}, \tau_{i}\right)_{i \geq 1}$ over $\Sigma_{\text {AP }}$ and $i \geq 1$, define $\rho, i \models \varphi$ as follows:

- $\quad \rho, i \models \mathrm{~T}$;
- $\rho, i \models p$ iff $p \in \sigma_{i}$;
- $\rho, i \models \varphi_{1} \wedge \varphi_{2}$ iff $\rho, i \models \varphi_{1}$ and $\rho, i \models \varphi_{2}$;
- $\rho, i \models \neg \varphi$ iff $\rho, i \not \vDash \varphi$;
- $\rho, i \models \mathcal{A}_{I}\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ iff there exists $j \geq i$ such that (i) $\tau_{j}-\tau_{i} \in I$ and (ii) there is an accepting run of \mathcal{A} on $a_{i} \ldots a_{j}$ where $\rho, \ell \models \varphi_{a_{\ell}}\left(a_{\ell} \in\{1, \ldots, n\}\right)$ for each $\ell, i \leq \ell \leq j$.
- $\rho, i \models \overleftarrow{\mathcal{A}}_{I}\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ is defined symmetrically.

We say that ρ satisfies φ (written $\rho \models \varphi$) iff $\rho, 1 \models \varphi$.

Ehrenfeucht-Fraïssé games for CMTL. An m-round CMTL Ehrenfeucht-Fraïssé (EF) game starts with round 0 and ends with round m. The game is played by two players (Spoiler and Duplicator) on a pair of timed words $\rho=\left(\sigma_{i}, \tau_{i}\right)_{i \geq 1}$ and $\rho^{\prime}=\left(\sigma_{i}^{\prime}, \tau_{i}^{\prime}\right)_{i \geq 1}$. A configuration is a pair of positions (i, j), respectively in ρ and ρ^{\prime}. In each round $r(0 \leq r \leq m)$, the game proceeds as follows. Spoiler first checks whether the two events that correspond to the current configuration $\left(i_{r}, j_{r}\right)$ in ρ and ρ^{\prime} satisfy the same atomic propositions. If this is not the case then Spoiler wins the game. Otherwise if $r<m$, Spoiler chooses $I \subseteq \mathbb{R}_{\geq 0}$ with endpoints in $\mathbb{N}_{\geq 0} \cup\{\infty\}$ and plays either of the following moves:

- \mathbf{U}_{I}-move: Spoiler chooses one of the two timed words (say ρ) and picks i_{r}^{\prime} such that $i_{r}<i_{r}^{\prime}$ and $\tau_{i_{r}^{\prime}}-\tau_{i_{r}} \in I$ (if there is no such i_{r}^{\prime} then Duplicator wins the game). Duplicator must choose j_{r}^{\prime} such that $\tau_{j_{r}^{\prime}}^{\prime}-\tau_{j_{r}}^{\prime} \in I$ - if this is not possible then Spoiler wins the game. Otherwise, Spoiler plays either of the following "parts":
= F-part: The game proceeds to the next round with $\left(i_{r+1}, j_{r+1}\right)=\left(i_{r}^{\prime}, j_{r}^{\prime}\right)$.

[^2]= U-part: If $j_{r}^{\prime}=j_{r}+1$ the game proceeds to the next round with $\left(i_{r+1}, j_{r+1}\right)=\left(i_{r}^{\prime}, j_{r}^{\prime}\right)$. If $i_{r}^{\prime}=i_{r}+1$ but $j_{r}^{\prime} \neq j_{r}+1$ then Spoiler wins the game. Otherwise, Spoiler picks $j_{r}^{\prime \prime}$ such that $j_{r}<j_{r}^{\prime \prime}<j_{r}^{\prime}$; Duplicator has to choose $i_{r}^{\prime \prime}$ such that $i_{r}<i_{r}^{\prime \prime}<i_{r}^{\prime}$ in response - if this is not possible then Spoiler wins the game. Otherwise, the game proceeds to the next round with $\left(i_{r+1}, j_{r+1}\right)=\left(i_{r}^{\prime \prime}, j_{r}^{\prime \prime}\right)$.

- \mathbf{S}_{I}-move: Defined symmetrically.
- \mathbf{C}_{I}^{k}-move: Spoiler chooses one of the two timed words (say ρ) and picks $i_{r}^{1}, \ldots, i_{r}^{k}$ such that $i_{r}<i_{r}^{1}<\cdots<i_{r}^{k}$ and $\tau_{i_{r}^{\ell}}-\tau_{i_{r}} \in I$ for all $\ell, 1 \leq \ell \leq k$ (if there are no such $i_{r}^{1}, \ldots, i_{r}^{k}$ then Duplicator wins the game); Duplicator must choose $j_{r}^{1}, \ldots, j_{r}^{k}$ such that $\tau_{j_{r}^{\ell}}^{\prime}-\tau_{j_{r}}^{\prime} \in I$ for all $\ell, 1 \leq \ell \leq k$ - if this is not possible then Spoiler wins the game. Spoiler then picks $j_{r}^{\prime \prime}=j_{r}^{\ell}$ for some $\ell, 1 \leq \ell \leq k$, Duplicator chooses $i_{r}^{\prime \prime}=i_{r}^{\ell}$ for some $\ell, 1 \leq \ell \leq k$, and the game proceeds to the next round with $\left(i_{r+1}, j_{r+1}\right)=\left(i_{r}^{\prime \prime}, j_{r}^{\prime \prime}\right)$.
- $\overleftarrow{\mathbf{C}}_{I}$-move: Defined symmetrically.

We say that Duplicator has a winning strategy for the m-round CMTL EF game on ρ and ρ^{\prime} that starts from configuration (i, j) if and only if, no matter how Spoiler plays, Duplicator can always win the m-round CMTL EF game on ρ and ρ^{\prime} with $\left(i_{0}, i_{0}\right)=(i, j)$. If this is not the case then we say that Spoiler has a winning strategy. The following theorem relates the number of rounds of CMTL EF games to the modal depth (i.e., the maximal depth of nesting of modalities) of CMTL formulae.

- Theorem 7 ([24,30]). For timed words ρ, ρ^{\prime} and a CMTL formula φ of modal depth $\leq m$, if Duplicator has a winning strategy for the m-round CMTL EF game on ρ, ρ^{\prime} with $\left(i_{0}, j_{0}\right)=$ $(1,1)$, then

$$
\rho \models \varphi \Longleftrightarrow \rho^{\prime} \models \varphi
$$

Note that the theorem above can also be specialised to sublogics of CMTL; for example, the corresponding theorem for $\mathrm{C}_{(0,1)} \mathrm{MITL}$ is obtained by forcing $I=(0,1)$ in \mathbf{C}_{I}^{k}-moves.

Expressiveness. We say that a metric logic L^{\prime} is expressively complete for a metric logic L iff for any formula $\vartheta(x) \in L$, there is an equivalent formula $\varphi(x) \in L^{\prime} .{ }^{7}$ We say that L^{\prime} is at least as expressive as (or more expressive than) L (written $L \subseteq L^{\prime}$) iff for any formula $\vartheta(x) \in L$, there is an initially equivalent formula $\varphi(x) \in L^{\prime}$ (i.e., $\vartheta(1)$ and $\varphi(1)$ evaluate to the same truth value for any timed word). We say that L^{\prime} and L are equally expressive (written $L^{\prime} \equiv L$) iff $L \subseteq L^{\prime}$ and $L^{\prime} \subseteq L$. If $L \subseteq L^{\prime}$ but $L^{\prime} \nsubseteq L$ then we say that L^{\prime} is strictly more expressive than L (or L is strictly less expressive than L^{\prime}).

3 Expressive completeness for Q2MLO

Counting in $(\mathbf{0}, \mathbf{1})$. We argue that counting in $(0,1)$ is not sufficiently expressive in the pointwise semantics; in particular, counting in ($0, b\rangle$ cannot be expressed in MTL extended with $\mathbf{C}_{(0,1)}^{k}$ and $\overleftarrow{\mathbf{C}}_{(0,1)}^{k}$, and it turns out to be essential for achieving the full expressiveness of Q2MLO. This is in stark contrast with the situation in the continuous semantics, where LTL extended with $\mathbf{C}_{(0,1)}^{k}$ and $\overleftarrow{\mathbf{C}}_{(0,1)}^{k}$ is expressively complete for Q2MLO [14, 16]. We show this by constructing two families of timed words $\left(M_{m, c}\right)$ and $\left(N_{m, c}\right)$ over $\Sigma_{\{p, q\}}$ (inspired by [30]) that can be told apart easily by a $\mathrm{C}_{0} \mathrm{MTL}$ formula using $\mathbf{C}_{(0, b\rangle}^{k}$, yet they are indistinguishable by all $\mathrm{C}_{(0,1)} \mathrm{MTL}$ formulae of modal depth $\leq m$, all constants $\leq c$, and where all occurrences of counting modalities $\mathbf{C}_{I}^{k^{\prime}}$ and $\overleftarrow{\mathbf{C}}_{I}^{k^{\prime}}$ have $k^{\prime} \leq k$.

[^3]We start by describing $N_{m, c}$ for some fixed $m, c \in \mathbb{N}_{\geq 0}$. Let c^{\prime} be the least integer greater than $\frac{5}{4} \cdot(c+3)+1$ and $\epsilon=\frac{1}{6}$. We put an \emptyset-event at time 0 , and then a number of overlapping segments start at time $(c+1)$ where each segment consists of a $\{p\}$-event and a $\{q\}$-event (note that each $\{p\}$-event or $\{q\}$-event uniquely identifies a segment). If the $\{p\}$-event in the $i^{\text {th }}$ segment is at, say, t, then its $\{q\}$-event is at $t+2+\frac{i}{3 \cdot m \cdot c^{\prime}+3} \cdot \epsilon$ (see Figure 4). We put a total of $2 \cdot m \cdot c^{\prime}+1$ segments where $\{p\}$-events in neighbouring segments are separated by $\frac{4}{5}$. Finally, we put an infinite sequence of \emptyset-events, equally separated by $(c+1)$ and starting at $(c+1)$ after the $\{q\}$-event in the last segment. $M_{m, c}$ is almost identical to $N_{m, c}$, except for the middle (i.e., $\left(m \cdot c^{\prime}+1\right)^{t h}$) segment - say this segment starts at t, then in $M_{m, c}$ we shift the corresponding $\{q\}$-event to $t+2-\frac{m \cdot c^{\prime}+1}{3 \cdot m \cdot c^{\prime}+3} \cdot \epsilon$ instead. For convenience, we write t_{a} for the timestamp of the $\{p\}$-event in the middle segment (i.e. $\left.t_{a}=(c+1)+\frac{4}{5} \cdot m \cdot c^{\prime}\right), t_{b}=t_{a}+2$, and denote the corresponding $\{q\}$-events in $M_{m, c}$ and $N_{m, c}$ by x and y respectively with timestamps t_{x} and t_{y} (see Figure 5). It is easy to see that no $\{q\}$-event is at an integer distance to some other $\{p\}$-event or $\{q\}$-event. This completes the description of $M_{m, c}$ and $N_{m, c}$. We say a configuration (i, j) is $i d e n t i c a l$ if $i=j$. For a position $i \geq 1$ in $M_{m, c}$ or $N_{m, c}$, we write $\operatorname{seg}(i)$ for the segment to which the $i^{t h}$ event belongs. For convenience we define $\operatorname{seg}(i)=0$ if the $i^{t h}$ event is an \emptyset-event.

\square Figure 4 A segment in $N_{m, c}$. The white box is the $\{p\}$-event and the black box is the $\{q\}$-event.

Figure 5 The events near the middle segments of $M_{m, c}$ and $N_{m, c}$. White boxes are $\{p\}$-events and black boxes are $\{q\}$-events.

We are now ready to state the main technical lemma, which intuitively says that Duplicator can either keep the configuration identical or far enough from the beginnings and the ends of both $M_{m, c}$ and $N_{m, c}$ (where Spoiler can easily win the EF game).

- Lemma 8. In the m-round $\mathrm{C}_{(0,1)} \mathrm{MTL} \mathrm{EF}$ game on $M_{m, c}, N_{m, c}$ starting from $(1,1)$, Duplicator has a winning strategy such that for each round $0 \leq r \leq n$, the $i_{r}^{\text {th }}$-event in $M_{m, c}$ and the $j_{r}^{\text {th }}$-event in $N_{m, c}$ satisfy the same atomic propositions and
- if $\operatorname{seg}\left(i_{r}\right) \neq \operatorname{seg}\left(j_{r}\right)$, then $r \geq 1$ and

$$
\operatorname{seg}\left(i_{r}\right), \operatorname{seg}\left(j_{r}\right) \in\left[(m-r+1) \cdot c^{\prime}-1,(m+r-1) \cdot c^{\prime}+3\right]
$$

Proof. We describe a winning strategy for Duplicator by induction on r. The basic idea is to make the resulting configuration identical whenever possible (and thus the induction hypothesis trivially holds); otherwise we use a copy-cat strategy (i.e. try to make seg $\left(i_{r+1}\right)-$
$\left.\operatorname{seg}\left(i_{r}\right)=\operatorname{seg}\left(j_{r+1}\right)-\operatorname{seg}\left(j_{r}\right)\right)$. If that is also not possible, we must choose another event that satisfies the same atomic propositions. In the following, we refer to the timed word that Spoiler first chooses as $\rho^{s}=\left(\sigma_{i}^{s}, \tau_{i}^{s}\right)_{i \geq 0}\left(\rho^{d}=\left(\sigma_{i}^{d}, \tau_{i}^{d}\right)_{i \geq 0}\right.$ for that of Duplicator $)$.

- Base step. The induction hypothesis holds trivially for $\left(i_{0}, j_{0}\right)=(1,1)$.
- Induction step. Suppose the claim holds for $r<m$. We prove it also holds for $r+1$.
- $\left(i_{r}, j_{r}\right)=(1,1)$:

Since all segments happen at time $>c$, Duplicator can always make $\left(i_{r+1}, j_{r+1}\right)$ an identical configuration, if necessary.

- $\left(i_{r}, j_{r}\right) \neq(1,1)$ is identical:

We may assume $r>0$. Observe from Figure 5 that any two $\{p\}$-events that are $5 n$ segments away are separated by $4 n$. More specifically, since $t_{b}-t_{a}=2,\{p\}$-events whose distances to t_{a} are integers will also have integer distances to t_{b}. We consider the following cases:

* $\left(i_{r}, j_{r}\right)$ both correspond to \emptyset-events: since they are separated from any other events by $>c$, Duplicator can always make $\left(i_{r+1}, j_{r+1}\right)$ identical if necessary.
* $\left(i_{r}, j_{r}\right)$ both correspond to $\{p\}$-events and Spoiler plays an $\mathbf{U}_{I^{\prime}}$-move or $\mathbf{S}_{I^{\prime}}$-move and picks (say) $i_{r}^{\prime}=x$. Duplicator may either choose $j_{r}^{\prime}=y$ (then Duplicator can surely make $\left(i_{r+1}, j_{r+1}\right)$ identical later) or if that is not possible, choose event $j_{r}^{\prime}=y^{\prime}$. In the latter case, if Spoiler plays the \mathbf{F}-part, it is obvious that the resulting configuration $\left(i_{r+1}, j_{r+1}\right)$ would satisfy the claim. If Spoiler plays U-part, Duplicator may either make $\left(i_{r+1}, j_{r+1}\right)$ identical or $\operatorname{seg}\left(j_{r+1}\right)-\operatorname{seg}\left(i_{r+1}\right)=-1$. In this latter case it is clear that the claim still holds $\left(\operatorname{seg}\left(i_{r+1}\right)=m \cdot c^{\prime}+2\right.$ or $\left.\operatorname{seg}\left(i_{r+1}\right)=m \cdot c^{\prime}+4\right)$. If Spoiler plays a \mathbf{C}_{I}^{k}-move or $\overleftarrow{\mathbf{C}}_{I}^{k}$-move, as $I=(0,1)$, Duplicator can always make $\left(i_{r+1}, j_{r+1}\right)$ identical if necessary.
* $\left(i_{r}, j_{r}\right)$ corresponds to $\{q\}$-events except x and y, and Spoiler chooses, say, event $i_{r}^{\prime}=x$. The reasoning is exactly similar to the case above.
* $\left(i_{r}, j_{r}\right)$ corresponds to events x and y. If Spoiler plays an \mathbf{U}_{I}-move or \mathbf{S}_{I}-move, chooses some event z, and forces Duplicator not to choose the corresponding event but another one in a neighbouring segment, then that event z must be less than $(c+1)$ away from t_{b}. If it happens before t_{b}, then t_{a} would have distance $<(c-1)$ to it. If it happens after t_{b}, then t_{a} would be $<(c+3)$ away from it. Assume that z happens before t_{b}. If z is a $\{p\}$-event, we divide $(c-1)$ by $\frac{4}{5}$ to obtain $\frac{5}{4} \cdot(c-1)>\left|\operatorname{seg}(z)-\operatorname{seg}\left(i_{r}\right)\right|$ where $\operatorname{seg}\left(i_{r}\right)=m \cdot c^{\prime}+1$. Observe that the $\{p\}$-event z^{\prime} that Duplicator chooses as the response will be at most one more segment away. Then the claim holds regardless of Spoiler plays F-part or U-part (may cause a drift of two more segments) later. If z is a $\{q\}$-event, observe that its corresponding $\{p\}$-event in the same segment must be less than $2+\frac{1}{5}<3 \cdot \frac{4}{5}$ away from z. Add this to $(c-1)$ and divide the result by $\frac{4}{5}$ gives $\frac{5}{4} \cdot(c-1)+3<\frac{5}{4} \cdot(c+2)$. Again, the $\{q\}$-event z^{\prime} that Duplicator chooses will be at most one more segment away. The case for z happens after t_{b} is similar. If Spoiler plays a \mathbf{C}_{I}^{k}-move or $\overleftarrow{\mathbf{C}}_{I}^{k}$-move, as $I=(0,1)$, Duplicator can always make $\left(i_{r+1}, j_{r+1}\right)$ identical if necessary.
- $\left(i_{r}, j_{r}\right)$ is not identical:

We claim that no matter how Spoiler plays, Duplicator can always either make $\left(i_{r+1}, j_{r+1}\right)$ identical or, ensure that $\left(i_{r+1}, j_{r+1}\right)$ has not moved towards the nearest end by $\geq c^{\prime}$ segments. In the latter case the claim holds by the induction hypothesis. If Spoiler plays an \mathbf{C}_{I}^{k}-move or $\overleftarrow{\mathbf{C}}_{I}^{k}$-move, it is once again clear that Duplicator can follow a copy-cat strategy if necessary, but this is not always the case for \mathbf{U}_{I}-moves and \mathbf{S}_{I}-moves. In the following, we focus on \mathbf{U}_{I}-moves and \mathbf{S}_{I}-moves and assume that

Spoiler always chooses some event that is more than two events away from the current event, e.g., $j_{r}^{\prime}>j_{r}+2$. If $j_{r}^{\prime} \leq j_{r}+2$, it is easy to see that Duplicator can simply choose $i_{r}^{\prime}=i_{r}+\left(j_{r}^{\prime}-j_{r}\right)$ (unless $\left(i_{r}, j_{r}\right)$ are very close to one of the ends, which will not happen).
Assume that $\left(i_{r}, j_{r}\right)$ corresponds to a pair of $\{p\}$-events and (without loss of generality) assume that Spoiler chooses a position j_{r}^{\prime} such that $j_{r}^{\prime}>j_{r}$. If Duplicator can choose i_{r}^{\prime} such that $i_{r}^{\prime}=j_{r}^{\prime}$, Duplicator chooses $i_{r}^{\prime}=j_{r}^{\prime}$. Then, if Spoiler plays F-part, it is immediate that $i_{r+1}=j_{r+1}$. If Spoiler plays U-part, then Duplicator makes $i_{r+1}=j_{r+1}$ whenever possible. Otherwise, for example, if $i_{r}<j_{r}$ and Spoiler chooses some $\{p\}$-event in $\left(\tau_{i_{r}}^{d}, \tau_{j_{r}}^{d}\right)$ as i_{r+1}, then Duplicator chooses $j_{r+1}=j_{r}+2$. Observe that i_{r+1} has moved towards j_{r} (and away from the nearest end). The claim holds by the induction hypothesis. If Duplicator cannot choose i_{r}^{\prime} such that $i_{r}^{\prime}=j_{r}^{\prime}$, consider the following cases:

* Duplicator can choose i_{r}^{\prime} such that $i_{r}^{\prime}=i_{r}+\left(j_{r}^{\prime}-j_{r}\right)$: If Duplicator cannot choose $i_{r}^{\prime}=j_{r}^{\prime}$, then Duplicator chooses $i_{r}^{\prime}=i_{r}+\left(j_{r}^{\prime}-j_{r}\right)$. As before, we know that $\tau_{j_{r}^{\prime}}^{s}<\tau_{j_{r}}^{s}+(c+1)$. It is easy to see that $\operatorname{seg}\left(i_{r+1}\right)-\operatorname{seg}\left(i_{r}\right)<c^{\prime}$ and $\operatorname{seg}\left(j_{r+1}\right)-\operatorname{seg}\left(j_{r}\right)<c^{\prime}$, and hence the claim holds by the induction hypothesis.
* Duplicator cannot choose i_{r}^{\prime} such that $i_{r}^{\prime}=i_{r}+\left(j_{r}^{\prime}-j_{r}\right)$: This can only happen when j_{r}^{\prime} corresponds to a $\{q\}$-event. Observe that all $\{p\}$-events in neighbouring segments are separated by $\frac{4}{5}$. These imply that there exists t such that $t-\tau_{j_{r}}^{s}=n=n^{\prime} \cdot \frac{1}{5}$ for some $n, n^{\prime} \in \mathbb{N}_{>0}$, and there exists $\left|k_{1}\right|,\left|k_{2}\right|<1, k_{1}, k_{2} \neq 0$ such that $t-\tau_{j_{r}}^{s}$ lies between
$\begin{array}{ll}\cdot & \tau_{j_{r}^{\prime}}^{s}-\tau_{j_{r}}^{s}=n_{1} \cdot \frac{1}{5}+k_{1} \cdot \epsilon, n_{1} \in \mathbb{N}_{>0} \text { and } \\ . & \tau_{i_{r}+\left(j_{r}^{\prime}-j_{r}\right)}^{d}-\tau_{i_{r}}^{d}=n_{2} \cdot \frac{1}{5}+k_{2} \cdot \epsilon, n_{2} \in \mathbb{N}_{>0} .\end{array}$
It is obvious that $n_{1}=n_{2}$. If $k_{1} \cdot k_{2}>0$, since there is no integer multiple of $\frac{1}{5}$ that lies between, e.g., $n_{1} \cdot \frac{1}{5}$ and $n_{1} \cdot \frac{1}{5}+\epsilon$, this is a contradiction. If $k_{1} \cdot k_{2}<0$, we must have $n^{\prime}=n_{1}=n_{2}$. This only happens when $i_{r}+\left(j_{r}^{\prime}-j_{r}\right)$ in ρ^{d} corresponds to event x. In this case, Duplicator chooses the corresponding event in a neighbouring segment. For example, if $\left(i_{r}, j_{r}\right)$ corresponds to a pair of $\{p\}$-events, $\operatorname{seg}\left(i_{r}\right)=m \cdot c^{\prime}+1, \operatorname{seg}\left(j_{r}\right)=m \cdot c^{\prime}, I=(2,3)$ and $j_{r}^{\prime}=y^{\prime}$, then Duplicator chooses $i_{r}^{\prime}=x^{\prime}$. Now if Spoiler plays F-part, since we know that $\tau_{j_{r}^{\prime}}^{s}<\tau_{j_{r}}^{s}+(c+1)$, the claim holds. If Spoiler plays U-part, e.g., in the aforementioned example, Spoiler chooses $i_{r+1}=x$, then Duplicator chooses $j_{r+1}=y^{\prime \prime}$ - the claim also holds.
Now assume that $\left(i_{r}, j_{r}\right)$ corresponds to a pair of $\{q\}$-events and assume that the Spoiler chooses a position j_{r}^{\prime} such that $j_{r}^{\prime}<j_{r}$. Most cases can be argued in very similar ways. We consider the situation when Duplicator cannot choose i_{r}^{\prime} such that $i_{r}^{\prime}=i_{r}+\left(j_{r}^{\prime}-j_{r}\right)$. If j_{r}^{\prime} corresponds to a $\{p\}$-event then the argument is exactly similar to above. Otherwise if j_{r}^{\prime} corresponds to a $\{q\}$-event, observe the fact that all $\{q\}$-events in neighbouring segments, except x, are separated by $\frac{4}{5}+\frac{1}{3 \cdot m \cdot c^{\prime}+3} \cdot \epsilon$. By a similar argument, if $k_{1} \cdot k_{2}<0$, Duplicator chooses the corresponding event in a neighbouring segment. It can be argued in the same way that the claim holds regardless of Spoiler plays F-part or U-part later.

Lemma 8 implies that any $\mathrm{C}_{(0,1)} \mathrm{MTL}$ formula of modal depth $\leq m$ and largest constant $\leq c$ cannot distinguish $M_{m, c}$ and $N_{m, c}$. However, from Figure 5 it is obvious that

$$
M_{m, c} \models \mathbf{F}\left(p \wedge \mathbf{C}_{(0,2)}^{3} q\right) \wedge N_{m, c} \not \vDash \mathbf{F}\left(p \wedge \mathbf{C}_{(0,2)}^{3} q\right),
$$

as each interval like $\left(t_{a}, t_{b}\right)$ in $N_{m, c}$ contains at most two $\{q\}$-events. We thus have the theorem below, which can be seen as a strengthened version of a corresponding result in [24] (which holds for the future-only fragments).

- Theorem 9. $\mathrm{C}_{0} \mathrm{MTL} \subsetneq \mathrm{C}_{(0,1)} \mathrm{MTL}$.

Counting in $(\mathbf{0}, \boldsymbol{b} \boldsymbol{\rangle}$. We now show that once we bridge the expressiveness gap indicated by Theorem 9, we can derive a corresponding expressive completeness result for Q2MLO in the pointwise semantics. Before we give the main proof, let us state a crucial observation.

- Theorem 10. Q2MLO ${ }_{0} \equiv$ Q2MLO.

Proof. We first note that Q2MLO ${ }_{0, \infty}$ is equally expressive as Q2MLO; this can be obtained as a simple corollary of the main result of $[18]$ (EMITL $_{0, \infty}$ is already as expressive as full EMITL), since all the automata modalities involved in the proof are counter free (aperiodic) and thus equivalent to $\mathrm{FO}[<]$ formulae of the form $\vartheta\left(x_{0}, x\right)$. To see that $\mathrm{Q} 2 \mathrm{MLO}_{0} \equiv \mathrm{Q} 2 \mathrm{MLO}_{0, \infty}$, note that, e.g., the Q2MLO formula

$$
\exists x\left(x_{0}<x \wedge d\left(x_{0}, x\right) \in(a, \infty) \wedge \vartheta\left(x_{0}, x\right)\right)
$$

is equivalent to an EMITL formula $\mathcal{A}_{(a, \infty)}$ where \mathcal{A} is the automaton equivalent of $\vartheta\left(x_{0}, x\right)$; we assume (without loss of generality [34]) that $\mathcal{A}=\left\langle\Sigma, S, s_{0}, \Delta, F\right\rangle$ is a DFA and in particular, at most one of the arguments holds at any position. Let $\mathcal{B}^{s, \varphi}$ be the automaton obtained from \mathcal{A} by adding a new location s_{F}, declaring it as the only final location, and adding new transitions $s^{\prime} \xrightarrow{\varphi_{a} \wedge \varphi} s_{F}$ for every $s^{\prime} \xrightarrow{\varphi_{a}} s$ in \mathcal{A}. Let \mathcal{C}^{s} be the automaton obtained from \mathcal{A} by adding new non-final locations s_{0}^{\prime} and s_{1}^{\prime}, adding new transitions $s_{0}^{\prime} \rightarrow s_{1}^{\prime}$ (i.e. labelled with \top) and $s_{1}^{\prime} \xrightarrow{\varphi_{a}} s^{\prime \prime}$ for every $s \xrightarrow{\varphi_{a}} s^{\prime \prime}$ in \mathcal{A}, and setting the initial location to s_{0}^{\prime}. Intuitively, $\mathcal{B}^{s, \varphi}$ enforces φ at the point when s is reached in \mathcal{A} and \mathcal{C}^{s} "runs' \mathcal{A} from s. We can argue that $\mathcal{A}_{(a, \infty)}$ is equivalent to

$$
\mathcal{A}_{(0, \infty)} \wedge \neg \bigvee_{s \in S} \mathcal{B}_{(0, a]}^{s, \varphi}
$$

where $\varphi=\neg \mathcal{C}^{s}$. This can be translated into a Q2MLO ${ }_{0}$ formula.
We have thus reduced the problem to expressing Q2MLO $_{0}$ formulae in $\mathrm{C}_{0} \mathrm{MITL}$. The proof below essentially follows $[14,16]$ with the exception that instead of the composition method [32] we use Myhill-Nerode congruence, which appears to be more natural in a pointwise setting. It suffices to show that we can use a C_{0} MITL formula to express a Q2MLO 0_{0} formula of the form

$$
\begin{equation*}
\exists x\left(x_{0}<x \wedge d\left(x_{0}, x\right) \in(0, b\rangle \wedge \vartheta\left(x_{0}, x\right)\right) \tag{1}
\end{equation*}
$$

where $\vartheta\left(x_{0}, x\right)$ is an $\mathrm{FO}[<]$ formula, as we can repeatedly apply the equivalence on the minimal subformula until the whole formula is turned into a C_{0} MITL formula.

We say an $\mathrm{FO}[<]$ formula $\vartheta\left(x_{0}, x\right)$ is functional if for any given timed word ρ and positions i_{0}, i, if we have $\rho, i_{0}, i \models \vartheta\left(x_{0}, x\right)$ then $i_{0}<i$ and i is unique for i_{0} : if $\rho, i_{0}, i^{\prime} \models \vartheta\left(x_{0}, x\right)$ then it must be the case that $i^{\prime}=i$. It is not hard to see that (1) remains equivalent if we replace $\vartheta\left(x_{0}, x\right)$ by its "functional' counterpart

$$
\vartheta^{\prime}\left(x_{0}, x\right)=x_{0}<x \wedge \vartheta\left(x_{0}, x\right) \wedge \forall x^{\prime}\left(x_{0}<x^{\prime}<x \Longrightarrow \neg \vartheta\left(x_{0}, x^{\prime}\right)\right) .
$$

We recall some facts about functional formulae before stating the main theorem. Intuitively, once we restrict ourselves to the case of functional $\vartheta\left(x_{0}, x\right)$, then for any given position i_{0}, there can be only a bounded number of pairs of positions (i, j) such that $i<i_{0}<j$ and $\rho, i, j \models \vartheta\left(x_{0}, x\right)$. In particular if $\rho, i_{0}, i \models \vartheta\left(x_{0}, x\right)$, we can make use of counting modalities to enforce that $\tau_{i}-\tau_{i_{0}} \in(0, b\rangle$.

- Lemma 11. If $\vartheta\left(x_{0}, x\right)$ is functional and i_{0} is a position in the timed word ρ, then $\mid\left\{j \mid \rho, i, j \models \vartheta\left(x_{0}, x\right)\right.$ and $\left.i<i_{0}<j\right\} \mid \leq r$ where r is the number of locations of the minimal DFA equivalent to $\vartheta\left(x_{0}, x\right)$.

Proof. Suppose to the contrary that there exists a set $\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{r+1}, j_{r+1}\right)\right\}$ of $r+1$ distinct pairs of positions (i, j) (where j_{1}, \ldots, j_{r+1} are all distinct) that satisfy the condition; i_{1}, \ldots, i_{r+1} must also be all distinct as $\vartheta\left(x_{0}, x\right)$ is functional. Let \mathcal{D} be the minimal DFA equivalent to $\vartheta\left(x_{0}, x\right)$. As there are only r locations in \mathcal{D}, it must be the case that \mathcal{D} reaches some specific location s after reading $\rho\left[i_{u}, i_{0}\right]$ and $\rho\left[i_{v}, i_{0}\right]$ for some $u \neq v$, and it follows that $\rho, i_{u}, j_{u} \models \vartheta\left(x_{0}, x\right)$ and $\rho, i_{u}, j_{v} \models \vartheta\left(x_{0}, x\right)$. This contradicts the fact that $\vartheta\left(x_{0}, x\right)$ is functional.

If $\vartheta\left(x_{0}, x\right)$ is functional, we say that a pair of positions $\left(i_{1}, j_{1}\right)$ such that $\rho, i_{1}, j_{1} \models \vartheta\left(x_{0}, x\right)$ is of ϑ-nesting depth at least m in ρ if there exist positions $i_{1}<\cdots<i_{m}<j_{m}<\cdots<j_{1}$ such that $\rho, i_{\ell}, j_{\ell} \models \vartheta\left(x_{0}, x\right)$ for all $\ell \in\{1, \ldots, m\}$. We say $\left(i_{1}, j_{1}\right)$ is of ϑ-nesting depth m in ρ if it is of ϑ-nesting depth at least m but not $m+1$ in ρ. Let

$$
\begin{array}{r}
R_{\vartheta}^{\geq m}\left(y_{1}\right)=\exists x_{1}, x_{2}, \ldots, x_{m}, y_{2}, \ldots, y_{m}\left(x_{1}<x_{2}<\cdots<x_{m}<y_{m}<\cdots<y_{2}<y_{1}\right. \\
\left.\wedge \vartheta\left(x_{1}, y_{1}\right) \wedge \vartheta\left(x_{2}, y_{2}\right) \wedge \cdots \wedge \vartheta\left(x_{m}, y_{m}\right)\right)
\end{array}
$$

and $R_{\vartheta}^{m}\left(y_{1}\right)=R_{\vartheta}^{\geq m}\left(y_{1}\right) \wedge \neg R_{\vartheta}^{\geq m+1}\left(y_{1}\right)$. Intuitively, $\rho, j_{1} \models R_{\vartheta}^{\geq m}\left(y_{1}\right)$ iff there exists i_{1} such that $\left(i_{1}, j_{1}\right)$ is of ϑ-nesting depth at least m in ρ.

- Lemma 12. If $\vartheta\left(x_{0}, x\right)$ is functional and (i, j) is of ϑ-nesting depth m in the timed word ρ, then if $\left(i^{\prime}, j^{\prime}\right)$ where $j^{\prime}<j$ is also of ϑ-nesting depth m in ρ (i.e. $\rho, j^{\prime} \models R_{\vartheta}^{m}\left(y_{1}\right)$), we necessarily have $i^{\prime}<i$.

Proof. $i^{\prime}>i$ contradicts the fact that (i, j) is of ϑ-nesting depth m in ρ, and $i^{\prime}=i$ contradicts the fact that $\vartheta\left(x_{0}, x\right)$ is functional.

- Theorem 13. $\mathrm{C}_{0} \mathrm{MITL} \equiv \mathrm{Q} 2 \mathrm{MLO}$.

Proof. Fix a functional formula $\vartheta\left(x_{0}, x\right)$ and a timed word ρ. Let $R_{\vartheta}^{m, \ell}\left(x_{0}\right)$ be the formula that says x_{ℓ}, the ℓ-th point $>x_{0}$ satisfying R_{ϑ}^{m}, also happens to satisfy $\vartheta\left(x_{0}, x_{\ell}\right)$, i.e.

$$
\begin{aligned}
& R_{\vartheta}^{m, \ell}\left(x_{0}\right)=\exists x_{1}, \ldots, x_{\ell}(x_{0}<x_{1}<\cdots<x_{\ell} \\
& \wedge \vartheta\left(x_{0}, x_{\ell}\right) \\
&\left.\wedge \forall x\left(x \in\left(x_{0}, x_{\ell}\right] \Longrightarrow\left(R_{\vartheta}^{m}(x) \Longleftrightarrow \bigvee_{i \in\{1, \ldots, \ell\}} x=x_{i}\right)\right)\right) .
\end{aligned}
$$

By Lemma 11 and Lemma 12, we know that ℓ can at most be $r+1$ (where r is the number of locations of the minimal DFA equivalent to $\left.\vartheta\left(x_{0}, x\right)\right)$. If $\left(i_{0}, i\right)$ satisfies $\vartheta\left(x_{0}, x\right)$, then $\left(i_{0}, i\right)$ must be of ϑ-nesting depth m in ρ for some $m \leq r$. To express

$$
\exists x\left(x_{0}<x \wedge d\left(x_{0}, x\right) \in(0, b\rangle \wedge \vartheta\left(x_{0}, x\right)\right)
$$

we take the disjunction over all the possible choices of m 's and ℓ 's:

$$
\bigvee_{m \in\{1, \ldots, r\}}\left(\bigvee _ { \ell \in \{ 1 , \ldots , r + 1 \} } \left(\exists x_{1}, \ldots, x_{\ell}\left(x_{0}<x_{1}<\cdots<x_{\ell} \wedge d\left(x_{0}, x_{\ell}\right) \in(0, b\rangle\right.\right.\right.
$$

$$
\left.\left.\left.\wedge \bigwedge_{i \in\{1, \ldots, \ell\}} R_{\vartheta}^{m}\left(x_{i}\right) \wedge R_{\vartheta}^{m, \ell}\left(x_{0}\right)\right)\right)\right)
$$

The formula above is equivalent to

$$
\bigvee_{n \in\{1, \ldots, r\}}\left(\bigvee_{\ell \in\{1, \ldots, r+1\}}\left(\left(\mathbf{C}_{(0, b\rangle}^{\ell} R_{\vartheta}^{m}\right) \wedge R_{\vartheta}^{m, \ell}\right)\right)
$$

where $R_{\vartheta}^{m}, R_{\vartheta}^{m, \ell}$ are the LTL equivalents of $R_{\vartheta}^{m}\left(y_{1}\right)$ and $R_{\vartheta}^{m, \ell}\left(x_{0}\right)$, respectively.

- Corollary 14. C_{0} MITL with untimed automata modalities is expressively complete for Q2MSO.

4 Expressive completeness for $\mathrm{FO}[<,+1]$

Generalising EMITL. We know that in the continuous semantics PQ2MLO [20] is expressively complete for $\mathrm{FO}[<,+1]$; in other words, the only expressiveness gap between (decidable) Q2MLO and (undecidable) $\mathrm{FO}[<,+1]$ is the capability to express punctualities. Unfortunately, this pleasant result does not hold in the pointwise semantics.

- Theorem 15. PQ2MLO is strictly less expressive than $\mathrm{FO}[<,+1]$.

Proof. Thanks to Theorem 13, it suffices to show that $\mathrm{C}_{0} \mathrm{MTL}$ is strictly less expressive than $\mathrm{FO}[<,+1]$. In fact, we can prove the stronger result that MTL with arbitrary rational endpoints (which subsumes \mathbf{C}_{I}^{k}) is still insufficient for expressing the property below (" X holds at the first event in I from now'):

$$
\begin{equation*}
\mathbf{B}_{I}(x, X)=\exists x^{\prime}\left(x<x^{\prime} \wedge d\left(x, x^{\prime}\right) \in I \wedge X\left(x^{\prime}\right) \wedge \neg \exists x^{\prime \prime}\left(x<x^{\prime \prime}<x^{\prime} \wedge d\left(x, x^{\prime \prime}\right) \in I\right)\right) \tag{2}
\end{equation*}
$$

The detailed proof can be found in the full version of this paper.
The theorem above suggests that we need more involved extensions to make Q2MLO as expressive as $\mathrm{FO}[<,+1]$ in the pointwise semantics; at least we must be able to specify (2). PnEMTL [23] is a generalisation of EMTL where instead of just between the current point and a single witness point, one can use "Pnueli automata' modalities to specify behaviours between multiple witness points as well. More precisely, the semantics of Pnueli automata modalities are defined as follows:

- $\rho, i \models \mathcal{F}_{I_{1}, \ldots, I_{k}}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}\right)$ iff there exists j_{1}, \ldots, j_{k} such that

1. $i<j_{1}<\cdots<j_{k}$.
2. For each $\ell \in\{1, \ldots, k\}, \tau_{j_{\ell}}-\tau_{i} \in I_{\ell}$.
3. For each $\ell \in\{1, \ldots, k\}$, there is an accepting run of \mathcal{A}_{ℓ} on $a_{j_{\ell-1}} \ldots a_{j_{\ell}}(\ell>1)$ or $a_{i} \ldots a_{j_{\ell}}(\ell=1)$ such that for each $m, j_{\ell-1} \leq m \leq j_{\ell}\left(\right.$ or $\left.i \leq m \leq j_{\ell}\right), \rho, m \models \varphi_{a_{m}}$ $\left(a_{m} \in\left\{1, \ldots, n_{\ell}\right\}\right.$ where n_{ℓ} is the arity of the alphabet of $\left.\mathcal{A}_{\ell}\right)$.

- $\rho, i \models \mathcal{P}_{I_{1}, \ldots, I_{k}}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}\right)$ (the past counterpart) is defined symmetrically.

In [23], it is also shown that PnEMTL is expressively equivalent to PGQMSO, a generalisation of PQ2MSO with the following rule:

- if $\vartheta_{1}\left(x_{0}, x_{1}\right), \ldots, \vartheta_{k}\left(x_{0}, x_{k}\right)$ are $\mathrm{MSO}[<]$ formulae where for each $\vartheta_{\ell}\left(x_{0}, x_{\ell}\right) \quad(\ell \in$ $\{1, \ldots, k\}), x_{0}$ and x_{ℓ} are the only free first-order variables, then $\exists x_{1} \ldots \exists x_{k}\left(x_{0}<\right.$ $\left.x_{1}<\cdots<x_{k} \wedge d\left(x_{0}, x_{1}\right) \in I_{1} \wedge \cdots \wedge d\left(x_{0}, x_{k}\right) \in I_{k} \wedge \vartheta\left(x_{0}, x_{1}\right) \wedge \cdots \wedge \vartheta\left(x_{0}, x_{k}\right)\right)$ and the past counterpart, where I_{1}, \ldots, I_{k} are (possibly singular) intervals with endpoints in $\mathbb{N}_{>0} \cup\{\infty\}$, are also PGQMSO formulae (with free first-order variable x_{0}).
As we can easily express (2) in PGQMLO (the first-order fragment of PGQMSO) [23, Theorem $6.4]$, we have the following corollary.
- Corollary 16. PQ2MLO $\subsetneq P G Q M L O$.

Order of fractional parts. While we have not been able to prove or disprove whether PGQMLO $\equiv \mathrm{FO}[<,+1]$, we can show that a simple extension of PnEMTL, where one is allowed to specify orders of fractional parts of witnesses, can capture the full expressiveness of $\mathrm{FO}[<,+1]$. Let $\mathcal{F}_{I_{1}, \ldots, I_{k}}^{f r a c, N}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}\right)$ be the new modalities where

- $\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}$ are all counter free (aperiodic).
- Each of I_{1}, \ldots, I_{k} is a left-closed, right-open subinterval of $[-N, N)$ with integer endpoints and length 1 (e.g., $[3,4$) or $[-7,-6)$).
The intended semantics when evaluated at position i_{0} is as follows:
- There exists k "witness' points i_{1}, \ldots, i_{k} such that $i_{\ell} \in I_{\ell}$ for all $\ell \in\{1, \ldots, k\}$.
- The fractional parts of the witnesses are in this order, i.e. $\operatorname{frac}\left(\tau_{i_{1}}\right)<\cdots<\operatorname{frac}\left(\tau_{i_{k}}\right)$.
- For each $\ell \in\{1, \ldots, k\}, \mathcal{A}_{\ell}$ has an accepting run on the "stacked' word [17] formed by all events in $\tau_{i_{0}}+[-N, N)$ with the fractional parts in $\left[\tau_{i_{\ell-1}}, \tau_{i_{\ell}}\right)$. More precisely, the transitions of \mathcal{A} are partitioned into $2 N$ sets, where each set is only enabled for events in the corresponding unit subinterval of $\tau_{i_{0}}+[-N, N)$.
In the same way we define the past counterpart $\mathcal{P}^{\text {frac }}$ and its semantics, and denote by PGQMLO frac the extension of PGQMLO with these modalities.
- Theorem 17. $\mathrm{PGQMLO}{ }^{\text {frac }} \equiv \mathrm{FO}[<,+1]$.

Proof (sketch). Following [21], the main challenge is to express formulae of the form

$$
\begin{aligned}
\exists z_{0} \ldots \exists z_{n-1}\left(x=z_{0}<\cdots<z_{n-1}\right. & \wedge d\left(x, z_{n-1}\right)<1 \\
& \wedge \bigwedge\left\{\Phi_{i}\left(z_{i}\right): 0 \leq i<n\right\} \\
& \wedge \bigwedge\left\{\forall u\left(z_{i}<u<z_{i+1} \Longrightarrow \Psi_{i}(u)\right): 0 \leq i<n-1\right\} \\
& \left.\wedge \forall u\left(z_{n-1}<u \wedge d(x, u)<1 \Longrightarrow \Psi_{n-1}(u)\right)\right)
\end{aligned}
$$

where Φ_{i} and Ψ_{i} are Boolean combinations of atomic formulae. This is readily possible with $\mathcal{F}^{f r a c}$ and subformulae of the forms $\mathbf{F}_{=1} p$ and $\overleftarrow{\mathbf{F}}=1$.

5 Conclusion and future work

The general consensus in the real-time verification community is that the continuous interpretations of timed logics are more well behaved and admit more robust characterisations. The present paper showed that by allowing a mild generalisation of the counting modalities, we can recover the pleasant expressive completeness result for Q2MLO - one of the most expressive decidable fragments of $\mathrm{FO}[<,+1]$ - in the pointwise semantics as well. On the other hand, we also showed that as opposed to the situation in the continuous semantics, the full expressiveness of $\mathrm{FO}[<,+1]$ cannot be achieved by simply adding punctual predicates we remedy this by proposing a more involved variant of PnEMTL, which we showed to be expressively complete for $\mathrm{FO}[<,+1]$. We list some possible future directions below.

- The expressive completeness for $\mathrm{FO}[<,+1]$ is achieved with a family of modalities that enable one to specify the relative orders of the fractional parts of the points involved. This begs the question of whether this feature is really necessary; in other words, is PGQMLO strictly less expressive than $\mathrm{FO}[<,+1]$?
- Is it possible to add (or perhaps restricted versions of) the modalities $\mathcal{F}^{\text {frac }}$ and $\mathcal{P}^{\text {frac }}$ to GQMLO while retaining the decidability of the satisfiability problem?
- It is known that the pointwise and continuous interpretations of $\mathrm{FO}[<,+1]$ are actually equally expressive [9], if one considers a special "timed word' form of signals [5, 7, 28]. Does a similar result hold for Q2MLO as well?
- There are some existing SMT-based tools for checking the satisfiablity of CMITL in the continuous semantics (e.g., [4]), although they require a predetermined bound k on the variability of signals. In light of the recent developments in back-end algorithms [10,11], it would be interesting to see how a timed-automata-based implementation compares in terms of practical performance.

- References

1 Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of relaxing punctuality. Journal of the ACM, 43(1):116-146, 1996.
2 Rajeev Alur and Thomas A. Henzinger. Back to the future: Towards a theory of timed regular languages. In FOCS, pages 177-186. IEEE Computer Society Press, 1992.
3 Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and expressiveness. Information and Computation, 104(1):35-77, 1993. doi:10.1006/inco.1993.1025.
4 Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro. A tool for deciding the satisfiability of continuous-time metric temporal logic. Acta Informatica, 53(2):171-206, 2016. doi: 10.1007/s00236-015-0229-y.

5 Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the expressiveness of TPTL and MTL. Information and Computation, 208(2):97-116, 2010.
6 Patricia Bouyer, François Laroussinie, Nicolas Markey, Joël Ouaknine, and James Worrell. Timed temporal logics. In Models, Algorithms, Logics and Tools - Essays Dedicated to Kim Guldstrand Larsen on the Occasion of His 60th Birthday, volume 10460 of LNCS, pages 211-230. Springer, 2017.
7 Deepak D'Souza and Pavithra Prabhakar. On the expressiveness of mtl in the pointwise and continuous semantics. International Journal on Software Tools for Technology, 9(1):1-4, 2007.
8 Deepak D'Souza and Nicolas Tabareau. On timed automata with input-determined guards. In Yassine Lakhnech and Sergio Yovine, editors, FORMATS/FTRTFT, volume 3253 of LNCS, pages 68-83. Springer, 2004.
9 Deepak D'Souza and Raveendra Holla. Equivalance of pointwise and continuous semantics of fo with linear constraints. In ICLA, pages 40-45, 2021.
10 R Govind, Frédéric Herbreteau, and Igor Walukiewicz. Abstractions for the local-time semantics of timed automata: a foundation for partial-order methods. In LICS, pages 1-14. ACM/IEEE, 2022.

11 Frédéric Herbreteau, B Srivathsan, and Igor Walukiewicz. Checking timed büchi automata emptiness using the local-time semantics. In CONCUR, volume 243 of LIPIcs, pages 12:1-12:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
12 Yoram Hirshfeld and Alexander Rabinovich. A framework for decidable metrical logics. In ICALP, volume 1644 of $L N C S$, pages 422-432. Springer, 1999.
13 Yoram Hirshfeld and Alexander Rabinovich. Expressiveness of metric modalities for continuous time. Logical Methods in Computer Science, 3(1):1-11, 2007.
14 Yoram Hirshfeld and Alexander Rabinovich. Continuous time temporal logic with counting. Information and Computation, 214:1-9, 2012.
15 Yoram Hirshfeld and Alexander Moshe Rabinovich. Logics for real time: Decidability and complexity. Fundamenta Informaticae, 62(1):1-28, 2004.
16 Yoram Hirshfeld and Alexander Moshe Rabinovich. An expressive temporal logic for real time. In MFCS, volume 4162 of $L N C S$, pages 492-504. Springer, 2006.
17 Hsi-Ming Ho. On the expressiveness of metric temporal logic over bounded timed words. In $R P$, volume 8762 of $L N C S$, pages 138-150. Springer, 2014.

18 Hsi-Ming Ho. Revisiting timed logics with automata modalities. In $H S C C$, pages $67-76$. ACM, 2019.

19 Hsi-Ming Ho and Khushraj Madnani. When do you start counting? revisiting counting and pnueli modalities in timed logics. In DCM. EPTCS, 2023. To appear.
20 Paul Hunter. When is metric temporal logic expressively complete? In $C S L$, volume 23 of LIPIcs, pages 380-394. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.
21 Paul Hunter, Joël Ouaknine, and James Worrell. Expressive completeness for metric temporal logic. In LICS, pages 349-357. IEEE Computer Society Press, 2013.
22 Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems, 2(4):255-299, 1990.
23 Shankara Narayanan Krishna, Khushraj Madnani, Manuel Mazo Jr., and Paritosh Pandya. From non-punctuality to non-adjacency: A quest for decidability of timed temporal logics with quantifiers. Formal Aspects of Computing, 2022.
24 Shankara Narayanan Krishna, Khushraj Madnani, and Paritosh K. Pandya. Metric temporal logic with counting. In $F o S S a C S$, volume 9634 of $L N C S$, pages 335-352. Springer, 2016.
25 Shankara Narayanan Krishna, Khushraj Madnani, and Paritosh K. Pandya. Making metric temporal logic rational. In MFCS, volume 83 of LIPIcs, pages 77:1-77:14. Schloss Dagstuhl -Leibniz-Zentrum fuer Informatik, 2017.
26 Shankara Narayanan Krishna, Khushraj Madnani, and Paritosh K. Pandya. Logics meet 1-clock alternating timed automata. In CONCUR, volume 118 of LIPIcs, pages 39:1-39:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
27 Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. International Journal on Software Tools for Technology Transfer, 1(1-2):134-152, 1997.
28 Joël Ouaknine, Alexander Rabinovich, and James Worrell. Time-bounded verification. In CONCUR, volume 5710 of $L N C S$, pages 496-510. Springer, 2009.
29 Joël Ouaknine and James Worrell. On metric temporal logic and faulty turing machines. In FoSSaCS, volume 3921 of $L N C S$, pages 217-230. Springer, 2006.
30 Paritosh K. Pandya and Simoni S. Shah. On expressive powers of timed logics: Comparing boundedness, non-punctuality, and deterministic freezing. In $C O N C U R$, volume 6901 of $L N C S$, pages 60-75. Springer, 2011.
31 Amir Pnueli. The temporal logic of programs. In FOCS, pages 46-57. IEEE, 1977.
32 Saharon Shelah. The monadic theory of order. The Annals of Mathematics, 102(3):379, November 1975.
33 Thomas Wilke. Specifying timed state sequences in powerful decidable logics and timed automata. In FTRTFT, volume 863 of $L N C S$, pages 694-715. Springer, 1994.
34 Pierre Wolper and Moshe Y. Vardi. Reasoning about infinite computations. Information and Computation, 115(1):1-37, 1994.
35 Yuchen Zhou, Dipankar Maity, and John S. Baras. Timed automata approach for motion planning using metric interval temporal logic. In ECC, pages 690-695. IEEE, 2016.

[^0]: ${ }^{1}$ We restrict ourselves to strictly monotonic timed words to simplify the definitions of metric predicate logics; all the results carry over to the case of non-strictly monotonic timed words as well.
 ${ }^{2}$ Following [33], we use $d\left(x, x^{\prime}\right)$ in place of a " +1 " function symbol.
 ${ }^{3}$ Note that non-metric FO[<] formulae are still allowed in these fragments.

[^1]: ${ }_{5}^{4}$ For clarity, we use $\varphi_{1}, \ldots, \varphi_{n}$ directly as transition labels (instead of $1, \ldots, n$) in the figures.
 5 We adopt the strict semantics for \mathbf{U} and \mathbf{S}, which subsumes the usual "next" and "previous" operators.

[^2]: ${ }^{6}$ Note that \mathbf{C}_{I}^{k} and $\overleftarrow{\mathbf{C}}_{I}^{k}$ are subsumed by EMTL even when $\inf I \neq 0[19]$

[^3]: ${ }^{7}$ Formulae of metric temporal logics are $\mathrm{MSO}[<,+1]$ formulae with a single free first-order variable.

