
Monus Semantics in Vector Addition Systems with
States
Pascal Baumann #

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Khushraj Madnani #

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Filip Mazowiecki #

University of Warsaw, Poland

Georg Zetzsche #

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Abstract
Vector addition systems with states (VASS) are a popular model for concurrent systems. However,
many decision problems have prohibitively high complexity. Therefore, it is sometimes useful to
consider overapproximating semantics in which these problems can be decided more efficiently.

We study an overapproximation, called monus semantics, that slightly relaxes the semantics of
decrements: A key property of a vector addition systems is that in order to decrement a counter,
this counter must have a positive value. In contrast, our semantics allows decrements of zero-valued
counters: If such a transition is executed, the counter just remains zero.

It turns out that if only a subset of transitions is used with monus semantics (and the others with
classical semantics), then reachability is undecidable. However, we show that if monus semantics is
used throughout, reachability remains decidable. In particular, we show that reachability for VASS
with monus semantics is as hard as that of classical VASS (i.e. Ackermann-hard), while the zero-
reachability and coverability are easier (i.e. EXPSPACE-complete and NP-complete, respectively). We
provide a comprehensive account of the complexity of the general reachability problem, reachability
of zero configurations, and coverability under monus semantics. We study these problems in general
VASS, two-dimensional VASS, and one-dimensional VASS, with unary and binary counter updates.

2012 ACM Subject Classification Theory of computation → Concurrency

Keywords and phrases Vector addition systems, Overapproximation, Reachability, Coverability

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2023.10

Related Version Full Version: https://arxiv.org/abs/2308.14926

Funding Filip Mazowiecki: Supported by the ERC grant INFSYS, agreement no. 950398.

Acknowledgements The authors are grateful to Wojciech Czerwiński and Sylvain Schmitz for
discussions, and to Sylvain Schmitz for suggesting the term ’monus’.

1 Introduction

Vector addition systems with states (VASS) are an established model used in formal verifica-
tion with a wide range of applications, e.g. in concurrent systems [22], business processes [39]
and others (see the survey [37]). They are finite automata with transitions labeled by vectors
over integers in some fixed dimension d. A configuration of a VASS consists of a pair (p,v),
denoted p(v), where p is a state and v is a vector in Nd. As a result of applying a transition
labeled by some z ∈ Zd, the vector in the resulting configuration is v + z. Thus in particular
v + z ≥ 0 must hold for the transition to be applicable. The latter requirement is often called
the VASS semantics. To avoid ambiguity we will refer to it as the classical VASS semantics.

© Pascal Baumann, Khushraj Madnani, Filip Mazowiecki, and Georg Zetzsche;
licensed under Creative Commons License CC-BY 4.0

34th International Conference on Concurrency Theory (CONCUR 2023).
Editors: Guillermo A. Pérez and Jean-François Raskin; Article No. 10; pp. 10:1–10:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pbaumann@mpi-sws.org
https://orcid.org/0000-0002-9371-0807
mailto:kmadnani@mpi-sws.org
https://orcid.org/0000-0003-0629-3847
mailto:f.mazowiecki@mimuw.edu.pl
https://orcid.org/0000-0002-4535-6508
mailto:georg@mpi-sws.org
https://orcid.org/0000-0002-6421-4388
https://doi.org/10.4230/LIPIcs.CONCUR.2023.10
https://arxiv.org/abs/2308.14926
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Monus Semantics in Vector Addition Systems with States

p

classical p(2, 0) → p(1, 2) → p(0, 4) ̸→
integer p(2, 0) →

Z
p(1, 2) →

Z
p(0, 4) →

Z
p(−1, 6) ∗→

Z
p(−n, 4 + 2n)

monus p(2, 0) ⇒ p(1, 2) ⇒ p(0, 4) ⇒ p(0, 6) ∗=⇒ p(0, 4 + 2n)

(−1, 2)

Figure 1 A VASS in dimension 2 with one state p and one transition t. It has only one transition
labeled with (−1, 2). We consider possible runs assuming that the initial configuration is p(2, 0).
We use different notation for steps in each semantics: →, →

Z
, ⇒. For the classical semantics (→)

after reaching the configuration p(0, 4) the transition can no longer be applied. For the integer
semantics (∗→

Z
) the transition can be applied even in p(0, 4), reaching all configurations of the form

p(−n, 4 + 2n). Similarly for the monus semantics (∗=⇒), but there the configurations reachable from
p(0, 4) are of the form p(0, 4 + 2n).

The VASS model is also studied with other semantics. One of the most natural variants of
VASS semantics is the integer semantics (or simply Z-semantics), where configurations are of
the form p(v), where v ∈ Zd [25]. There, a transition can always be applied, i.e. the resulting
configuration is v + z and we do not require v + z ≥ 0. In this paper we consider VASS with
the monus semantics, whose behavior partly resembles both classical and integer semantics.
There, a transition can always be applied (as in Z-semantics), however, if as a result the
vector in the new configuration would have negative entries, then these are replaced with 0.
Thus, vectors in configurations are over the naturals (as in classical semantics). The name
monus semantics comes from the monus binary operator, which is a variant of the minus
operator.1 Note that every instance of a VASS can be considered with all three semantics.
See Figure 1 for an example.

We study classical decision problems for VASS: reachability and coverability. The input
for these problems is a VASS V , an initial configuration p(v), and a final configuration q(w).
The reachability problem asks whether there is a run from p(v) to q(w). A variant of this
problem, called zero reachability, requires additionally that in the input the final vector is
fixed to w = 0. The coverability problem asks whether there is a run from p(v) to q(w′),
where w′ ≥ w. Note that all three problems can be considered with respect to any of the
three VASS semantics. As an example consider the VASS in Figure 1. Then for all three
semantics p(1, 2) is both reachable and coverable from p(2, 0); and p(0, 2) is not reachable
from p(2, 0) (but it is coverable as (1, 2) ≥ (0, 2)).

Contribution I: Arbitrary dimension. Our first contribution is settling the complexities of
reachability and coverability for VASS with the monus semantics (see Table 1). We prove that
reachability is Ackermann-complete by showing that it is inter-reducible with classical VASS
reachability, which is known to be Ackermann-complete [30, 9, 29]. This comes as a surprise,
since in monus semantics, every transition can always be applied, just like in Z-semantics,
where reachability is merely NP-complete [25]. Thus, the monus operation encodes enough
information in the resulting configuration that reachability remains extremely hard.

The Ackermann-hardness relies crucially on the fact that the final configuration is non-zero:
We also show that the zero reachability problem is EXPSPACE-complete in monus semantics.
This uses inter-reducibility with classical VASS coverability, which is EXPSPACE-complete

1 One can also think that monus semantics is integer semantics, where after every step we apply the
ReLU function.

P. Baumann, K. Madnani, F. Mazowiecki, and G. Zetzsche 10:3

due to seminal results of Lipton and Rackoff [33, 35]. The fact that zero-reachability is
significantly easier than general reachability is in contrast to classical semantics, where zero
reachability is interreducible with the reachability problem (intuitively, one can modify the
input VASS by adding an extra edge that decrements by w).

In another unexpected result, the complexity of coverability drops even more: We prove
that it is NP-complete in monus semantics. We complete these results by showing that
mixing classical and monus semantics (i.e. each transition is designated to either work in
classical or monus semantics) makes reachability undecidable.

Contribution II: Fixed dimension. Understanding the complexity of reachability problems
in VASS of fixed dimension has received a lot of attention in recent years and is now well
understood. This motivates our second contribution: An almost complete complexity analysis
of reachability, zero reachability and coverability for VASS with the monus semantics in
dimensions 1 and 2. Here, the complexity depends on whether the counter updates are
encoded in unary or binary (see Table 1).

We restrict our attention to dimensions 1 and 2 as most research in fixed dimension for
the classical semantics. For the classical semantics not much is known about reachability in
dimension d ≥ 3. Essentially, the only known results consist of an upper bound of F7 that
follows from the Ackermann upper bound in the general case [30], and a PSPACE-lower bound
that holds already for d = 2 [5]. An intuition as to why the jump from 2 to 3 is so difficult is
provided already by Hopcroft and Pansiot [27] who prove that the reachability set is always
semilinear in dimension 2, and show an example that this is not the case in dimension 3.
In contrast, coverability is well understood, and already Rackoff’s construction [35] shows
that for fixed dimension d ≥ 2 coverability is in NL and in PSPACE, for unary and binary
encoding, respectively (with matching lower bounds [5]).

Key technical ideas. The core insights of our paper are characterizations of the reachability
and coverability relations in monus semantics, in terms of reachability and coverability in
classical and Z-semantics (Propositions 3.6 and 3.12 and Lemma 3.10). These allow us to
apply a range of techniques to reduce reachability problems for one semantics into problems
for other semantics, and thereby transfer existing complexity results. There are three cases
where we were unable to ascertain the exact complexity: (i) reachability in 2-VASS with unary
counter updates, (ii) zero reachability in 1-VASS with binary updates, and (iii) coverability in
1-VASS with binary counter updates. Concerning (i), this is because for 2-VASS with unary
updates, it is known that classical reachability is NL-complete [5], but we would need to
decide existence of a run that visits intermediate configurations of a certain shape. In the case
of 2-VASS with binary updates, the methods from [5] (with a slight extension from [3]) allow
this. The other cases, (ii) and (iii), are quite similar to each other. In particular, problem
(ii) is logspace-interreducible with classical coverability in 1-VASS with binary updates, for
which only an NL lower bound and an NC2 upper bound are known [2].

Monus semantics as an overapproximation. Recall the example in Figure 1. Notice that
every configuration reachable in the classical semantics is also reachable in the integer and
monus semantics. It is not hard to see that this is true for every VASS model. Such semantics
are called overapproximations of the classical VASS semantics. Overapproximations are a
standard technique used in implementations of complex problems, in particular for the VASS
model (see the survey [4]). They allow to prune the search space of reachable configurations,
based on the observation that if a configuration is not reachable by an overapproximation
then it cannot be reachable in the classical semantics. This is the core idea behind efficient
implementations both of the coverability problem [15, 6] and the reachability problem [12, 7].

CONCUR 2023

10:4 Monus Semantics in Vector Addition Systems with States

The two most popular overapproximations, integer semantics [25] and continuous
semantics [20], behave similarly for both reachability and coverability problems, namely both
problems are NP-complete. Note that all of the implementations mentioned above rely on
such algorithms in NP as they can be efficiently implemented via SMT solvers. Interestingly,
the monus semantics is an efficient overapproximation only for the coverability problem.
(As far as we know this is the first study of a VASS overapproximation with this property.)
Therefore, it seems to be a promising approach to try to speed up backward search algorithms
using monus semantics (in the same vein as [6]). Whether this leads to improvements in
practice remains to be seen in future work.

Related work. We discuss related work for VASS in classical semantics. A lot of research
is dedicated to reachability for the flat VASS model, i.e. a model that does not allow for
nested cycles in runs. In dimension 2 decision problems for VASS reduce to flat VASS,
which is crucial to obtain the exact complexities [5]. It is known that in dimensions d ≥ 3
such a reduction is not possible, but this raised natural questions of the complexity for
flat VASS in higher dimensions [8, 10]. Another research direction is treating the counters
in VASS models asymmetrically. For example, it is known that allowing for zero tests in
VASS makes reachability and coverability undecidable (they essentially become Minsky
machines). However, it was shown that if only one of the 2 counters is allowed to be zero
tested then both reachability and coverability remain PSPACE-complete [31]. A different
asymmetric question is when one counter is encoded in binary and the other is encoded
in unary. Then recently it was shown that coverability is in NP [34] but it is unknown
whether there is a matching lower bound. Finally, there are two important extensions of
the VASS model: branching VASS (where runs are trees, not paths), and pushdown VASS
(with one pushdown stack). For branching VASS, coverability is 2EXPTIME-complete [11].
The complexity of reachability is well understood in dimension 1 [23, 18] but in dimension 2
or higher it is unknown whether it is decidable. For pushdown VASS only coverability in
dimension 1 is known to be decidable [32], otherwise decidability of both reachability and
coverability remain open problems. Recently some progress was made on restricted pushdown
VASS models [14, 21]. The monus semantics is a natural overapproximation that can be
studied in all of these variants. Finally, let us mention that VASS with monus semantics
fit into the very general framework of G-nets [13], but does not seem to fall into any of
the decidable subclasses studied in [13]. However, if we equip VASS with with the usual
well-quasi ordering on configurations, it is easy to see that even with monus semantics, they
constitute well-structured transition systems (WSTS) [19, 1], which makes available various
algorithmic techniques developed for WSTS.

Organization. In Section 2 we formally define the VASS model and the classical, integer
and monus semantics. In Section 3 we prove the results in arbitrary dimension. Then in
Section 4 and Section 5 we prove the results in dimension 2 and 1, respectively.

2 Vector addition systems with monus semantics: Main results

Given a vector v ∈ Zd we write v[i] for the value in the i-th coordinate, where i ∈ {1, . . . , d}.
We also refer to i as the i-th counter and write that it contains v[i] tokens. Given two vectors
v and v′ we write v ≥ v′ if v[i] ≥ v′[i] for all i = 1, . . . , d. By 0d we denote the zero vector
in dimension d. We also simply write 0 if d is clear from context.

P. Baumann, K. Madnani, F. Mazowiecki, and G. Zetzsche 10:5

Vector addition systems with states. A vector addition system with states (VASS) is a
triple V = (d,Q,∆), where d ∈ N, Q is a finite set of states and ∆ ⊆ Q× Zd ×Q is a finite
set of transitions. Throughout the paper we fix a VASS V = (d,Q,∆).

We start with the formal definitions in the classical semantics. A configuration of a
VASS is a pair p(v) ∈ Q × Nd, denoted p(v). Any transition t ∈ ∆ induces a successor
(partial) function Succt : Q × Nd → Q × Nd such that Succt(q(v)) = q′(v′) iff t = (q, z, q′)
and v′ = v + z. This successor function can be lifted up to ∆ to get a step relation →V ,
such that any pair of configuration C →V C ′ iff there exists t ∈ ∆ with Succt(C) = C ′. A
run is a sequence of configurations

q0(v0), q1(v1), q2(v2), . . . , qk(vk)

such that for every 0 < j ≤ k, qj−1(vj−1) →V qj(vj). If there exists such a run we say
that qk(vk) is reachable from q0(v0) and denote it C0

∗−→V Ck. We call ∗−→V the reachability
relation in the classical VASS semantics.

In this paper we consider two additional semantics. The first is called the integer semantics
(or Z-semantics). A configuration in this semantics is a pair p(v) ∈ Q× Zd (hence, values of
vector coordinates can drop below zero). The definitions of successor function, step relation
and run are analogous as for the classical semantics. By →

Z
V and ∗→

Z
V , we denote the step

and reachability relations in the Z-semantics, respectively.
The second is called monus semantics. The configurations are the same as in the classical

semantics. The difference is in the successor function. Every transition t ∈ ∆ induces a
successor function Succt : Q× Nd → Q× Nd as follows: Succt(q(v)) = q′(v′) iff t = (q, z, q′)
and for all j ∈ {1, 2, . . . d}, v′[j] = max(v[j] + z[j], 0). We write in short v′ = max(v + z,0).
Step relation and runs are defined analogously as in the case of classical semantics. By ⇒V
and ∗=⇒V , we denote the step and reachability relations in the monus semantics, respectively.

We drop the subscript V from the above relations when the VASS is clear from context.
We write that a run is a classical run, a Z run or a monus run to emphasize the considered
semantics. An example highlighting the differences between the three semantics is in Figure 1.

Decision problems. We study the following decision problems for VASS.

The classical reachability problem:
Given A VASS V = (d,Q,∆) and two configurations p(v) and q(w).
Question Does p(v) ∗=⇒ q(w) hold?

The classical zero reachability problem:
Given A VASS V = (d,Q,∆), a configuration p(v) and a state q.
Question Does (p,v) ∗=⇒ q(0d) hold?

The classical coverability problem:
Given A VASS V = (d,Q,∆) and two configurations p(v) and q(w).
Question Does p(v) ∗=⇒ q(w′) hold for some w′ ≥ w?

Similarly, the above problems in Z and classical semantics are defined by replacing ∗=⇒

with ∗→
Z

and ∗−→, respectively.

CONCUR 2023

10:6 Monus Semantics in Vector Addition Systems with States

conditional jump: p

q

r

(−1, 0, 0, 0)

(−1, 0, −1, 0)

increment: p q
(1, 0, 1, 0)

Figure 2 Two gadgets for realizing a zero-testable counter.

Main results. The main complexity results of this work are summarized in Table 1. In
Table 2, we recall complexity results for VASS with classical semantics for comparison. We
do not split the cases of unary and binary encoding for arbitrary dimensions, since there all
lower bounds work for unary, whereas all upper bounds work for binary.

Concerning the reachability problem, we note that in all cases where we obtain the exact
complexity, it is the same as for the classical VASS semantics. For the other decision problems,
there are stark differences: First, while in the classical semantics, zero reachability is easily
inter-reducible with general reachability, in the monus semantics, its complexity drops in
two cases: In 1-VASS with binary counter updates, monus zero reachability is in NC2 (thus
polynomial time), compared to NP in the classical setting. Moreover, in arbitrary dimension,
monus zero reachability is EXPSPACE-complete, compared to Ackermann in the classical
semantics. For the coverability problem, the monus semantics also lowers the complexity in
two cases: For binary encoded 2-VASS (NP in monus semantics, PSPACE in classical) and in
the general case (NP in monus semantics, EXPSPACE in classical semantics).

Undecidability. To stress the subtle effects of monus semantics, we mention that it leads to
undecidability if combined with classical semantics: If one can specify the applied semantics
(classical vs. monus) for each transition, then (zero) reachability becomes undecidable.

We sketch the proof using Figure 2. It shows two gadgets, where “→” transitions use
classical semantics and “⇒” transitions use monus semantics. The two gadgets realize a
counter with zero test: The left gadget is a conditional jump (“if zero, then go to q, otherwise
decrement and go to r”), whereas the right gadget is just an increment. In intended runs
(i.e. where the left gadget always takes the intended transition), the counter value is stored
both in components 1 and 3. (To realize a full two-counter machine, the same gadgets on
components 2 and 4 realize the other testable counter.) Thus, initially, all components are
zero. Note that if the left gadget always takes the transitions as intended, then the first and
third counter will remain equal. If the gadget takes the upper transition when the counter is
not actually zero, then the first counter becomes smaller than the third, and will then always
stay smaller. Hence, to reach (0, 0, 0, 0), the left gadget must always behave as intended.

However, coverability remains decidable if we can specify the semantics of each transition.
Indeed, suppose we order the configurations of a VASS by the usual well-quasi ordering (i.e.
the control states have to agree, and the counter values are ordered component-wise). Then
it is easy to see that this results in a well-structured transition system (WSTS) [19, 1]. This
also implies, e.g. that termination is decidable in this general setting.

3 Arbitrary dimension

In this section, we prove the complexity results concerning VASS with arbitrary dimension.
This will include the characterizations of monus reachability, monus zero reachability, and
monus coverability in terms of classical and Z-semantics. We begin with some terminology.

P. Baumann, K. Madnani, F. Mazowiecki, and G. Zetzsche 10:7

Table 1 Complexity results shown in this work.

Dimension
& encoding Monus Reachability Monus zero reachability Monus coverability

1-dim, unary NL-complete NL-complete NL-complete
1-dim, binary NP-complete in NC2 in NC2

2-dim, unary in PSPACE NL-complete NL-complete
2-dim, binary PSPACE-complete PSPACE-complete NP-complete
arbitrary Ack-complete EXPSPACE-complete NP-complete

Table 2 Known complexities for classical VASS semantics, for comparison.

Dimension
& encoding Reachability Zero reachability Coverability

1-dim, unary NL-complete [38] NL-complete [38] NL-complete [38]
1-dim, binary NP-complete [26] NP-complete [26] in NC2 [2]
2-dim, unary NL-complete [5] NL-complete [5] NL-complete [36]
2-dim, binary PSPACE-complete [5] PSPACE-complete [5] PSPACE-complete [5, 36, 16]
arbitrary Ack-compl. [30, 29, 9] Ack-compl. [30, 29, 9] EXPSPACE-compl. [33, 35]

Paths. A sequence of transitions (p1, z1, q1), . . . , (pk, zk, qk) is valid iff qi = pi+1 for every
1 ≤ i < k− 1. Furthermore, we say that it is valid from a given configuration (p,v) if p = p0.
We call a valid sequence of transitions a path.

Given two paths ρ1 and ρ2 if the last state of ρ1 is equal to the first state of ρ2 then
by ρ = ρ1ρ2 we denote the path defined as the sequence ρ1 followed by the sequence ρ2.
Similarly, we use this notation with more paths, e.g. ρ = ρ1ρ2 . . . ρk means that the path ρ is
composed from k paths: ρ1, . . . ρk.

Fix a path ρ = (p0, z0, p1), . . . , (pk−1, zk−1, pk). We say that z =
∑k−1

i=0 zi is the effect
of the path ρ. Notice that while for classical and Z-semantics the effect of a path can be
computed by subtracting the vectors in the last and first configurations, this is not necessarily
true for monus semantics. In Figure 1 consider the path ρ = t, t, t. The effect is (−3, 6). In
the Z-semantics (2, 0) ∗→

Z
(−1, 6) and the difference (−1, 6) − (2, 0) is precisely the effect of ρ.

In the monus semantics it is not the case as (2, 0) ∗=⇒ (0, 6). This is because a run in monus
semantics can lose some decrements, unlike in classical and Z-semantics.
▶ Remark 3.1. Observe that every classical and Z run defines a unique path from the initial
configuration. For monus semantics uniqueness is not guaranteed as it is possible that a run
induces more than one path. Indeed, suppose p(2, 0) ⇒ q(1, 0). This could be realised by any
transition of the form (p, (−1, z), q), where z ≤ 0. Conversely, a path induces a unique run
for Z and monus semantics. Formally, consider a path (p0, z1, p1), . . . , (pk−1, zk, pk) from a
configuration s(v). Then, in the Z and monus semantics there exists a unique corresponding
run. In the classical semantics a path might be blocked if a counter drops below zero
(see e.g. Figure 1). We write p0(v0) ρ−→ pk(vk), p0(v0) ρ→

Z
pk(vk) and p0(v0) ρ=⇒ pk(vk) if

p0(v0), . . . , pk(vk) is a run in classical, integer and monus semantics, respectively. Recall that
for classical and Z-semantics vi+1 − vi = zi, and for monus semantics vi+1 = max(vi + zi,0).

Consider a run R = p0(v0), . . . , pk(vk) (in any semantics). We say that the counter
j ∈ {1, · · · , d} hits 0 iff vi[j] = 0 for some 1 ≤ i ≤ k. Similarly, we say that the counter
j ∈ {1, · · · , d} goes negative in R iff vi[j] < 0 for some 0 ≤ i ≤ k (this can happen only in
the Z-semantics).

CONCUR 2023

10:8 Monus Semantics in Vector Addition Systems with States

Let ρ = (p0, z0, p1) . . . (pk−1, zk−1, pk) be a path such that R is the unique run corres-
ponding to ρ from the initial configuration p0(v0). We say that (ρ,R) or p0(v0) ρ=⇒ pk(vk) is
lossy for the counter j ∈ {1, · · · , d} iff vi[j] − vi−1[j] ̸= zi−1[j] for some 1 ≤ i ≤ k (a lossy
run can happen only in the monus semantics).
▶ Remark 3.2. Integer and monus semantics are overapproximations of the classical semantics.
That is, s(v) ρ−→ t(w) implies s(v) ρ→

Z
t(w) and s(v) ρ=⇒ t(w). The converse is not always the

case (see Figure 1). Moreover, s(v) ρ=⇒ t(w) implies s(v) ρ−→ t(w) if s(v) ρ=⇒ t(w) is not lossy.

Notice that if in s(v) ρ=⇒ t(w), none of the counters j ∈ {1, . . . , d} hits 0 then it is not a lossy

run. Similarly, s(v) ρ→
Z
t(w) implies s(v) ρ−→ t(w) if, in the former run, none of the counters

j ∈ {1, . . . , d} goes negative.

Characterizing Monus Reachability. Our first goal is to characterize the reachability
problem for the monus semantics in terms of the classical semantics. We start with some
propositions that relate monus runs to Z runs and classical runs. Let ρ be a path and s0(v0)
a configuration. Let s0(v0) . . . sk(vk) be the unique Z run defined by ρ and s0(v0). We
define the vector m = minZ(ρ, s0,v0) by m[i] = min(mink

j=0 vj [i], 0). Intuitively, it is the
vector of minimal values in the Z run, but note that m ≤ 0.

For the next two propositions we fix a configuration s0(v0) ∈ Q × Nd, a path ρ =
(s0, z0, s1) . . . (sk−1, zk−1, sk), and m = minZ(ρ, s0,v0).

▶ Proposition 3.3. Consider the unique runs induced by ρ from s0(v0) in Z-semantics

s0(v0), . . . , sk−1(vk−1), sk(vk),

and in monus semantics

s0(v′
0), . . . , sk−1(v′

k−1), sk(v′
k).

where v′
0 = v0. Then v′

k = vk − m.

Proof (sketch). We analyse the behavior of every counter j. Recall that the Z run and
the monus run have the same value in the counter j until the first time the value of j
becomes negative in the Z run. We denote this as vi[j] = −u. Note that v′

i[j] = 0. Hence,
vi[j] − v′

i[j] = −u. It is not hard to see that every time the value of the counter j reaches a
new minimum in the Z-semantics, the difference v′

i[j] − vi[j] will be equal to it. We prove
this formally by induction on k. Refer to full version for the formal proof. ◀

▶ Remark 3.4. Let z ∈ Zd. A sequence of configurations s0(v0) . . . sk(vk) is a run in Z-
semantics corresponding to a path ρ iff s0(v0 − z) . . . sk(vk − z) is a run in Z-semantics on
the same path ρ.

▶ Proposition 3.5. Consider the following unique run corresponding to the path ρ from
s0(v0) in the monus semantics

s0(v0), . . . , sk−1(vk−1), sk(vk).

Then the following run, induced by ρ, exists in the classical semantics

s0(v′
0), . . . , sk−1(v′

k−1), sk(v′
k).

where v′
0 = v0 − m and v′

k = vk.

P. Baumann, K. Madnani, F. Mazowiecki, and G. Zetzsche 10:9

Proof. This essentially follows from the definition of m and Remark 3.4. One just needs to
observe that the Z run with configurations shifted by the vector −m does not go below zero,
hence it is a classical run. See full version for the formal proof. ◀

We now characterize monus reachability in terms of classical reachability.

▶ Proposition 3.6. Let V = (d,Q,∆) be a VASS, let s(v) and t(w) be configurations of V,
and let ρ be a path of V. Then, s(v) ρ=⇒ t(w) if and only if there is a subset Z ⊆ {1, . . . , d}
and a vector v′ ≥ v such that
1. s(v′) ρ−→ t(w),
2. For every z ∈ Z, the coordinate z hits 0 in s(v′) ρ−→ t(w),
3. For every j ∈ {1, . . . , d} \ Z, we have v′[j] = v[j].

Proof. (=⇒) Let m = minZ(ρ, s,v). This direction is implied by Proposition 3.5 along
with the following argument. Every counter j ∈ {1, . . . , d} hits 0 in s(v) ρ=⇒ t(w) if and only

if it hits 0 in s(v − m) ρ−→ t(w). Moreover, if j does not hit 0 in s(v) ρ=⇒ t(w) then m[j] = 0.

(⇐=) Let v′ ≥ v be a vector as in the statement and let s(v′) ρ−→ t(w). We define
Z ⊆ {1 . . . d} such that i ∈ Z if it hits 0. Moreover, let s(v) ρ=⇒ t(w′′). It suffices to show that
w = w′′. We write s(v′) = p0(v′

0) . . . pk(v′
k) = t(w) and s(v) = p0(v0) . . . pk(vk) = t(w′′) for

the corresponding runs in the classical and monus semantics, respectively. Note that v′ ≥ v
implies v′

i ≥ vi for all 0 ≤ i ≤ k. By definition of v′ it suffices to consider counters j that hit
zero, i.e. v′

i[j] = 0 for some 0 ≤ i ≤ k. Since v′
i ≥ vi we get v′

i[j] = 0 = vi[j]. Hence, from i

onward both runs agree on the value in counter j. Thus w = w′′. ◀

The reachability problem. We begin with the Ackermann-completeness proof.

▶ Theorem 3.7. Reachability in monus semantics is Ackermann-complete.

For the upper bound we show how to reduce reachability in monus semantics to reachability
in classical semantics. Let V = (d,Q,∆), s(v), and t(w) be the input of the reachability
problem in monus semantics. We rely on Proposition 3.6. Intuitively, we have to guess a
subset Z ⊆ {1, . . . , d} and a permutation σ : [1, k] → Z (where k = |Z|). Then we check
whether there exists a run as described in Proposition 3.6 with zi = σ(i) for i ∈ [1, k]. To
detect the latter run, we construct the VASS Vσ = (d+ k,Q′, T ′) as follows. It simulates V,
but it has k extra counters to freeze the values of the counter in Z at the points where the
coordinates σ(k), . . . , σ(1) hit 0 as mentioned in Proposition 3.6.

To remember which counters have already been frozen the set of control states is Q′ =
{qi | q ∈ Q, i ∈ [0, k]}. Intuitively, the index i ∈ [0, k] stores the information how many
counters are frozen. The index i can only increment. Note that guessing the permutation σ

allows us to assume that we know the order in which the counters are frozen.
Since we deal with vectors in dimension d and d+ k we introduce some helpful notation.

We write ej ∈ Zd for the unity vector with ej [j] = 1 and with 0 on other coordinates.
Given a vector z ∈ Zd we define copy(z) ∈ Zd+k as copy(z)[j] = z[j] for 1 ≤ j ≤ d and
copy(z)[j] = z[σ(j − d)] for d < j ≤ d+ k. Intuitively, it simply copies the behaviors of the
corresponding counters. We generalise this notation to allow to also remove the effect on
some coordinates (i.e. “freeze” them). Given z ∈ Zd and 0 ≤ i ≤ k we define copyi(z) ∈ Zd+k

as copyi(z)[j] = copy(z)[j] for 1 ≤ j ≤ d+ k− i and copyi(z)[j] = 0 for d+ k− i < j ≤ d+ k.
In particular copy0(z) = copy(z) and copyi(z) is 0 in the last i counters.

CONCUR 2023

10:10 Monus Semantics in Vector Addition Systems with States

It remains to define the set of transitions T ′. In the beginning there are transitions
in T ′ that can arbitrarily increment each counter that belongs to Z and its extra copy:
(s0, copy(ej), s0) ∈ T ′ for every j ∈ Z. Moreover, the counter in the control state can
spontaneously be incremented: (pi,0, pi+1) for every p ∈ Q and 0 ≤ i < k. For every
transition (p, z, q) ∈ T and 0 ≤ i ≤ k we define (pi, copyi(z), qi) ∈ T ′.

The following claim is straightforward by Proposition 3.6:

▷ Claim 3.8. We have s(v) ∗=⇒V t(w) if and only if there exists a subset Z ⊆ {1, . . . , d} and

bijection σ : [1, k] → Z such that s0(copy0(v)) ∗−→Vσ tk(copyk(w)).

This implies that we can decide monus reachability by guessing a subset Z ⊆ [1, d], guessing
a bijection σ : [1, k] → Z, and deciding reachability in Vσ. This yields the upper bound.

For the lower bound we reduce classical reachability to monus reachability. Let V =
(d,Q,∆), s(0) and t(0) be the input of the reachability problem in classical semantics (without
loss of generality the input vectors can be 0). We construct the VASS V ′ = (d+ 2, Q′, T ′) as
follows. The states are Q′ = Q ∪ {t′}, where t′ is a fresh copy of t.

Again to deal with vectors in different dimension we introduce the following notation.
Given z ∈ Zd we write ∆(z) ∈ Z for ∆(z) =

∑d
j=1 z[j], i.e. the sum of all components.

Based on this we define extend(z) ∈ Zd+2 as: extend(z) = (z,∆(z), 0) if ∆(z) ≥ 0, and
extend(z) = (z, 0,−∆(z)) otherwise.

We define T ′ as follows. For every (p, z, q) ∈ T : (p, extend(z), q) ∈ T ′. Thus, in the
(d+ 1)-th counter, we collect the sum of all non-negative entry sums of the added vectors.
Analogously, in the (d + 2)-th counter, we collect the sum of all negative entry sums
(with a flipped sign). We also add the transition (t,0, t′) ∈ T ′, and a “count down” loop:
(t′(0,−1,−1), t′), where (0,−1,−1) is 0 in the first d components and −1 otherwise. The
following claim completes the proof of Ackermann-hardness.

▷ Claim 3.9. We have s(0, 1, 1) ∗=⇒ t′(0, 1, 1) in V ′ if and only if s(0) ∗−→ t(0) in V.

Proof. (⇐=) This is obvious, because every run in classical semantics yields a run in monus
semantics between the same configurations.

(=⇒) Suppose there is a monus run from s(0, 1, 1) to t′(0, 1, 1). Then for some m ∈ N,
there is a transition sequence ρ leading in monus semantics from s(0, 1, 1) to t(0,m,m). Now
let us execute ρ in Z-semantics. This execution will arrive at some configuration t(v,m,m)
(note that the last two counters are never decreased, except for the final loop). We shall
prove that (i) v = 0 and (ii) this execution never drops below zero. First, according to
Proposition 3.3, the resulting counter values in monus semantics are always at least the values
from Z-semantics. This implies v ≤ 0. Next observe that since the right-most components
have the same value m, the total sum of all entry sums of added vectors (in the first d entries)
must be zero. Thus, ∆(v) = 0. Together with v ≤ 0, this implies v = 0, which shows (i).
Second, if the execution in Z-semantics ever drops below zero in some counter i, then by
Proposition 3.3 and the fact that in Z-semantics we reach v = 0, this would imply that ρ in
monus semantics ends up in a strictly positive value in counter i, which is not true. This
shows (ii). Hence, we have shown that the run in Z-semantics is actually a run in classical
VASS semantics. Therefore, s(0) ∗−→ t(0) in V. ◁

Characterizing zero-reachability. Monus zero-reachability has a simple characterization in
terms of classical coverability. Here, V rev is obtained by reversing all transitions in V and
their effects. Formally, there is a transition (p, z, q) in V rev iff there is a transition (q,−z, p)
in V.

P. Baumann, K. Madnani, F. Mazowiecki, and G. Zetzsche 10:11

s0 td t′
0

−ej

eσ(j) − ed+j

for j ∈ [1, d]

for j ∈ [1, d]

Vσ

Figure 3 Construction of V ′
σ in reduction from monus coverability to reachability in Z-semantics.

▶ Lemma 3.10. For any v, we have s(v) ∗=⇒V t(0) iff t(0) ∗−→V rev s(v′) for some v′ ≥ v.

Proof. By Proposition 3.6, s(v) ∗=⇒ t(0) yields a v′ ≥ v with s(v′) ∗−→ t(0). Conversely, if

s(v′) ∗−→ t(0), then we can pick Z = [1, d] in Proposition 3.6 to obtain s(v) ∗=⇒ t(0). ◀

This together with the known complexity of classical coverability [33, 35] immediately implies:

▶ Proposition 3.11. The monus zero-reachability problem is EXPSPACE-complete.

Characterizing coverability. Our third characterization describes coverability in monus
semantics in terms of reachability in Z-semantics:

▶ Proposition 3.12. Let V = (d,Q,∆) be a VASS and let s(v) and t(w) be configurations.
Then s(v) ∗=⇒ t(w′′) for some w′′ ≥ w if and only if there is a permutation σ of {1, . . . , d}
and Z-configurations pd(vd), . . . , p1(v1), t(w′) so that
1. s(v) ∗→

Z
pd(vd) ∗→

Z
pd−1(vd−1) ∗→

Z
· · · ∗→

Z
p1(v1) ∗→

Z
t(w′),

2. for each j ∈ {1, . . . , d}, we have w′[j] + | min(vσ−1(j)[j], 0)| ≥ w[j].

Proof. (=⇒) Let ρ be any path such that s(v) ρ=⇒ t(w′′) and w′′ ≥ w. Then, by

Proposition 3.3 s(v) ρ→
Z
t(w′′ + m), where m is the vector of minimum values in the Z run.

The required permutation σ represents the order σ(d), . . . , σ(1) in which these coordinates
reach their corresponding minimum values. Hence, s(v) ρ→

Z
t(w′′ + m) is the same as s(v) ∗→

Z
pd(vd) ∗→

Z
pd−1(vd−1) ∗→

Z
· · · ∗→

Z
p1(v1) ∗→

Z
t(w′), such that vd[σ(d)] = m[σ(d)], . . . ,v1[σ(1)] =

m[σ(1)], and w′′[j] = w′[j] − m[j] = w′[j] + |m[j]| = w′[j] + | min(vσ−1(j)[j], 0)| for all
1 ≤ j ≤ d. As w′′ ≥ w, w′[j] + | min(vσ−1(j)[j], 0)| ≥ w[j] for all 1 ≤ j ≤ d.

(⇐=) This is a direct consequence of Proposition 3.3. It implies that given any
permutation σ on {1, . . . , d} and any run s(v) ∗→

Z
pd(vd) ∗→

Z
pd−1(vd−1) ∗→

Z
· · · ∗→

Z
p1(v1) ∗→

Z
t(w′) such that w′[j] − min(vσ−1(j)[j], 0) ≥ w[j], there is a run from configuration s(v) and
reaching a configuration t(w′′) where w′′[j] = w′[j]−m[j] ≥ w′[j]−min(vσ−1(j)[j], 0) ≥ w[j]
for all 1 ≤ j ≤ d. ◀

We conclude the following.

▶ Proposition 3.13. Monus coverability is NP-complete.

Proof. First we show NP-hardness. In [28, Prop. 5.11], it is shown that it is NP-hard to
decide whether a regular language over some alphabet Σ, given as an NFA, contains a word
in which every letter appears exactly once. Given such an NFA A over Σ = {a1, . . . , ad}, we
construct a d-VASS V. The VASS V simulates A such that when A reads ai, V increments
counter i. Moreover, V maintains a number k ∈ {0, . . . , d} in its state, which always holds the

CONCUR 2023

10:12 Monus Semantics in Vector Addition Systems with States

number of letters read so far. Thus, V has states qk, where q is a state of A and k ∈ {1, . . . , d}.
Moreover, let s and t be the initial and final state of A, respectively. Then in V, one can
cover td(1, . . . , 1) from s0(0) in monus semantics if and only if A accepts some word as above.

We turn to the NP upper bound. Suppose we are given a d-VASS V = (d,Q,∆) and
configurations s(u), t(v). We employ Proposition 3.12. First non-deterministically guess a
permutation σ of [1, d]. We now construct a 2d-VASS V ′

σ and two configurations c′
1, c

′
2 such

that in V ′
σ, we have c′

1
∗→
Z
c′

2 if and only if there is a run as in Proposition 3.12 with this σ.
Since reachability in Z-semantics is NP-complete [25], this yields the upper bound.

Our VASS V ′
σ is a slight extension of the VASS Vσ from Theorem 3.7, see Figure 3. Recall

that for a permutation σ : [1, k] → Z, Vσ keeps k extra counters that freeze the values of
the counters in Z, in the order σ(k), σ(k − 1), . . . , σ(1). We use this construction, but for
our permutation σ of [1, d]. Thus, Vσ simulates a run of V and then freezes the counters
σ(d), . . . , σ(1) in the extra d counters, in this order. The steps that freeze counters define
the vectors vd, . . . , v1 in Proposition 3.12. Note that for each vi, only vi[σ(i)] is important.

To verify the second condition in Proposition 3.12, we introduce an extra state t′ and
extra transitions as depicted in Figure 3. After executing Vσ, V ′

σ then has two types of loops:
One to move tokens from the counters d+ j to counters σ(j) (for each j ∈ [1, d]), and one to
reduce tokens in counters 1, . . . , d. Thus there exists σ such that s0(copy0(u)) ∗→

Z
t′(copyd(v))

in V ′
σ if and only if s(u) ∗=⇒ t(v′′) for some v′′ ≥ v in V . This proves the NP upper bound. ◀

4 Two-dimensional VASS

In this section we prove the results of Table 1 related to 2-VASS, both for unary and binary
encoding. Note that for all three considered problems, reachability, zero reachability, and
coverability, we always have an NL lower bound, inherited from state reachability in finite
automata. The latter is well-known to be NL-hard, and a VASS without counters (in all
considered semantics) is a finite state automaton.

When dealing with binary/unary updates one needs to be careful with the input size.
In all problems suppose a VASS V = (d,Q, T) is in the input. If we are interested in the
unary encoding its size is defined as d + |Q| +

∑
(p,z,q)∈T ∥z∥, where ∥z∥ is the absolute

value of the maximal coordinate in z. In the binary encoding one needs to change ∥z∥ to
⌈log(∥z∥ + 1)⌉. From this point onwards, we use the term succinct VASS for VASS where
updates are encoded in binary.

We consider each of the three problems separately.

Reachability. Here we only prove the PSPACE upper bound for monus reachability in binary
encoded 2-VASS, which implies the same upper bound for unary encoding. The PSPACE
lower bound for binary encoding is inherited from zero reachability, see Proposition 4.3 below.

▶ Proposition 4.1. In succinct 2-VASS, reachability with monus semantics is in PSPACE.

According to Proposition 3.6, reachability with monus semantics is equivalent to existence
of a run under classical semantics, where said run is subject to some additional constraints.
Recall that Presburger arithmetic is the first-order theory of (N,+, <, 0, 1). We observe
that all the additional constraints of Proposition 3.6 can be expressed by quantifier-free
Presburger formulas. This leads us to the so-called constrained runs problem for succinct
2-VASS, which was recently shown to be in PSPACE [3], following the fact that classical
reachability itself is PSPACE-complete for succinct 2-VASS [5].

P. Baumann, K. Madnani, F. Mazowiecki, and G. Zetzsche 10:13

Formally, the constrained runs problem for succinct 2-VASS is the following:
Given A succinct 2-VASS V, a number m ∈ N, states q1, . . . , qm in V, a quantifier-free

Presburger formula ψ(x1, y1, . . . , xm, ym), and numbers s, t ∈ [1,m] with s ≤ t.
Question Does there exist a run q0(0, 0) ∗−→ q1(x1, y1) ∗−→ · · · ∗−→ qm(xm, ym) that visits a

final state between qs(xs, ys) and qt(xt, yt) and satisfies ψ(x1, y1, . . . , xm, ym)?

▶ Lemma 4.2 ([3, Prop. 6.5]). The constrained runs problem for succinct 2-VASS is in
PSPACE.

We can now prove Proposition 4.1 by reducing to the constrained runs problem: Let V
be a 2-VASS with configurations s(v) and t(w). According to Proposition 3.6, existence
of a run s(v) ∗=⇒ t(w) is equivalent to existence of states p1, p2 and a set Z ⊆ [1, 2] such

that a run s(v′) ∗−→ t(w) with v′ ≥ v that is subject to additional requirements enforced
by conditions (2) and (3) of the Proposition 3.6. Our PSPACE algorithm enumerates all
possibilities of p1, p2 and Z, constructing an instance of the constrained run problem each
time, and checking for a constrained run in PSPACE using Lemma 4.2. If such a run exists
in at least one of the instances, the algorithm accepts, otherwise it rejects. To construct
each instance the algorithm first modifies V to ensure that a starting configuration s(v′)
is reachable for any v′ ≥ v. To this end a new initial state q0 is added, with two loops
that increment one of the counters each, and a transition that goes to s by adding v. Then
the additional requirements of Proposition 3.6 are encoded in quantifier-free Presburger
arithmetic, as required by the constrained run problem. Clearly the constructed algorithm
runs in PSPACE and decides s(v) ∗=⇒ t(w). For more details refer the full version.

Zero reachability.

▶ Proposition 4.3. Monus zero reachability in 2-VASS is PSPACE-complete under binary
encoding and NL-complete under unary encoding.

Proof. This is a simple consequence of monus zero reachability being interreducible with
classical coverability: Classical coverability in 2-VASS under binary encoding is PSPACE-
complete under binary encoding (in [5, Corollary 3.3], this is deduced from [36, p. 108]
and [17, Corollary 10] and NL-complete under unary encoding [36, p. 108].

Let V be a 2-VASS with configurations s(v) and t(0). Then according to Proposition 3.6,
we know that t(0) is monus reachable from s(v) if and only if in V rev the configuration s(v)
is coverable from t(0) with classical semantics. On the other hand, given configurations
s(v) and t(w) of a 2-VASS V, we add a new state s′ and transition (s′,v, s) to construct
the 2-VASS V ′. Then classical coverability of t(w) from s(v) in V is equivalent to the same
from s′(0) in V ′. Now applying Proposition 3.6 in reverse, the latter is further equivalent to
monus reachability of s′(0) from t(w) in V ′rev. ◀

Coverability. By Proposition 3.13, monus coverability is in NP in arbitrary dimension. Thus,
it remains to show the NP lower bound.

▶ Proposition 4.4. Monus coverability in succinct 2-VASS is NP-hard.

Proof. We reduce from the subset sum problem, which is well-known to be NP-hard. Here,
we are given binary encoded numbers a1, . . . , an, a ∈ N and are asked whether there is a
vector (x1, . . . , xn) ∈ {0, 1}n such that x1a1 + · · · + xnan = a. Given such an instance, we
construct the 2-VASS in Figure 4. It is clear that we can cover t(1, 1) from s(0, 0) iff the
subset-sum instance is positive: Covering 1 in the first counter means our sum is at least a,
whereas covering 1 in the second counter means our sum is at most a. ◀

CONCUR 2023

10:14 Monus Semantics in Vector Addition Systems with States

s t· · ·
(1, a+ 1)

(a1,−a1)

(0, 0)

(an,−an)

(0, 0)

(−a, 0)

Figure 4 2-VASS to show NP-hardness of coverability in dimension two.

q0 q1 q2 qn qn+1 qf· · ·1
a1

0

an

0

−a

Figure 5 1-VASS to show NP-hardness of monus reachability in dimension one with binary
encoded counter updates.

▶ Proposition 4.5. Monus coverability in unary-encoded 2-VASS is in NL.

Proof. This follows using the same construction as for Proposition 3.13: Given a 2-VASS,
there are only two permutations σ of {1, 2}. Thus, we can try both permutations σ and
construct the VASS V ′

σ in logspace. Then, Vσ has dimension 2d. Thus, we reduce monus
coverability in 2-VASS to reachability in Z-semantics in 4-VASS. Since reachability with
Z-semantics in each fixed dimension can be decided in NL [24], this provides an NL upper
bound. ◀

5 One-dimensional VASS

Reachability. We begin with the proofs regarding reachability.

▶ Proposition 5.1. Monus reachability in 1-VASS is in NL under unary encoding and in NP
under binary encoding.

The proof of Proposition 5.1 relies on the following simple consequence of Proposition 3.6:

▶ Lemma 5.2. Let V be a 1-VASS. Then s(m) ∗=⇒V t(n) if and only if (i) s(m) ∗−→V t(n) or

(ii) there exist a state q and number m′ ≥ m with s(m′) ∗−→V q(0) and q(0) ∗−→V t(n).

For Proposition 5.1, we reduce to reachability in one-counter automata. A one-counter
automaton (OCA) is a 1-VASS with zero-tests, i.e. special transitions that test the counter
for zero instead of adding a number. For encoding purposes, zero tests take up as much space
as a transition adding 0 to the counter. In our reduction, the update encoding is preserved:
If the input 1-VASS has unary encoding, then the OCA has unary updates as well. If the
input 1-VASS has binary updates, then the OCA will too. Then, we can use the fact that in
OCA with unary updates, reachability is in NL [38] and for binary updates, it is in NP [26].

The OCA first guesses whether to simulate a run of type (i) or of type (ii) in Lemma 5.2.
Then for type (i), it just simulates a classical 1-VASS. For type (ii), it first non-deterministically
increments the counter, and then simulates a run of the 1-VASS. However, on the way, it
keeps a flag signaling whether the counter has hit 0 at some point (which it can maintain
using zero tests). Thus, when simulating runs of type (ii), the OCA only accepts if zero has
been hit. For a detailed description, refer to the full version.

▶ Proposition 5.3. Monus reachability in 1-VASS is NP-hard under binary encoding.

P. Baumann, K. Madnani, F. Mazowiecki, and G. Zetzsche 10:15

As in Proposition 4.4, we reduce from subset sum. Given a1, . . . , an, a in binary, we construct
the 1-VASS in Figure 5. Then q0(0) ∗=⇒ qf (1) iff this is a positive instance. Refer to the full
version.

Zero reachability and coverability.

▶ Proposition 5.4. Monus zero-reachability in 1-VASS is in NL under unary encoding and
in NC2 under binary encoding.

Since monus zero-reachability reduces to classical coverability (Lemma 3.10), this follows
from existing 1-VASS results: Coverability in 1-VASS is in NL under unary encoding [38]
and NC2 under binary encoding [2].

▶ Proposition 5.5. Monus coverability in 1-VASS is in NL under unary encoding and in
NC2 under binary encoding.

The first statement follows from Proposition 5.1 and the fact that monus coverability reduces
to monus reachability by simply adding a new final state where we can count down. For the
NC2 bound, we use the following consequence of Lemma 3.10 (see the full version).

▶ Lemma 5.6. Let V be a 1-VASS with configurations s(m) and t(n). Then t(n) is monus
coverable from s(m) in V if and only if t(n) is coverable from s(m) in V under classical
semantics or there is a state q of V such that t(n) is coverable from q(0) in V under classical
semantics and s(m) is coverable from q(0) in V rev under classical semantics.

Proof of Proposition 5.5. It remains to prove the NC2 upper bound, for which we check
the requirements of Lemma 5.6. Let k be the number of states of the input 1-VASS. Observe
that Lemma 5.6 yields a logical disjunction over k + 1 disjuncts, where one disjunct consists
of a single coverability check and the remaining k each consist of a logical conjunction over
two coverability checks. Classical coverability of binary encoded 1-VASS is in NC2 [2], and
by the definition of this complexity class, we can combine 2k + 1 such checks according to
the aforementioned logical relationship and still yield an NC2-algorithm. Note that this is
only possible because k is linear in the size of the input. ◀

References
1 Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. General decidability

theorems for infinite-state systems. In Proceedings, 11th Annual IEEE Symposium on Logic in
Computer Science, New Brunswick, New Jersey, USA, July 27-30, 1996, pages 313–321. IEEE
Computer Society, 1996. doi:10.1109/LICS.1996.561359.

2 Shaull Almagor, Nathann Cohen, Guillermo A. Pérez, Mahsa Shirmohammadi, and James
Worrell. Coverability in 1-VASS with Disequality Tests. In Igor Konnov and Laura Kovács,
editors, 31st International Conference on Concurrency Theory, CONCUR 2020, September 1-4,
2020, Vienna, Austria (Virtual Conference), volume 171 of LIPIcs, pages 38:1–38:20. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.38.

3 Pascal Baumann, Roland Meyer, and Georg Zetzsche. Regular Separability in Büchi VASS.
In Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté, editors,
40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023),
volume 254 of Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1–9:19,
Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.STACS.2023.9.

4 Michael Blondin. The ABCs of Petri net reachability relaxations. ACM SIGLOG News, 7(3),
2020. doi:10.1145/3436980.3436984.

CONCUR 2023

https://doi.org/10.1109/LICS.1996.561359
https://doi.org/10.4230/LIPIcs.CONCUR.2020.38
https://doi.org/10.4230/LIPIcs.STACS.2023.9
https://doi.org/10.4230/LIPIcs.STACS.2023.9
https://doi.org/10.1145/3436980.3436984

10:16 Monus Semantics in Vector Addition Systems with States

5 Michael Blondin, Matthias Englert, Alain Finkel, Stefan Göller, Christoph Haase, Ranko Lazic,
Pierre McKenzie, and Patrick Totzke. The Reachability Problem for Two-Dimensional Vector
Addition Systems with States. J. ACM, 68(5):34:1–34:43, 2021. doi:10.1145/3464794.

6 Michael Blondin, Alain Finkel, Christoph Haase, and Serge Haddad. Approaching the
coverability problem continuously. In Proc. 22nd International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), pages 480–496, 2016.
doi:10.1007/978-3-662-49674-9_28.

7 Michael Blondin, Christoph Haase, and Philip Offtermatt. Directed reachability for infinite-
state systems. In Jan Friso Groote and Kim Guldstrand Larsen, editors, Tools and Algorithms
for the Construction and Analysis of Systems – 27th International Conference, TACAS
2021, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2021, Luxembourg City, Luxembourg, March 27 – April 1, 2021, Proceedings, Part
II, volume 12652 of Lecture Notes in Computer Science, pages 3–23. Springer, 2021. doi:
10.1007/978-3-030-72013-1_1.

8 Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Mazowiecki.
Reachability in fixed dimension vector addition systems with states. In Igor Konnov and
Laura Kovács, editors, 31st International Conference on Concurrency Theory, CONCUR 2020,
September 1-4, 2020, Vienna, Austria (Virtual Conference), volume 171 of LIPIcs, pages
48:1–48:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
CONCUR.2020.48.

9 Wojciech Czerwinski and Lukasz Orlikowski. Reachability in vector addition systems is
ackermann-complete. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1229–1240. IEEE, 2021. doi:
10.1109/FOCS52979.2021.00120.

10 Wojciech Czerwinski and Lukasz Orlikowski. Lower bounds for the reachability problem in
fixed dimensional vasses. In Christel Baier and Dana Fisman, editors, LICS ’22: 37th Annual
ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2–5, 2022, pages
40:1–40:12. ACM, 2022. doi:10.1145/3531130.3533357.

11 Stéphane Demri, Marcin Jurdzinski, Oded Lachish, and Ranko Lazic. The covering and
boundedness problems for branching vector addition systems. J. Comput. Syst. Sci., 79(1):23–
38, 2013. doi:10.1016/j.jcss.2012.04.002.

12 Alex Dixon and Ranko Lazic. Kreach: A tool for reachability in petri nets. In Armin
Biere and David Parker, editors, Tools and Algorithms for the Construction and Analysis of
Systems – 26th International Conference, TACAS 2020, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30,
2020, Proceedings, Part I, volume 12078 of Lecture Notes in Computer Science, pages 405–412.
Springer, 2020. doi:10.1007/978-3-030-45190-5_22.

13 Catherine Dufourd, Alain Finkel, and Philippe Schnoebelen. Reset nets between decidability
and undecidability. In Kim Guldstrand Larsen, Sven Skyum, and Glynn Winskel, editors,
Automata, Languages and Programming, 25th International Colloquium, ICALP’98, Aalborg,
Denmark, July 13-17, 1998, Proceedings, volume 1443 of Lecture Notes in Computer Science,
pages 103–115. Springer, 1998. doi:10.1007/BFb0055044.

14 Matthias Englert, Piotr Hofman, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Juliusz
Straszynski. A lower bound for the coverability problem in acyclic pushdown VAS. Inf. Process.
Lett., 167:106079, 2021. doi:10.1016/j.ipl.2020.106079.

15 Javier Esparza, Ruslán Ledesma-Garza, Rupak Majumdar, Philipp J. Meyer, and Filip Nikšić.
An SMT-based approach to coverability analysis. In Proc. 26th International Conference on
Computer Aided Verification (CAV), pages 603–619, 2014. doi:10.1007/978-3-319-08867-9_
40.

16 John Fearnley and Marcin Jurdziński. Reachability in Two-Clock Timed Automata Is PSPACE-
Complete. In Fedor V. Fomin, Rūsin, š Freivalds, Marta Kwiatkowska, and David Peleg, editors,
Automata, Languages, and Programming, pages 212–223, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

https://doi.org/10.1145/3464794
https://doi.org/10.1007/978-3-662-49674-9_28
https://doi.org/10.1007/978-3-030-72013-1_1
https://doi.org/10.1007/978-3-030-72013-1_1
https://doi.org/10.4230/LIPIcs.CONCUR.2020.48
https://doi.org/10.4230/LIPIcs.CONCUR.2020.48
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1145/3531130.3533357
https://doi.org/10.1016/j.jcss.2012.04.002
https://doi.org/10.1007/978-3-030-45190-5_22
https://doi.org/10.1007/BFb0055044
https://doi.org/10.1016/j.ipl.2020.106079
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1007/978-3-319-08867-9_40

P. Baumann, K. Madnani, F. Mazowiecki, and G. Zetzsche 10:17

17 John Fearnley and Marcin Jurdzinski. Reachability in two-clock timed automata is pspace-
complete. In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg,
editors, Automata, Languages, and Programming – 40th International Colloquium, ICALP
2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II, volume 7966 of Lecture Notes in
Computer Science, pages 212–223. Springer, 2013. doi:10.1007/978-3-642-39212-2_21.

18 Diego Figueira, Ranko Lazic, Jérôme Leroux, Filip Mazowiecki, and Grégoire Sutre. Polynomial-
space completeness of reachability for succinct branching VASS in dimension one. In Ioannis
Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International
Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017,
Warsaw, Poland, volume 80 of LIPIcs, pages 119:1–119:14. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.119.

19 Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere! Theor.
Comput. Sci., 256(1-2):63–92, 2001. doi:10.1016/S0304-3975(00)00102-X.

20 Estíbaliz Fraca and Serge Haddad. Complexity analysis of continuous Petri nets. Fundamenta
Informaticae, 137(1):1–28, 2015. doi:10.3233/FI-2015-1168.

21 Moses Ganardi, Rupak Majumdar, Andreas Pavlogiannis, Lia Schütze, and Georg Zetzsche.
Reachability in bidirected pushdown VASS. In Mikolaj Bojanczyk, Emanuela Merelli, and
David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and
Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages
124:1–124:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.
ICALP.2022.124.

22 Steven M. German and A. Prasad Sistla. Reasoning about systems with many processes. J.
ACM, 39(3):675–735, 1992. doi:10.1145/146637.146681.

23 Stefan Göller, Christoph Haase, Ranko Lazic, and Patrick Totzke. A polynomial-time algorithm
for reachability in branching VASS in dimension one. In Ioannis Chatzigiannakis, Michael
Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium
on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy,
volume 55 of LIPIcs, pages 105:1–105:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.ICALP.2016.105.

24 Eitan M. Gurari and Oscar H. Ibarra. The complexity of decision problems for finite-
turn multicounter machines. J. Comput. Syst. Sci., 22(2):220–229, 1981. doi:10.1016/
0022-0000(81)90028-3.

25 Christoph Haase and Simon Halfon. Integer vector addition systems with states. In Joël
Ouaknine, Igor Potapov, and James Worrell, editors, Reachability Problems – 8th International
Workshop, RP 2014, Oxford, UK, September 22-24, 2014. Proceedings, volume 8762 of Lecture
Notes in Computer Science, pages 112–124. Springer, 2014. doi:10.1007/978-3-319-11439-2_
9.

26 Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell. Reachability in
succinct and parametric one-counter automata. In Mario Bravetti and Gianluigi Zavattaro,
editors, CONCUR 2009 – Concurrency Theory, 20th International Conference, CONCUR
2009, Bologna, Italy, September 1-4, 2009. Proceedings, volume 5710 of Lecture Notes in
Computer Science, pages 369–383. Springer, 2009. doi:10.1007/978-3-642-04081-8_25.

27 John Hopcroft and Jean-Jacques Pansiot. On the reachability problem for 5-dimensional
vector addition systems. Theoretical Computer Science, 8(2):135–159, 1979.

28 Eryk Kopczynski. Complexity of problems of commutative grammars. Log. Methods Comput.
Sci., 11(1), 2015. doi:10.2168/LMCS-11(1:9)2015.

29 Jérôme Leroux. The reachability problem for petri nets is not primitive recursive. In 62nd IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA,
February 7-10, 2022, pages 1241–1252. IEEE, 2021. doi:10.1109/FOCS52979.2021.00121.

30 Jérôme Leroux and Sylvain Schmitz. Reachability in vector addition systems is primitive-
recursive in fixed dimension. In 34th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–13. IEEE, 2019.
doi:10.1109/LICS.2019.8785796.

CONCUR 2023

https://doi.org/10.1007/978-3-642-39212-2_21
https://doi.org/10.4230/LIPIcs.ICALP.2017.119
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.3233/FI-2015-1168
https://doi.org/10.4230/LIPIcs.ICALP.2022.124
https://doi.org/10.4230/LIPIcs.ICALP.2022.124
https://doi.org/10.1145/146637.146681
https://doi.org/10.4230/LIPIcs.ICALP.2016.105
https://doi.org/10.1016/0022-0000(81)90028-3
https://doi.org/10.1016/0022-0000(81)90028-3
https://doi.org/10.1007/978-3-319-11439-2_9
https://doi.org/10.1007/978-3-319-11439-2_9
https://doi.org/10.1007/978-3-642-04081-8_25
https://doi.org/10.2168/LMCS-11(1:9)2015
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1109/LICS.2019.8785796

10:18 Monus Semantics in Vector Addition Systems with States

31 Jérôme Leroux and Grégoire Sutre. Reachability in Two-Dimensional Vector Addition Systems
with States: One Test Is for Free. In Igor Konnov and Laura Kovács, editors, 31st International
Conference on Concurrency Theory (CONCUR 2020), volume 171 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 37:1–37:17, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CONCUR.2020.37.

32 Jérôme Leroux, Grégoire Sutre, and Patrick Totzke. On the coverability problem for pushdown
vector addition systems in one dimension. In Magnús M. Halldórsson, Kazuo Iwama, Naoki
Kobayashi, and Bettina Speckmann, editors, Automata, Languages, and Programming – 42nd
International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part
II, volume 9135 of Lecture Notes in Computer Science, pages 324–336. Springer, 2015. doi:
10.1007/978-3-662-47666-6_26.

33 Richard Lipton. The reachability problem is exponential-space hard. Yale University, Depart-
ment of Computer Science, Report, 62, 1976.

34 Filip Mazowiecki, Henry Sinclair-Banks, and Karol Węgrzycki. Coverability in 2-vass with one
unary counter is in np. In Orna Kupferman and Pawel Sobocinski, editors, Foundations of
Software Science and Computation Structures, pages 196–217, Cham, 2023. Springer Nature
Switzerland.

35 Charles Rackoff. The covering and boundedness problems for vector addition systems. Theor-
etical Computer Science, 6(2):223–231, 1978.

36 Louis E Rosier and Hsu-Chun Yen. A multiparameter analysis of the boundedness problem
for vector addition systems. Journal of Computer and System Sciences, 32(1):105–135, 1986.

37 Sylvain Schmitz. The complexity of reachability in vector addition systems. ACM SIGLOG
News, 3(1):4–21, 2016. doi:10.1145/2893582.2893585.

38 Leslie G. Valiant and Mike Paterson. Deterministic one-counter automata. J. Comput. Syst.
Sci., 10(3):340–350, 1975. doi:10.1016/S0022-0000(75)80005-5.

39 Wil M. P. van der Aalst. Verification of workflow nets. In Proc. 18th International Conference
on Application and Theory of Petri Nets (ICATPN), volume 1248, pages 407–426, 1997.
doi:10.1007/3-540-63139-9_48.

https://doi.org/10.4230/LIPIcs.CONCUR.2020.37
https://doi.org/10.1007/978-3-662-47666-6_26
https://doi.org/10.1007/978-3-662-47666-6_26
https://doi.org/10.1145/2893582.2893585
https://doi.org/10.1016/S0022-0000(75)80005-5
https://doi.org/10.1007/3-540-63139-9_48

	1 Introduction
	2 Vector addition systems with monus semantics: Main results
	3 Arbitrary dimension
	4 Two-dimensional VASS
	5 One-dimensional VASS

