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Abstract
The standard approach to analyzing the asymptotic complexity of probabilistic programs is based
on studying the asymptotic growth of certain expected values (such as the expected termination
time) for increasing input size. We argue that this approach is not sufficiently robust, especially in
situations when the expectations are infinite. We propose new estimates for the asymptotic analysis of
probabilistic programs with non-deterministic choice that overcome this deficiency. Furthermore, we
show how to efficiently compute/analyze these estimates for selected classes of programs represented
as Markov decision processes over vector addition systems with states.
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1 Introduction

Vector Addition Systems with States (VASS) [11] are a model for discrete systems with
multiple unbounded resources expressively equivalent to Petri nets [20]. Intuitively, a
VASS with d ≥ 1 counters is a finite directed graph where the transitions are labeled by
d-dimensional vectors of integers representing counter updates. A computation starts in
some state for some initial vector of non-negative counter values and proceeds by selecting
transitions non-deterministically and performing the associated counter updates. Since the
counters cannot assume negative values, transitions that would decrease some counter below
zero are disabled.

In program analysis, VASS are used as abstractions for programs operating over unbounded
integer variables. Input parameters are represented by initial counter values, and more
complicated arithmetical functions, such as multiplication, are modeled by VASS gadgets
computing these functions in a weak sense (see, e.g., [17]). Branching constructs, such as
if-then-else, are usually replaced with non-deterministic choice. VASS are particularly useful
for evaluating the asymptotic complexity of infinite-state programs, i.e., the dependency
of the running time (and other complexity measures) on the size of the program input
[21, 22]. Traditional VASS decision problems such as reachability, liveness, or boundedness
are computationally hard [9, 18, 19], and other verification problems such as equivalence-
checking [12] or model-checking [10] are even undecidable. In contrast to this, decision
problems related to the asymptotic growth of VASS complexity measures are solvable with
low complexity and sometimes even in polynomial time [4, 23, 15, 16, 1]; see [14] for a recent
overview.
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12:2 Asymptotic Estimates for VASS MDPs

The existing results about VASS asymptotic analysis are applicable to programs with
non-determinism (in demonic or angelic form, see [5]), but cannot be used to analyze the
complexity of probabilistic programs. This motivates the study of Markov decision process over
VASS (VASS MDPs) with both non-deterministic and probabilistic states, where transitions
in probabilistic states are selected according to fixed probability distributions. Here, the
problems of asymptotic complexity analysis become even more challenging because VASS
MDPs subsume infinite-state stochastic models that are notoriously hard to analyze. So
far, the only existing result about asymptotic VASS MDP analysis is [3] where the linearity
of expected termination time is shown decidable in polynomial time for VASS MDPs with
DAG-like MEC decomposition.

Our Contribution: We study the problems of asymptotic complexity analysis for probabilistic
programs and their VASS abstractions.

For non-deterministic programs, termination complexity is a function Lmax assigning to
every n ∈ N the length of the longest computation initiated in a configuration with each
counter set to n. A natural way of generalizing this concept to probabilistic programs is to
define a function Lexp such that Lexp(n) is the maximal expected length of a computation
initiated in a configuration of size n, where the maximum is taken over all strategies resolving
non-determinism. The same approach is applicable to other complexity measures. We show
that this natural idea is generally inappropriate, especially in situations when Lexp(n) is
infinite for a sufficiently large n. By “inappropriate” we mean that this form of asymptotic
analysis can be misleading. For example, if Lexp(n) = ∞ for all n ≥ 1, one may conclude that
the computation takes a very long time independently of n. However, this is not necessarily
the case, as demonstrated in a simple example of Fig. 1 (we refer to Section 3 for a detailed
discussion). Therefore, we propose new notions of lower/upper/tight complexity estimates
and demonstrate their advantages over the expected values. These notions can be adapted
to other models of probabilistic programs, and constitute the main conceptual contribution
of our work.

Then, we concentrate on algorithmic properties of the complexity estimates in the setting
of VASS MDPs. Our first result concerns counter complexity. We show that for every
VASS MDP with DAG-like MEC decomposition and every counter c, there are only two
possibilities:

The function n is a tight estimate of the asymptotic growth of the maximal c-counter
value assumed along a computation initiated in a configuration of size n.
The function n2 is a lower estimate of the asymptotic growth of the maximal c-counter
value assumed along a computation initiated in a configuration of size n.

Furthermore, it is decidable in polynomial time which of these alternatives holds.
Since the termination and transition complexities can be easily encoded as the counter

complexity for a fresh “step counter”, the above result immediately extends also to these
complexities. To some extent, this result can be seen as a generalization of the result about
termination complexity presented in [3]. See Section 4 for more details.

Our next result is a full classification of asymptotic complexity for one-dimensional VASS
MDPs. We show that for every one-dimensional VASS MDP

the counter complexity is either unbounded or n is a tight estimate;
termination complexity is either unbounded or one of the functions n, n2 is a tight
estimate.
transition complexity is either unbounded, or bounded by a constant, or one of the
functions n, n2 is a tight estimate.

Furthermore, it is decidable in polynomial time which of the above cases hold.
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Since the complexity of the considered problems remains low, the results are encouraging.
On the other hand, they require non-trivial insights, indicating that establishing a full and
effective classification of the asymptotic complexity of multi-dimensional VASS MDPs is a
challenging problem.

Missing proofs can be found in a full version of this paper [2].

2 Preliminaries

We use N, Z, Q, and R to denote the sets of non-negative integers, integers, rational numbers,
and real numbers. Given a function f : N → N, we use O(f) and Ω(f) to denote the sets of
all g : N → N such that g(n) ≤ a · f(n) and g(n) ≥ b · f(n) for all sufficiently large n ∈ N,
where a, b are some positive constants. If h ∈ O(f) and h ∈ Ω(f), we write h ∈ Θ(f).

Let A be a finite index set. The vectors of RA are denoted by bold letters such as
u, v, z, . . .. The component of v of index i ∈ A is denoted by v(i). If the index set is of the
form A = {1, 2, . . . , d} for some positive integer d, we write Rd instead of RA. For every
n ∈ N, we use n to denote the constant vector where all components are equal to n. The
other standard operations and relations on R such as +, ≤, or < are extended to Rd in the
component-wise way. In particular, v < u if v(i) < u(i) for every index i.

A probability distribution over a finite set A is a vector ν ∈ [0, 1]A such that
∑

a∈A ν(a) = 1.
We say that ν is rational if every ν(a) is rational, and Dirac if ν(a) = 1 for some a ∈ A.

2.1 VASS Markov Decision Processes
▶ Definition 1. Let d ≥ 1. A d-dimensional VASS MDP is a tuple A = (Q, (Qn, Qp), T, P ),
where

Q ̸= ∅ is a finite set of states split into two disjoint subsets Qn and Qp of nondeterministic
and probabilistic states,
T ⊆ Q×Zd ×Q is a finite set of transitions such that, for every p ∈ Q, the set Out(p) ⊆ T

of all transitions of the form (p, u, q) is non-empty.
P is a function assigning to each t ∈ Out(p) where p ∈ Qp a positive rational probability
so that

∑
t∈T (p) P (t) = 1.

The encoding size of A is denoted by ||A||, where the integers representing counter updates
are written in binary and probability values are written as fractions of binary numbers. For
every p ∈ Q, we use In(p) ⊆ T to denote the set of all transitions of the form (q, u, p). The
update vector u of a transition t = (p, u, q) is also denoted by ut.

A finite path in A of length n ≥ 0 is a finite sequence of the form p0, u1, p1, u2, . . . , un, pn

where (pi, ui+1, pi+1) ∈ T for all i < n. We use len(α) to denote the length of α. If there
is a finite path from p to q, we say that q is reachable from p. An infinite path in A is an
infinite sequence π = p0, u1, p1, u2, . . . such that every finite prefix of π ending in a state is a
finite path in A.

A strategy is a function σ assigning to every finite path p0, u1, . . . , pn such that pn ∈ Qn

a probability distribution over Out(pn). A strategy is Markovian (M) if it depends only on
the last state pn, and deterministic (D) if it always returns a Dirac distribution. The set of
all strategies is denoted by ΣA, or just Σ when A is understood. Every initial state p ∈ Q

and every strategy σ determine the probability space over infinite paths initiated in p in the
standard way. We use Pσ

p to denote the associated probability measure.
A configuration of A is a pair pv, where p ∈ Q and v ∈ Zd. If some component of v is

negative, then pv is terminal. The set of all configurations of A is denoted by C (A).

CONCUR 2023
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input N

repeat
random choice:

0.5 : N := N + 1;
0.5 : N := N − 1;

until N = 0

p

A

0.5, +10.5, −1

Figure 1 A probabilistic program with infinite expected running time for every N ≥ 1, and its
1-dimensional VASS MDP model A.

Every infinite path p0, u1, p1, u2, . . . and every initial vector v ∈ Zd determine the
corresponding computation of V , i.e., the sequence of configurations p0v0, p1v1, p2v2, . . . such
that v0 = v and vi+1 = vi + ui+1. Let Term(π) be the least j such that pjvj is terminal. If
there is no such j, we put Term(π) = ∞ .

Note that every computation uniquely determines its underlying infinite path. We define
the probability space over all computations initiated in a given pv, where the underlying
probability measure Pσ

pv is obtained from Pσ
p in an obvious way. For a measurable function

X over computations, we use Eσ
pv[X] to denote the expected value of X.

3 Asymptotic Complexity Measures for VASS MDPs

In this section, we introduce asymptotic complexity estimates applicable to probabilistic
programs with non-determinism and their abstract models (such as VASS MDPs). We also
explain their relationship to the standard measures based on the expected values of relevant
random variables.

Let us start with a simple motivating example. Consider the simple probabilistic program
of Fig. 1. The program inputs a positive integer N and then repeatedly increments/decre-
ments N with probability 0.5 until N = 0. One can easily show that for every N ≥ 1, the
program terminates with probability one, and the expected termination time is infinite.
Based on this, one may conclude that the execution takes a very long time, independently of
the initial value of N . However, this conclusion is not consistent with practical experience
gained from trial runs1. The program tends to terminate “relatively quickly” for small N ,
and the termination time does depend on N . Hence, the function assigning ∞ to every N ≥ 1
is not a faithful characterization of the asymptotic growth of termination time. We propose
an alternative characterization based on the following observations2:

For every ε > 0, the probability of all runs terminating after more than n2+ε steps (where
n is the initial value of N) approaches zero as n → ∞.
For every ε > 0, the probability of all runs terminating after more than n2−ε steps (where
n is the initial value of N) approaches one as n → ∞.

Since the execution time is “squeezed” between n2−ε and n2+ε for an arbitrarily small
ε > 0 as n → ∞, it can be characterized as “asymptotically quadratic”. This analysis is in
accordance with experimental outcomes.

1 For N = 1, about 95% of trial runs terminate after at most 1000 iterations of the repeat-until loop.
For N = 10, only about 75% of all runs terminate after at most 1000 iterations, but about 90% of them
terminate after at most 10000 iterations.

2 Formal proofs of these observations are simple; in Section 5, we give a full classification of the asymptotic
behaviour of one-dimensional VASS MDPs subsuming the trivial example of Fig. 1.
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3.1 Complexity of VASS Runs
We recall the complexity measures for VASS runs used in previous works [4, 23, 15, 16, 1].
These functions can be seen as variants of the standard time/space complexities for Turing
machines.

Let A = (Q, (Qn, Qp), T, P ) be a d-dimensional VASS MDP, c ∈ {1, . . . , d}, and t ∈ T .
For every computation π = p0v0, p1v1, p2v2, . . ., we put

L(π) = Term(π)
C[c](π) = sup{vi(c) | 0 ≤ i < Term(π)}
T [t](π) = the total number of all 0 ≤ i < Term(π) such that (pi, vi+1−vi, pi+1) = t

We refer to the functions L, C[c], and T [t] as termination, c-counter, and t-transition
complexity, respectively.

Let F be one of the complexity functions defined above. In VASS abstractions of computer
programs, the input is represented by initial counter values, and the input size corresponds to
the maximal initial counter value. The existing works on non-probabilistic VASS concentrate
on analyzing the asymptotic growth of the functions Fmax : N → N∞ where

Fmax(n) = max{F(π) | π is a computation initiated in pn where p ∈ Q}

For VASS MDP, we can generalize Fmax into Fexp as follows:

Fexp(n) = max{Eσ
pn[F ] | σ ∈ ΣA, p ∈ Q}

Note that for non-probabilistic VASS, the values of Fmax(n) and Fexp(n) are the same.
However, the function Fexp suffers from the deficiency illustrated in the motivating example
at the beginning of Section 3. To see this, consider the one-dimensional VASS MDP A
modeling the simple probabilistic program (see Fig. 1). For every n ≥ 1 and the only (trivial)
strategy σ, we have that Pσ

pn[Term < ∞] = 1 and Lexp(n) = ∞. However, the practical
experience with trial runs of A is the same as with the original probabilistic program (see
above).

3.2 Asymptotic Complexity Estimates
In this section, we introduce asymptotic complexity estimates allowing for a precise analysis
of the asymptotic growth of the termination, c-counter, and t-transition complexity, especially
when their expected values are infinite for a sufficiently large input. For the sake of readability,
we first present a simplified variant applicable to strongly connected VASS MDPs.

Let F be one of the complexity functions for VASS computations defined in Section 3.1,
and let f : N → N. We say that f is a tight estimate of F if, for arbitrarily small ε > 0, the
value of F(n) is “squeezed” between f1−ε(n) and f1+ε(n) as n → ∞. More precisely, for
every ε > 0,

there exist p ∈ Q and strategies σ1, σ2, . . . such that lim infn→∞ Pσn
pn [F ≥ (f(n))1−ε] = 1;

for all p ∈ Q and strategies σ1, σ2, . . . we have that lim supn→∞ Pσn
pn [F ≥ (f(n))1+ε] = 0.

The above definition is adequate for strongly connected VASS MDPs because tight
estimates tend to exist in this subclass. Despite some effort, we have not managed to
construct an example of a strongly connected VASS MDP where an F with some upper
polynomial estimate does not have a tight estimate (see Conjecture 3). However, if the
underlying graph of A is not strongly connected, then the asymptotic growth of F can differ
for computations visiting a different sequence of maximal end components (MECs) of A, and

CONCUR 2023
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the asymptotic growth of F can be “squeezed” between f1−ε(n) and f1+ε(n) only for the
subset of computations visiting the same sequence of MECs. This explains why we need a
more general definition of complexity estimates presented below.

An end component (EC) of A is a pair (C, L) where C ⊆ Q and L ⊆ T such that the
following conditions are satisfied:

C ̸= ∅;
if p ∈ C ∩ Qn, then at least one outgoing transition of p belongs to L;
if p ∈ C ∩ Qp, then all outgoing transitions of p belong to L;
if (p, u, q) ∈ L, then p, q ∈ C;
for all p, q ∈ C we have that q is reachable from p and vice versa.

Note that if (C, L) and (C ′, L′) are ECs such that C ∩C ′ ≠ ∅, then (C ∪C ′, L∪L′) is also
an EC. Hence, every p ∈ Q either belongs to a unique maximal end component (MEC), or
does not belong to any EC. Also observe that each MEC can be seen as a strongly connected
VASS MDP. We say that A has DAG-like MEC decomposition if for every pair M, M ′ of
different MECs such that the states of M ′ are reachable from the states of M we have that
the states of M are not reachable from the states of M ′.

For every infinite path π of A, let mecs(π) be the unique sequence of MECs visited by π.
Observe that mecs(π) disregards the states that do not belong to any EC; intuitively, this
is because the transitions executed in such states do not influence the asymptotic growth
of F . Observe that the length of mecs(π), denoted by len(mecs(π)), can be finite or infinite.
The first possibility corresponds to the situation when an infinite suffix of π stays within
the same MEC. Furthermore, for all σ ∈ Σ and p ∈ Q, we have that Pσ

p [len(mecs) = ∞] = 0,
and the probability Pσ

p [len(mecs) ≥ k] decays exponentially in k (these folklore results are
easy to prove). All of these notions are lifted to computations in an obvious way.

Observe that if a strategy σ aims at maximizing the growth of F , we can safely assume
that σ eventually stays in a bottom MEC that cannot be exited (intuitively, σ can always
move from a non-bottom MEC to a bottom MEC by executing a few extra transitions that
do not influence the asymptotic growth of F , and the bottom MEC may allow increasing F
even further). On the other hand, the maximal asymptotic growth of F may be achievable
along some “minimal” sequence of MECs, and this information is certainly relevant for
understanding the behaviour of a given probabilistic program. This leads to the following
definition:

▶ Definition 2. A type is a finite sequence β of MECs such that mecs(π) = β for some
infinite path π.

We say that f is a lower estimate of F for a type β if for every ε > 0 there exist p ∈ Q

and a sequence of strategies σ1, σ2, . . . such that Pσn
pn [mecs = β] > 0 for all n ≥ 1 and

lim inf
n→∞

Pσn
pn [F ≥ (f(n))1−ε | mecs=β] = 1 .

Similarly, we say that f is an upper estimate of F for a type β if for every ε > 0, every
p ∈ Q, and every sequence of strategies σ1, σ2, . . . such that Pσn

pn [mecs = β] > 0 for all n ≥ 1
we have that

lim sup
n→∞

Pσn
pn [F ≥ (f(n))1+ε | mecs=β] = 0

If there is no upper estimate of F for a type β, we say that F is unbounded for β. Finally,
we say that f is a tight estimate of F for β if it is both a lower estimate and an upper
estimate of F for β.
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q

1
2 , (−1, +1, 0, )

1
2 , (+1, +1, 0, )

0⃗0⃗

0⃗

1
2 , 0⃗ 1

2 , 0⃗

(0, −1, 0)(0, −1, +1) 1
2 , (0, −1, +1)

1
2 , (0, +1, +1)

M1

M3M2
M4

Figure 2 A VASS MDP A with four MECs and seven types.

Let us note that in the subclass of non-probabilistic VASS, MECs become strongly
connected components (SCCs), and types correspond to paths in the directed acyclic graph
of SCCs. Each such path determines the corresponding asymptotic increase of F , as
demonstrated in [1]. We conjecture that types play a similar role for VASS MDPs. More
precisely, we conjecture the following:

▶ Conjecture 3. If some polynomial is an upper estimate of F for β, then there exists a
tight estimate f of F for β.

Even if Conjecture 3 is proven wrong, there are interesting subclasses of VASS MDPs where
it holds, as demonstrated in subsequent sections.

For every pair of MECs M, M ′, let P (M, M ′) be the maximal probability (achievable by
some strategy) of reaching a state of M ′ from a state of M in A without passing through a
state of some other MEC M ′′. Note that P (M, M ′) is efficiently computable by standard
methods for finite-state MDPs. The weight of a given type β = M1, . . . , Mk is defined
as weight(β) =

∏k−1
i=1 P (Mi, Mi+1). Intuitively, weight(β) corresponds to the maximal

probability of “enforcing” the asymptotic growth of F according to the tight estimate f of
F for β achievable by some strategy.

Generally, higher asymptotic growth of F may be achievable for types with smaller
weights. Consider the following example to understand better the types, their weights, and
the associated tight estimates.

▶ Example 4. Let A be the VASS MDP of Fig. 2. There are four MECs M1, M2, M3, M4
where M2, M3, M4 are bottom MECs. Hence, there are four types of length one and three
types of length two. Let us examine the types of length two initiated in M1 for F ≡ C[c]
where c is the third counter.

Note that in M1, the first counter is repeatedly incremented/decremented with the same
probability 1

2 . The second counter “counts” these transitions and thus it is “pumped” to
a quadratic value (cf. the VASS MDP of Fig. 1). Then, a strategy may decide to move to
M2, where the value of the second counter is transferred to the third counter. Hence, n2 is
the tight estimate of C[c] for the type M1, M2, and weight(M1, M2) = 1. Alternatively, a
strategy may decide to move to the probabilistic state q. Then, either M3 or M4 is entered
with the same probability 1

2 , which implies weight(M1, M3) = weight(M1, M4) = 1
2 . In M3,

CONCUR 2023



12:8 Asymptotic Estimates for VASS MDPs

the third counter is unchanged, and hence n is the tight estimate of C[c] for the type M1, M3.
However, in M4, the second counter previously pumped to a quadratic value is repeatedly
incremented/decremented with the same probability 1

2 , and the third counter “counts” these
transitions. This means that n4 is a tight estimate of C[c] for the type M1, M4.

This analysis provides detailed information about the asymptotic growth of C[c] in A.
Every type shows “how” the growth specified by the corresponding tight estimate is achiev-
able, and its weight corresponds to the “maximal achievable probability of this growth”.
This information is completely lost when analyzing the maximal expected value of C[c]
for computations initiated in configurations pn where p is a state of M1, because these
expectations are infinite for all n ≥ 1.

Finally, let us clarify the relationship between the lower/upper estimates of F and the
asymptotic growth of Fexp. The following observation is easy to prove.

▶ Observation 5. If Fexp ∈ O(f) where f : N → N is an unbounded function, then f is an
upper estimate of F for every type. Furthermore, if f : N → N is a lower estimate of F for
some type, then Fexp ∈ Ω(f1−ϵ) for each ϵ > 0. However, if Fexp ∈ Ω(f) where f : N → N,
then f is not necessarily a lower estimate of F for some type.

Observation 5 shows that complexity estimates are generally more informative than the
asymptotics of Fexp even if Fexp ∈ Θ(f) for some “reasonable” function f . For example, it
may happen that there are only two types β1 and β2 where n and n3 are tight estimates of L
for β1 and β2 with weights 0.99 and 0.01, respectively. In this case, Lexp ∈ Θ(n3), although
the termination time is linear for 99% of computations.

4 A Dichotomy between Linear and Quadratic Estimates

In this section, we prove the following result:

▶ Theorem 6. Let A be a VASS MDP with DAG-like MEC decomposition and F one of
the complexity functions L, C[c], or T [t]. For every type β, we have that either n is a tight
estimate of F for β, or n2 is a lower estimate of F for β. It is decidable in polynomial time
which of the two cases holds.

Theorem 6 can be seen as a generalization of the linear/quadratic dichotomy results
previously achieved for non-deterministic VASS [4] and for the termination complexity in
VASS MDPs [3].

It suffices to prove Theorem 6 for the counter complexity. The corresponding results
for the termination and transition complexities then follow as simple consequences. To see
this, observe that we can extend a given VASS MDP with a fresh “step counter” sc that is
incremented by every transition (in the case of L) or the transition t (in the case of T [t])
and thus “emulate” L and T [t] as C[sc].

We first consider the case when A is strongly connected and then generalize the obtained
results to VASS MDPs with DAG-like MEC decomposition. So, let A be a strongly connected
d-dimensional VASS MDP and c a counter of A. The starting point of our analysis is the
dual constraint system designed in [23] for non-probabilistic strongly connected VASS. We
generalize this system to strongly connected VASS MDPs in the way shown in Figure 3 (the
original system of [23] can be recovered by disregarding the probabilistic states).

Note that solutions of both (I) and (II) are closed under addition. Therefore, both (I)
and (II) have solutions maximizing the specified objectives, computable in polynomial time.
For clarity, let us first discuss an intuitive interpretation of these solutions, starting with
simplified variants obtained for non-probabilistic VASS in [23].
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Constraint system (I):

Find x ∈ ZT such that∑
t∈T

x(t)ut ≥ 0⃗

x ≥ 0⃗

and for each p ∈ Q∑
t∈Out(p)

x(t) =
∑

t∈In(p)

x(t)

and for all p ∈ Qp, t ∈ Out(p)

x(t) = P (t) ·
∑

t′∈Out(p)

x(t′)

Objective: Maximize
the number of valid inequalities of
the form∑

t∈T

x(t)ut(c) > 0,

the number of valid inequalities of
the form x(t) > 0.

Constraint system (II):

Find y ∈ Zd, z ∈ ZQ such that

y ≥ 0⃗

z ≥ 0⃗

and for each (p, u, q) ∈ T where p ∈ Qn

z(q) − z(p) +
d∑

i=1

u(i)y(i) ≤ 0

and for each p ∈ Qp

∑
t=(p,u,q)∈Out(p)

P (t)
(
z(q) − z(p) +

d∑
i=1

ut(i)y(i)
)

≤ 0

Objective: Maximize
the number of valid inequalities of the form y(c) > 0,
the number of transitions t = (p, u, q) such that
p ∈ Qn and

z(q) − z(p) +
d∑

i=1

u(i)y(i) < 0,

the number of states p ∈ Qp such that

∑
t=(p,u,q)∈Out(p)

P (t)
(
z(q)−z(p)+

d∑
i=1

u(i)y(i)
)

< 0 .

Figure 3 Constraint systems for strongly connected VASS MDPs.

In the non-probabilistic case, a solution of (I) can be interpreted as a weighted multicycle,
i.e., as a collection of cycles M1, . . . , Mk together with weights a1, . . . , ak such that the total
effect of the multicycle, defined by

∑k
i=1 ai · effect(Mi), is non-negative for every counter.

Here, effect(Mi) is the effect of Mi on the counters. The objective of (I) ensures that the
multicycle includes as many transitions as possible, and the total effect of the multicycle is
positive on as many counters as possible. For VASS MDPs, the M1, . . . , Mk should not be
interpreted as cycles but as Markovian strategies for some ECs, and effect(Mi) corresponds
to the vector of expected counter changes per transition in Mi. The objective of (I) then
maximizes the number of transitions used in the strategies M1, . . . , Mk, and the number of
counters where the expected effect of the “multicycle” is positive.

A solution of (II) for non-probabilistic VASS can be interpreted as a ranking function
for configurations defined by rank(pv) = z(p) +

∑d
i=1 y(i)v(i), such that the value of rank

cannot increase when moving from a configuration pv to a configuration qu using a transition
t = (p, u − v, q). The objective of (II) ensures that as many transitions as possible decrease
the value of rank, and rank depends on as many counters as possible. For VASS MDPs,
this interpretation changes only for the outgoing transitions t = (p, u, q) of probabilistic
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states. Instead of considering the change of rank caused by such t, we now consider the
expected change of rank caused by executing a step from p. The objective ensures that rank
depends on as many counters as possible, the value of rank is decreased by as many outgoing
transitions of non-deterministic states as possible, and the expected change of rank caused
by performing an step is negative in as many probabilistic states as possible.

The key tool for our analysis is the following dichotomy:

▶ Lemma 7. Let x be a (maximal) solution to the constraint system (I) and y, z be a
(maximal) solution to the constraint system (II). Then, for each counter c we have that either
y(c) > 0 or

∑
t∈T x(t)ut(c) > 0, and for each transition t = (p, u, q) ∈ T we have that

if p ∈ Qn then either z(q) − z(p) +
∑d

i=1 u(i)y(i) < 0 or x(t) > 0;
if p ∈ Qp then either

∑
t′=(p,u′,q′)∈Out(p)

P (t′)
(
z(q′) − z(p) +

d∑
i=1

u′(i)y(i)
)

< 0

or x(t) > 0.

For the rest of this section, we fix a maximal solution x of (I) and a maximal solution
y, z of (II), such that the smallest non-zero element of y, z is at least 1. We define a ranking
function rank : C (A) → N as rank(sv) = z(s) +

∑d
i=1 v(i)y(i).

▶ Theorem 8. For each counter c, if y(c) > 0 then n is a tight estimate of C[c] (for the only
type of A). Otherwise, i.e., when y(c) = 0, the function n2 is a lower estimate of C[c].

Note that Theorem 8 implies Theorem 6 for strongly connected VASS MDPs. A proof is
obtained by combining the following lemmata.

▶ Lemma 9. For every counter c such that y(c) > 0, every ε > 0, every p ∈ Q, and every
σ ∈ Σ, there exists n0 such that for all n ≥ n0 we have that Pσ

pn(C[c] ≥ n1+ε) ≤ kn−ε

where k is a constant depending only on A.

For Targets ⊆ C (A) and m ∈ N, we use Reach≤m(Targets) to denote the set of all
computations π = p0v0, p1v1, . . . such that pivi ∈ Targets for some i ≤ m.

▶ Lemma 10. For each counter c such that y(c) = 0 we have that Cexp[c] ∈ Ω(n2) and n2 is
a lower estimate of C[c]. Furthermore, for every ε > 0 there exist a sequence of strategies
σ1, σ2, . . . , a constant k, and p ∈ Q such that for every 0 < ε′ < ε, we have that

lim
n→∞

Pσn
pn(Reach≤kn2−ε′

(Targetsn)) = 1

where Targetsn = {qv ∈ C (A) | v(c) ≥ n2−ε for every counter c such that y(c) = 0}.

It remains to prove Theorem 6 for VASS MDPs with DAG-like MEC decomposition.
Here, we proceed by analyzing the individual MECs one by one, transferring the output of
the previous MEC to the next one. We start in a top MEC with all counters initialized to n.
Here we can directly apply Theorem 8 to determine which of the C[c] have a tight estimate n

and a lower estimate n2, respectively. It follows from Lemma 10 that all counters c such
that n2 is a lover estimate of C[c] can be simultaneously pumped to n2−ε with very high
probability. However, this computation may decrease the counters c such that n is a tight
estimate for C[c]. To ensure that the value of these counters is still Ω(n) when entering the
next MEC, we first divide the initial counter vector n into two halves, each of size ⌊ n

2 ⌋, and
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then pump the counters c such that n2 is a lower estimate for C[c] to the value (⌊ n
2 ⌋)2−ε.

We show that the length of this computation is at most quadratic. The value of the other
counters stays at least ⌊ n

2 ⌋. When analyzing the next MEC, we treat the counters previously
pumped to quadratic values as “infinite” because they are sufficiently large so that they
cannot prevent pumping additional counters to asymptotically quadratic values. Technically,
this is implemented by modifying every counter update vector u so that u[c] = 0 for every
“quadratic” counter c. A precise formulation of these observations and the corresponding
proofs are given in [2].

We conjecture that the dichotomy of Theorem 6 holds for all VASS MDPs, but we do
not have a complete proof. If the MEC decomposition is not DAG-like, a careful analysis of
computations revisiting the same MECs is required; such repeated visits may but do not
have to enable additional asymptotic growth of C[c].

5 One-Dimensional VASS MDPs

In this section, we give a full and effective classification of tight estimates of L, C[c], and
T [t] for one-dimensional VASS MDPs. More precisely, we prove the following theorem:

▶ Theorem 11. Let A be a one-dimensional VASS MDP. We have the following:
Let c be the only counter of A. Then one of the following possibilities holds:

There exists a type β = M such that C[c] is unbounded for β.
n is a tight estimate of C[c] for every type.

Let t be a transition of A. Then one of the following possibilities holds:
There exists a type β = M such that T [t] is unbounded for β.
There exists a type β such that weight(β) > 0 and T [t] is unbounded for β.
There exists a type β = M such that n2 is a tight estimate of T [t] for β.
The transition t occurs in some MEC M , n is a tight estimate of T [t] for every type β

containing the MEC M , and 0 is a tight estimate of T [t] for every type β not containing
the MEC M .
The transition t does not occur in any MEC, and for every type β of length k we have
that k is an upper estimate of T [t] for β.

One of the following possibilities holds:
There exists a type β = M such that L is unbounded for β.
There exists a type β = M such that n2 is a tight estimate of L for β.
n is a tight estimate of L for every type.

It is decidable in polynomial time which of the above cases hold.

Note that some cases are mutually exclusive and some may hold simultaneously. Also
recall that weight(β) = 1 for every type β of length one, and weight(β) decays exponentially
in the length of β. Hence, if a transition t does not occur in any MEC, there is a constant
κ < 1 depending only on A such that Pσ

pv[T [t] ≥ i] ≤ κi for every σ ∈ Σ and pv ∈ C (A).
For the rest of this section, we fix a one-dimensional VASS MDP A = (Q, (Qn, Qp), T, P )

and some linear ordering ⊑ on Q. A proof of Theorem 11 is obtained by analyzing bottom
strongly connected components (BSCCs) in a Markov chain obtained from A by “applying”
some MD strategy σ (we use ΣMD to denote the class of all MD strategies for A). Recall that
σ selects the same outgoing transition in every p ∈ Qn whenever p is revisited, and hence we
can “apply” σ to A by removing the other outgoing transitions. The resulting Markov chain
is denoted by Aσ. Note that every BSCC B of Aσ can also be seen as an end component of
A. For a MEC M of A, we write B ⊆ M if all states and transitions of B are included in M .
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For every BSCC B of Aσ, let pB be the least state of B with respect to ⊑. Let UB be a
function assigning to every infinite path π = p0, u1, p1, u2, . . . the sum

∑ℓ
i=1 ui if p0 = pB

and ℓ ≥ 1 is the least index such that pℓ = pB, otherwise UB(π) = 0. Hence, UB(π) is the
change of the (only) counter c along π until pB is revisited.

▶ Definition 12. Let B be a BSCC of Aσ. We say that B is
increasing if Eσ

pB
(UB) > 0,

decreasing if Eσ
pB

(UB) < 0,
bounded-zero if Eσ

pB
(UB) = 0 and Pσ

pB
[UB=0] = 1,

unbounded-zero if Eσ
pB

(UB) = 0 and Pσ
pB

[UB=0] < 1.

Note that the above definition does not depend on the concrete choice of ⊑. We prove
the following results relating the existence of upper/lower estimates of L, C[c], and T [t] to
the existence of BSCCs with certain properties. More concretely,

for C[c], we show that
C[c] is unbounded for some type β = M if there exists an increasing BSCC B of Aσ

for some σ ∈ ΣMD such that B ⊆ M ;
otherwise, n is a tight estimate of C[c] for every type.

for L, we show that
L is unbounded for some type β = M if there exists an increasing or bounded-zero
BSCC B of Aσ for some σ ∈ ΣMD such that B ⊆ M ;
otherwise, n2 is an upper estimate of L for every type β;
if there exists an unbounded-zero BSCC B of Aσ for some σ ∈ ΣMD, then n2 is a lower
estimate of L for β = M where B ⊆ M ;
if every BSCC B of every Aσ is decreasing, then Lexp(n) ∈ Θ(n) (this follows from
[3]), and hence n is a tight estimate of L for every type (Observation 5);

for T [t], we distinguish two cases:
If t is not contained in any MEC of A, then for every type β of length k, the
transition t cannot be executed more than k times along a arbitrary computation π

where mecs(π) = β.
If t is contained in a MEC M of A, then
∗ T [t] is unbounded for β = M if there exist an increasing BSCC B of Aσ for some

σ ∈ ΣMD such that B ⊆ M , or bounded-zero BSCC B of Aσ for some σ ∈ ΣMD
such that B contains t;

∗ T [t] is unbounded for every β = M1, . . . , Mk such that M = Mi for some i and
there exists an increasing BSCC B of Aσ for some σ ∈ ΣMD such that B ⊆ Mj for
some j ≤ i;

∗ otherwise, n2 is an upper estimate of T [t] for every type;
∗ if there is an unbounded-zero BSCC B of Aσ for some σ ∈ ΣMD such that B

contains t, then n2 is a lower estimate of T [t] for β = M ;
∗ if every BSCC B of every Aσ is decreasing, then T [t]exp(n) ∈ Θ(n) (this follows

from [3]), and hence n is an upper estimate of T [t] for every type (Observation 5).

The polynomial time bound of Theorem 11 is then obtained by realizing the following:
First, we need to decide the existence of an increasing BSCC of Aσ for some σ ∈ ΣMD.
This can be done in polynomial time using the constraint system (I) of Figure 3. If no such
increasing BSCC exists, we need to decide the existence of a bounded-zero BSCC, which
can be achieved in polynomial time for a subclass of one-dimensional VASS MDPs where
no increasing BSCC exists. Then, if no bounded-zero BSCC exists, we need to decide the
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existence of an unbounded-zero BSCC, which can again be done in polynomial time using
the constraint system (I) of Figure 3 (realize that any solution x of (I) implies the existence
of a BSCC that is either increasing, bounded-zero, or unbounded-zero).

Hence, the “algorithmic part” of Theorem 11 is an easy consequence of the above
observations, but there is one remarkable subtlety. Note that we need to decide the existence
of a bounded-zero BSCC only for a subclass of one-dimensional VASS MDPs where no
increasing BSCCs exist. This is actually crucial, because deciding the existence of a bounded-
zero BSCC in general one-dimensional VASS MDPs is NP-complete [2].

The main difficulties requiring novel insights are related to proving the observation about
C[c], stating that if there is no increasing BSCC of Aσ for any σ ∈ ΣMD, then n is an upper
estimate of C[c] for every type. A comparably difficult (and in fact closely related) task is to
show that if there is no increasing or bounded-zero BSCC, then n2 is an upper estimate of L
for every type. Note that here we need to analyze the behaviour of A under all strategies
(not just MD), and consider the notoriously difficult case when the long-run average change
of the counter caused by applying the strategy is zero. Here we need to devise a suitable
decomposition technique allowing for interpreting general strategies as “interleavings” of MD
strategies and lifting the properties of MD strategies to general strategies. Furthermore, we
need to devise techniques for reducing the problems of our interest to analyzing certain types
of random walks that have already been studied in stochastic process theory. We discuss
this more in the following subsection, and we refer to [2] for a complete exposition of these
results.

5.1 MD decomposition
As we already noted, one crucial observation behind Theorem 11 is that if there is no
increasing BSCC of Aσ for any σ ∈ ΣMD, then n is an upper estimate of C[c] for every type.
In this section, we sketch the main steps towards this result.

First, we show that every path in A can be decomposed into “interweavings” of paths
generated by MD strategies.

Let α = p0, v1, . . . , pk be a path. For every i ≤ k, we use α..i = p0, v1, . . . , pi to
denote the prefix of α of length i. We say that α is compatible with a MD strategy σ if
σ(α..i) = (pi, vi+1, pi+1) for all i < k such that pi ∈ Qn. Furthermore, for every path β =
q0, u1, q1, . . . , qℓ such that pk = q0, we define a path α ◦ β = p0, v1, p1, . . . , pk, u1, q1, . . . , qℓ.

▶ Definition 13. Let A be a VASS MDP, π1, . . . , πk ∈ ΣMD, and p1, . . . , pk ∈ Q. An
MD-decomposition of a path α = s1, . . . , sm under π1, . . . , πk and p1, . . . , pk is a decompos-
ition of α into finitely many paths α = γ1

1 ◦ · · · ◦ γk
1 ◦ γ1

2 ◦ · · · ◦ γk
2 ◦ · · · ◦ γ1

ℓ ◦ · · · ◦ γk
ℓ

satisfying the following conditions:
for all i < ℓ and j ≤ k, the last state of γj

i is the same as the first state of γj
i+1;

for every j ≤ k, γj
1 ◦ · · · ◦ γj

ℓ is a path that begins with pj and is compatible with πj.

Note that π1, . . . , πk and p1, . . . , pk are not necessarily pairwise different, and the length
of γj

i can be zero. Also note that the same α may have several MD-decompositions.
Intuitively, an MD decomposition of α shows how to obtain α by repeatedly selecting

zero or more transitions by π1, . . . , πk. The next lemma shows that for every VASS MDP A,
one can fix MD strategies π1, . . . , πk and states p1, . . . , pk such that every path α in A has
an MD-decomposition under π1, . . . , πk and p1, . . . , pk. Furthermore, such a decomposition
is constructible online as α is read from left to right.
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▶ Lemma 14. For every VASS MDP A, there exist π1, . . . , πk ∈ ΣMD, p1, . . . , pk ∈ Q, and
a function DecompA such that the following conditions are satisfied for every finite path α:

DecompA(α) returns an MD-decomposition of α under π1, . . . , πk and p1, . . . , pk.
DecompA(α) = DecompA(α..len(α)−1) ◦ γ1 ◦ · · · ◦ γk, where exactly one of γi has positive
length (the i is called the mode of α).
If the last state of α..len(α)−1 is probabilistic, then the mode of α does not depend on the
last transition of α.

According to Lemma 14, every strategy σ for A just performs a certain “interleaving”
of the MD strategies π1, . . . , πk initiated in the states p1, . . . , pk. We aim to show that if
every BSCC of every Aπj

is non-increasing, then n is an upper estimate of C[c] for every
type. Since we do not have any control over the length of the individual γj

i occurring in
MD-decompositions, we need to introduce another concept of extended VASS MDPs where
the strategies π1, . . . , πk can be interleaved in “longer chunks”. Intuitively, an extended VASS
MDP is obtained from A by taking k copies of A sharing the same counter. The j-th copy
selects transitions according to πj . At each round, only one πj makes a move, where the j

is selected by a special type of “pointing” strategy defined especially for extended MDPs.
Note that σ can be faithfully simulated in the extended VASS MDP by a pointing strategy
that selects the indexes consistently with DecompA. However, we can also construct another
pointing strategy that simulates each πj longer (i.e., “precomputes” the steps executed by πj

in the future) and thus “close cycles” in the BSCC visited by πj . This computation can be
seen as an interleaving of a finite number of independent random walks with non-positive
expectations. Then, we use the optional stopping theorem to get an upper bound on the total
expected number of “cycles”, which can then be used to obtain the desired upper estimate.
We refer to [2] for details.

5.2 A Note about Energy Games
One-dimensional VASS MDPs are closely related to energy games/MDPs [6, 7, 8, 13]. An
important open problem for energy games is the complexity of deciding the existence of
a safe configuration where, for a sufficiently high energy amount, the responsible player
can avoid decreasing the energy resource (counter) below zero. This problem is known
to be in NP ∩ coNP, and a pseudopolynomial algorithm for the problem exists; however,
it is still open whether the problem is in P when the counter updates are encoded in
binary. Our analysis shows that this problem is solvable in polynomial time for energy
(i.e., one-dimensional VASS) MDPs A such that there is no increasing SCC of Aσ for any
σ ∈ ΣMD.

We say that a SCC B of Aσ is non-decreasing if B does not contain any negative cycles.
Note that every bounded-zero SCC is non-decreasing, and a increasing SCC may but does
not have to be non-decreasing.

▶ Lemma 15. An energy MDP has a safe configuration iff there exists a non-decreasing
SCC B of Aσ for some σ ∈ ΣMD.

The “⇐” direction of Lemma 15 is immediate, and the other direction can be proven
using our MD decomposition technique, see [2].

Note that if there is no increasing SCC B of Aσ for any σ ∈ ΣMD, then the existence of
a non-decreasing SCC is equivalent to the existence of a bounded-zero SCC, and hence it
can be decided in polynomial time (see the results presented above). However, for general
energy MDPs, the best upper complexity bound for the existence of a non-decreasing
SCC is NP ∩ coNP. Interestingly, a small modification of this problem already leads to
NP-completeness, as demonstrated by the following lemma.
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▶ Lemma 16. The problem whether there exists a non-decreasing SCC B of Aσ for some
σ ∈ ΣMD such that B contains a given state p ∈ Q is NP-complete.

6 Conclusions

We introduced new estimates for measuring the asymptotic complexity of probabilistic
programs and their VASS abstractions. We demonstrated the advantages of these measures
over the asymptotic analysis of expected values, and we have also shown that tight complexity
estimates can be computed efficiently for certain subclasses of VASS MDPs.

A natural continuation of our work is extending the results achieved for one-dimensional
VASS MDPs to the multi-dimensional case. In particular, an interesting open question is
whether the polynomial asymptotic analysis for non-deterministic VASS presented in [23]
can be generalized to VASS MDPs. Since the study of multi-dimensional VASS MDPs is
notoriously difficult, a good starting point would be a complete understanding of VASS
MDPs with two counters.
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