
A Game of Pawns
Guy Avni #Ñ

University of Haifa, Israel

Pranav Ghorpade # Ñ

Chennai Mathematical Institute, India

Shibashis Guha # Ñ

Tata Institute of Fundamental Research, Mumbai, India

Abstract
We introduce and study pawn games, a class of two-player zero-sum turn-based graph games. A
turn-based graph game proceeds by placing a token on an initial vertex, and whoever controls the
vertex on which the token is located, chooses its next location. This leads to a path in the graph,
which determines the winner. Traditionally, the control of vertices is predetermined and fixed. The
novelty of pawn games is that control of vertices changes dynamically throughout the game as
follows. Each vertex of a pawn game is owned by a pawn. In each turn, the pawns are partitioned
between the two players, and the player who controls the pawn that owns the vertex on which the
token is located, chooses the next location of the token. Control of pawns changes dynamically
throughout the game according to a fixed mechanism. Specifically, we define several grabbing-based
mechanisms in which control of at most one pawn transfers at the end of each turn. We study the
complexity of solving pawn games, where we focus on reachability objectives and parameterize the
problem by the mechanism that is being used and by restrictions on pawn ownership of vertices.
On the positive side, even though pawn games are exponentially-succinct turn-based games, we
identify several natural classes that can be solved in PTIME. On the negative side, we identify
several EXPTIME-complete classes, where our hardness proofs are based on a new class of games
called Lock & Key games, which may be of independent interest.
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1 Introduction

Two-player zero-sum graph games constitute a fundamental class of games [5] with applications,
e.g., in reactive synthesis [26], multi-agent systems [4], and more. A graph game is played on
a directed graph ⟨V, E⟩, where V = V1 ∪ V2 is a fixed partition of the vertices. The game
proceeds as follows. A token is initially placed on some vertex. When the token is placed on
v ∈ Vi, for i ∈ {1, 2}, Player i chooses u with ⟨v, u⟩ ∈ E to move the token to. The outcome
of the game is an infinite path, called a play. We focus on reachability games: Player 1 wins
a play iff it visits a set of target vertices T ⊆ V .

In this paper, we introduce pawn games, which are graph games in which the control of
vertices changes dynamically throughout the game as follows. The arena consists of d pawns.
For 1 ≤ j ≤ d, Pawn j owns a set of vertices Vj . Throughout the game, the pawns are
distributed between the two players, and in each turn, the control of pawns determines which
player moves the token. Pawn control may be updated after moving the token by running a
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16:2 A Game of Pawns
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Figure 1 Left: The pawn game G1; a non-monotonic game under optional-grabbing. Right: The
pawn game G2 in which Player 1 wins from ⟨v0, {v0, v1}⟩, but must visit v1 twice.

predetermined mechanism. Formally, a configuration of a pawn game is a pair ⟨v, P ⟩, where
v denotes the position of the token and P the set of pawns that Player 1 controls. The
player who moves the token is determined according to P : if Player 1 controls a pawn that
owns v, then Player 1 moves. Specifically, when each vertex is owned by a unique pawn,
i.e., V1, . . . , Vd partitions V , then Player 1 moves iff he controls the pawn that owns v. We
consider the following mechanisms for exchanging control of pawns. For i ∈ {1, 2}, we denote
by −i = 3 − i the “other player”.
Optional grabbing. For i ∈ {1, 2}, following a Player i move, Player −i has the option to

grab one of Player i’s pawns; namely, transfer one of the pawns that Player −i to his
control.

Always grabbing. For i ∈ {1, 2}, following every Player i move, Player −i grabs one of
Player i’s pawns.

Always grabbing or giving. Following a Player i move, Player −i either grabs one of
Player i’s pawns or gives her one of his pawns.

k-grabbing. For k ∈ N, Player 1 can grab at most k pawns from Player 2 throughout the
game. In each round, after moving the token, Player 1 has the option of grabbing one of
the pawns that is controlled by Player 2. A grabbed pawn stays in the control of Player 1
for the remainder of the game. Note the asymmetry: only Player 1 grabs pawns.

Note that players in pawn games have two types of actions: moving the token and
transferring control of pawns. We illustrate the model and some interesting properties of it.

▶ Example 1. Consider the game G1 in Fig. 1(left). We consider optional-grabbing and
the same reasoning applies for always-grabbing. Each vertex is owned by a unique pawn,
and Player 1’s target is t. Note that Player 2 wins if the game reaches s. We claim that G1
is non-monotonic: increasing the set of pawns that Player 1 initially controls is “harmful”
for him. Formally, Player 1 wins from configuration ⟨v0, ∅⟩, i.e., when he initially does not
control any pawns, but loses from ⟨v0, {v0}⟩, i.e., when controlling v0. Indeed, from ⟨v0, ∅⟩,
Player 2 initially moves the token from v0 to v1, Player 1 then uses his option to grab v1,
and wins by proceeding to t. Second, from ⟨v0, {v0}⟩, Player 1 makes the first move and
thus cannot grab v1. Since Player 2 controls v1, she wins by proceeding to s. In Thm. 5
and 18, we generalize this observation and show, somewhat surprisingly, that if a player wins
from the current vertex v, then he wins from v with fewer pawns as long as if he controlled v

previously, then he maintains control of v.
Consider the game G2 in Fig. 1 (right). We consider optional-grabbing, each vertex is

owned by a unique pawn, and Player 1’s target is t. We claim that Player 1 wins from
configuration ⟨v0, {v0, v2}⟩ and Player 2 can force the game to visit v1 twice. This differs
from turn-based games in which if Player 1 wins, he can force winning while visiting each
vertex at most once. To illustrate, consider the following outcome. Player 1 makes the first
move, so he cannot grab v1. Player 2 avoids losing by moving to v2. Player 1 will not grab,
move to v3, Player 2 moves to v1, then Player 1 grabs v1 and proceeds to t. We point out
that no loop is closed in the explicit configuration graph that corresponds to G2.
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Applications

Pawn games model multi-agent settings in which the agent who acts in each turn is not
predetermined. We argue that such settings arise naturally.

Quantitative shield synthesis. It is common practice to model an environment as a Kripke
structure (e.g. [27]), which for sake of simplicity, we will think of as a graph in which vertices
model environment states and edges model actions. A policy chooses an outgoing edge from
each vertex. A popular technique to obtain policies is reinforcement learning (RL) [29] whose
main drawback is lack of worst-case guarantees [13]. In order to regain safety at runtime,
a shield [19, 6, 13] is placed as a proxy: in each point in time, it can alter the action of a
policy. The goal in shield synthesis is to synthesize a shield offline that ensures safety at
runtime while minimizing interventions. We suggest a procedure to synthesize shields based
on k-grabbing pawn games. Player 2 models an unknown policy. We set his goal to reaching
an unsafe state. Player 1 (the shield) ensures safety by grabbing at most k times. Grabbing
is associated with a shield intervention. Note that once the shield intervenes in a vertex v, it
will choose the action at v in subsequent turns. An optimal shield is obtained by finding the
minimal k for which Player 1 has a winning strategy.

We describe other examples that can be captured by a k-grabbing pawn game in which
Player 1 models an “authority” that has the “upper hand”, and aims to maximize freedom
of action for Player 2 while using grabs to ensure safety. Consider a concurrent system in
which Player 2 models a scheduler and Player 1 can force synchronization, e.g., by means of
“locks” or “fences” in order to maintain correctness (see [14]). Synchronization is minimized
in order to maximize parallelism and speed. As another example, Player 1 might model an
operating system that allows freedom to an application and blocks only unsafe actions. As a
final example, in [2], synthesis for a safety specification was enriched with “advice” given by
an external policy for optimizing a soft quantitative objective. Again, the challenge is how
to maximize accepting advice while maintaining safety.

Modelling crashes. A sabotage game [31] is a two-player game which is played on a graph.
Player 1 (the Runner) moves a token throughout the graph with the goal of reaching a target
set. In each round, Player 2 (the Saboteur) crashes an edge from the graph with the goal of
preventing Player 1 from reaching his target. Crashes are a simple type of fault that restrict
Player 1’s actions. A malicious fault (called byzantine faults [21]) actively tries to harm the
network, e.g., by moving away from the target. Pawn games can model sabotage games with
byzantine faults: each vertex (router) is owned by a unique pawn, all pawns are initially
owned by Player 1, and a Player 2 grab corresponds to a byzantine fault. Several grabbing
mechanisms are appealing in this context: k-grabbing restricts the number of faults and
optional- and always-grabbing accommodate repairs of routers.

Our results

We distinguish between three types of ownership of vertices. Let V = V1 ∪ . . . ∪ Vd be a
set of vertices, where for j ∈ {1, . . . , d}, Pawn j owns the vertices in Vj . In one vertex per
pawn (OVPP) games, each pawn owns exactly one vertex, thus Vj is a singleton, for all
j ∈ {1, . . . , d}. In multiple vertices per pawn (MVPP) games, V1, . . . , Vd consists of a partition
of V , where the sets might contain more than one vertex. In overlapping multiple vertices
per pawn (OMVPP) games, the sets might overlap. For example, in the shield synthesis
application above, the type of ownership translates to dependencies between interventions:
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OVPP models no dependencies, MVPP models cases in which interventions come in “batches”,
e.g., grabbing control in all states labeled by some predicate, and OMVPP models the case
when the batches overlap. We define that Player 1 moves the token from a vertex v iff he
controls at least one of the pawns that owns v. Clearly, OMVPP generalizes MVPP, which
in turn generalizes OVPP.

We consider the problem of deciding whether Player 1 wins a reachability pawn game
from an initial configuration of the game. Our results are summarized below.

Mechanisms OVPP MVPP OMVPP
k-grabbing PTIME (Thm. 22) NP-hard (Thm. 23) PSPACE-C (Thm. 26)
Optional-grabbing PTIME (Thm. 7) EXPTIME-C (Thm. 12) EXPTIME-C (Thm. 12)

Always PTIME
(grab or give; Thm. 21)

PTIME (grab or give; Thm. 21)
EXPTIME-C (grab; Thm. 17) EXPTIME-C (grab; Thm. 17)

Pawn games are succinctly-represented turn-based games. A naive algorithm to solve
a pawn game constructs and solves an explicit turn-based game on its configuration graph
leading to membership in EXPTIME. We thus find the positive results to be pleasantly
surprising; we identify classes of succinctly-represented games that can be solved in PTIME.
Each of these algorithms is obtained by a careful and tailored modification to the attractor-
computation algorithm for turn-based reachability games. For OMVPP k-grabbing, the
PSPACE upper bound is obtained by observing that grabs in a winning strategy must be
spaced by at most |V | turns, implying that a game ends within polynomial-many rounds
(Lem. 25).

Our EXPTIME-hardness proofs are based on a new class of games called Lock & Key
games and may be of independent interest. A Lock & Key game is a turn-based game that
is enriched with a set of locks, where each lock is associated with a key. Each edge is labeled
by a subset of locks and keys. A lock can either be closed or open. An edge that is labeled
with a closed lock cannot be crossed. A lock changes state once an edge labeled by its
key is traversed. We show two reductions. The first shows that deciding the winner in
Lock & Key games is EXPTIME-hardness. Second, we reduce Lock & Key games to MVPP
optional-grabbing pawn games. The core of the reduction consists of gadgets that simulate
the operation of locks and keys using pawns. Then, we carefully analyze the pawn games
that result from applying both reductions one after the other, and show that the guarantees
are maintained when using always grabbing instead of optional grabbing. The main difficulty
in constructing a winning Player i strategy under always-grabbing from a winning Player i

strategy under optional-grabbing is to ensure that throughout the game, both players have
sufficient and the correct pawns to grab (Lem. 16).

Related work

The semantics of pawn games is inspired by the seminal paper [4]. There, the goal is, given
a game, an objective O, and a set C of pawns (called “players” there), to decide whether
Player 1 (called a “coalition” there) can ensure O when he controls the pawns in C. A key
distinction from pawn games is that the set C that is controlled by Player 1 is fixed. The
paper introduced a logic called alternating time temporal logic, which was later significantly
extended and generalized to strategy logic [15, 23, 24]. Multi-player games with rational
players have been widely studied; e.g., finding Nash equilibrium [30] or subgame perfect
equilibrium [12], and rational synthesis [17, 20, 32, 11]. A key distinction from pawn games
is that, in pawn games, as the name suggests, the owners of the resources (pawns) have no
individual goals and act as pawns in the control of the players. Changes to multi-player
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graph games in order guarantee existence or improve the quality of an equilibrium have been
studied [3, 25, 10]. The key difference from our approach is that there, changes occur offline,
before the game starts, whereas in pawn games, the transfer of vertex ownership occurs online.
In bidding games [22, 8] (see in particular, discrete-bidding games [16, 1, 9]) control of vertices
changes online: players have budgets, and in each turn, a bidding determines which player
moves the token. Bidding games are technically very different from pawn games. While
pawn games allow varied and fine-grained mechanisms for transfer of control, bidding games
only consider strict auction-based mechanisms, which lead to specialized proof techniques
that cannot be applied to pawn games. For example, bidding games are monotonic – more
budget cannot harm a player – whereas pawn games are not (see Ex. 1).

2 Preliminaries

For k ∈ N, we use [k] to denote the set {1, . . . , k}. For i ∈ {1, 2}, we use −i = 3 − i to refer
to the “other player”.

Turn-based games

Throughout this paper we consider reachability objectives. For general graph games, see for
example [5]. A turn-based game is G = ⟨V, E, T ⟩, where V = V1 ∪ V2 is a set of vertices that
is partitioned among the players, E ⊆ V × V is a set of directed edges, and T ⊆ V is a set of
target vertices for Player 1. Player 1’s goal is to reach T and Player 2’s goal is to avoid T .
For v ∈ V , we denote the neighbors of v by N(v) = {u ∈ V : E(v, u)}. Intuitively, a strategy
is a recipe for playing a game: in each vertex it prescribes a neighbor to move the token to.
Formally, for i ∈ {1, 2}, a (memoryless) strategy for Player i is a function f : Vi → V such
that for every v ∈ Vi, we have f(v) ∈ N(v).1 An initial vertex v0 ∈ V together with two
strategies f1 and f2 for the players, give rise to a unique play, denoted π(v0, f1, f2), which is
a finite or infinite path in G and is defined inductively as follows. The first vertex is v0. For
j ≥ 0, assuming v0, . . . , vj has been defined, then vj+1 = fi(vj), where vj ∈ Vi, for i ∈ {1, 2}.
A Player 1 strategy f1 is winning from v0 ∈ V if for every Player 2 strategy f2, the play
π(v0, f1, f2) ends in T . Dually, a Player 2 strategy f2 is winning from v0 ∈ V if for every
Player 1 strategy f1, the play π(v0, f1, f2) does not visit T .

▶ Theorem 2 ([18]). Turn based games are determined: from each vertex, one of the players
has a (memoryless) winning strategy. Deciding the winner of a game is in PTIME.

Proof sketch. For completeness, we briefly describe the classic attractor-computation al-
gorithm. Consider a game ⟨V, E, T ⟩. Let W0 = T . For i ≥ 1, let Wi = Wi−1 ∪ {v ∈ V1 :
N(v) ∩ Wi ̸= ∅} ∪ {v ∈ V2 : N(v) ⊆ Wi}. One can prove by induction that Wi consists of the
vertices from which Player 1 can force reaching T within i turns. The sequence necessarily
reaches a fixed point W 1 =

⋃
i≥1 Wi, which can be computed in linear time. Finally, one can

show that Player 2 has a winning strategy from each v /∈ W 1. ◀

Pawn games

A pawn game with d ∈ N pawns is P = ⟨V, E, T, M⟩, where V = V1 ∪ . . . ∪ Vd and for j ∈ [d],
Vj denotes the vertices that Pawn j owns, E and T are as in turn-based games, and M is a
mechanism for exchanging pawns as we elaborate later. Player 1 wins a play if it reaches T .

1 We restrict to memoryless strategies since these suffice for reachability objectives.
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We stress that the set of pawns that he controls when reaching T is irrelevant. We omit M
when it is clear from the context. We distinguish between classes of pawn games based on
the type of ownership of vertices:
One Vertex Per Pawn (OVPP). There is a one-to-one correspondence between pawns and

vertices; namely, |V | = d and each Vj is singleton, for j ∈ [d]. For j ∈ [d] and {vj} = Vj ,
we sometimes abuse notation by referring to Pawn j as vj .

Multiple Vertices Per Pawn (MVPP). Each vertex is owned by a unique pawn but a pawn
can own multiple vertices, thus V1, . . . , Vd is a partition of V .

Overlapping Multiple Vertices Per Pawn (OMVPP). Each pawn can own multiple vertices
and a vertex can be owned by multiple pawns, i.e., we allow Vi ∩ Vj ̸= ∅, for i ̸= j.

Clearly OMVPP generalizes MVPP, which generalizes OVPP. In MVPP, we sometimes abuse
notation and refer to a pawn by a vertex that it owns.

A configuration of a pawn game is ⟨v, P ⟩, meaning that the token is placed on a vertex
v ∈ V and P ⊆ [d] is the set of pawns that Player 1 controls. Implicitly, Player 2 controls the
complement set P = [d] \ P . Player 1 moves the token from ⟨v, P ⟩ iff he controls at least one
pawn that owns v. Note that in OVPP and MVPP, let j ∈ [d] with v ∈ Vj , then Player 1
moves iff i ∈ P . Once the token moves, we update the control of the pawns by applying M.

From pawn games to turn-based games. We describe the formal semantics of pawn games
together with the pawn-exchanging mechanisms by describing the explicit turn-based game
that corresponds to a pawn game. For a pawn game G = ⟨V, E, T, M⟩, we construct the
turn-based game G′ = ⟨V ′, E′, T ′⟩. For i ∈ {1, 2}, denote by V ′

i Player i’s vertices in G′.
The vertices of G′ consist of two types of vertices: configuration vertices C = V × 2[d], and
intermediate vertices V × C. When M is k-grabbing, configuration vertices include the
remaining number of pawns that Player 1 can grab, as we elaborate below. The target
vertices are T ′ = {⟨v, P ⟩ : v ∈ T}. We describe E′ next. For a configuration vertex c = ⟨v, P ⟩,
we define c ∈ V ′

1 iff there exists j ∈ P such that v ∈ Vj . That is, Player 1 moves from c in
G′ iff he moves from c in G. We define the neighbors of c to be the intermediate vertices
{⟨v′, c⟩ : v′ ∈ N(v)}. That is, moving the token in G′ from c to ⟨v′, c⟩ corresponds to moving
the token from v to v′ in G. Moves from intermediate vertices represent an application of M.
We consider the following mechanisms.

Optional grabbing. For i ∈ {1, 2}, following a Player i move, Player −i has the option to
grab one of Player i’s pawns. Formally, for a configuration vertex c = ⟨v, P ⟩ ∈ V ′

1 , we have
N(c) ⊆ V ′

2 . From ⟨v′, c⟩ ∈ N(c), Player 2 has two options: (1) do not grab and proceed to
⟨v′, P ⟩, or (2) grab j ∈ P , and proceed to ⟨v′, P \ {j}⟩. The definition for Player 2 is dual.

Always grabbing. For i ∈ {1, 2}, following a Player i move, Player −i always has to grab
one of Player i’s pawns. The formal definition is similar to optional grabbing with the
difference that option (1) of not grabbing is not available to the players. We point out that
Player −i grabs only after Player i has moved, which in particular implies that Player i

controls at least one pawn that Player −i can grab.

Always grabbing or giving. Following a Player i move, Player −i must either grab one of
Player i’s pawns or give her a pawn. The formal definition is similar to always grabbing with
the difference that, for an intermediate vertex ⟨v′, ⟨v, P ⟩⟩, there are both neighbors of the
form ⟨v′, P \ {j}⟩, for j ∈ P , and neighbors of the form ⟨v′, P ∪ {j}⟩, for j /∈ P .
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k-grabbing. After each round, Player 1 has the option of grabbing a pawn from Player 2,
and at most k grabs are allowed in a play. A configuration vertex in k-grabbing is c = ⟨v, P, r⟩,
where r ∈ [k]∪{0} denotes the number of grabs remaining. Intermediate vertices are Player 1
vertices. Let ⟨v′, c⟩ ∈ V ′

1 . Player 1 has two options: (1) do not grab and proceed to the
configuration vertex ⟨v′, P, r⟩, or (2) grab j /∈ P , and proceed to ⟨v′, P ∪ {j}, r − 1⟩ when
r > 0. Note that grabs are not allowed when r = 0 and that Pawn j stays at the control of
Player 1 for the remainder of the game.

Since pawn games are succinctly-represented turn-based games, Thm. 2 implies determin-
acy; namely, one of the players wins from each initial configuration. We study the problem
of determining the winner of a pawn game, formally defined as follows.

▶ Definition 3. Let α ∈ {OVPP, MVPP, OMVPP} and β be a pawn-grabbing mechanism.
The problem α β PAWN-GAMES takes as input an α β pawn game G and an initial
configuration c, and the goal is to decide whether Player 1 wins from c in G.

A naive algorithm to solve a pawn game applies attractor computation on the explicit
turn-based game, which implies the following theorem.

▶ Theorem 4. α β PAWN-GAMES is in EXPTIME, for all values of α and β.

3 Optional-Grabbing Pawn Games

Before describing our complexity results, we identify a somewhat unexpected property of
MVPP optional-grabbing games. Consider a vertex v and two sets of pawns P and P ′ having
P ′ ⊆ P . Intuitively, it is tempting to believe that Player 1 “prefers” configuration c = ⟨v, P ⟩
over c′ = ⟨v, P ′⟩ since he controls more pawns in c. Somewhat surprisingly, the following
theorem shows that the reverse holds (see also Ex. 1). More formally, the theorem states
that if Player 1 wins from c, then he also wins from c′, under the restriction that if he makes
the first move at c (i.e., he controls v in c), then he also makes the first move in c′ (i.e., he
controls v in c′).

▶ Theorem 5. Consider a configuration ⟨v, P ⟩ of an MVPP optional-grabbing pawn game G.
Let j ∈ [d] such that v ∈ Vj and P ′ ⊆ P . Assuming that j ∈ P implies j ∈ P ′, if Player 1
wins from ⟨v, P ⟩, he wins from ⟨v, P ′⟩. Assuming that j ∈ P ′ implies j ∈ P , if Player 2 wins
from ⟨v, P ′⟩, she wins from ⟨v, P ⟩.

Proof. We prove for Player 1 and the proof for Player 2 follows from determinacy. Let G, P ,
P ′, c = ⟨v, P ⟩, and c′ = ⟨v, P ′⟩ be as in the theorem statement. Let G′ be the turn-based
game corresponding to G. For i ≥ 0, let Wi be the set of vertices in G′ from which Player 1
can win in at most i rounds (see Thm. 2). The following claim clearly implies the theorem.
Its proof, which proceeds by a careful induction, can be found in the full version.
Claim: Configuration vertices: for i ≥ 0, if ⟨v, P ⟩ ∈ Wi, then ⟨v, P ′⟩ ∈ Wi. Intermediate
vertices: for i ≥ 1 and every vertex u ∈ N(v), if ⟨u, c⟩ ∈ Wi−1, then ⟨u, c′⟩ ∈ Wi−1. ◀

Thm. 5 implies that we can restrict attention to strategies that only “grab locally”. The
assumption j ∈ P implies j ∈ P ′ also implies that if Player 1 wins from ⟨v, P ⟩ when Player 2
controls v then Player 1 also wins from ⟨v, P ′⟩ since P ′ ⊆ P .

▶ Corollary 6. Consider an MVPP optional-grabbing game. Suppose that Player 1 controls
P ⊆ [d], and that Player 2 moves the token to a vertex v owned by Pawn j, i.e., v ∈ Vj.
Player 1 has the option to grab. If Player 1 can win by grabbing a pawn j′ ≠ j, i.e., a pawn
that does not own the next vertex, he can win by not grabbing at all. Formally, if Player 1
wins from ⟨v, P ∪ {j′}⟩, he also wins from ⟨v, P ⟩. And dually for Player 2.
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16:8 A Game of Pawns

Algorithm 1 Given an OVPP optional-grabbing pawn game G = ⟨V, E, T ⟩ and an initial config-
uration c = ⟨v, P0⟩, determines which player wins G from c.

1: W0 = T , i = 0
2: while True do
3: if v0 ∈ Wi then return Player 1
4: Wi+1 = Wi ∪ {u : N(u) ⊆ Wi}
5: if Wi ̸= Wi+1 then i := i + 1; Continue
6: B := {u : N(u) ∩ Wi ̸= ∅}
7: if B = ∅ then return Player 2
8: if v0 ∈ B and v0 ∈ P0 then return Player 1
9: B′ := {u ∈ B : N(u) ⊆ B ∪ Wi}

10: if B′ ̸= ∅ then Wi+1 := Wi ∪ B′; i := i + 1; Continue
11: R = {u : N(u) ⊆ B}
12: if R \ P0 ̸= ∅ then Wi+1 = Wi ∪ (R \ P0); i := i + 1
13: else return Player 2

One can show that Thm. 5 and Cor. 6 do not hold for OMVPP optional-grabbing games.

3.1 OVPP: A PTIME algorithm

We turn to study complexity results, and start with the following positive result.

▶ Theorem 7. OVPP optional-grabbing PAWN-GAMES is in PTIME.

Proof. We describe the intuition of the algorithm, the pseudo-code can be found in Alg. 1,
and its correctness is proven in the full version. Recall that in turn-based games (see Thm. 2),
the attractor computation iteratively “grows” the set of states from which Player 1 wins:
initially W0 = T , and in each iteration, a vertex u is added to Wi if (1) u belongs to Player 2
and all its neighbors belong to Wi or (2) u belongs to Player 1 and it has a neighbor in
Wi. In optional-grabbing games, applying attractor computation is intricate since vertex
ownership is dynamic. Note that the reasoning behind (1) above holds; namely, if N(u) ⊆ Wi,
no matter who controls u, necessarily Wi is reached in the next turn. However, the reasoning
behind (2) fails. Consider a Player 1 vertex u that has two neighbors v1 ∈ Wi and v2 /∈ Wi.
While u would be in Wi+1 according to (2), under optional-grabbing, when Player 1 makes
the move into u, Player 2 can avoid Wi by grabbing u and proceeding to v2.

In order to overcome this, our algorithm operates as follows. Vertices that satisfy (1) are
added independent of their owner (Line 4). The counterpart of (2) can be seen as two careful
steps of attractor computation. First, let B denote the border of Wi, namely the vertices
who have a neighbor in Wi (Line 6). Second, a vertex u is in Wi+1 in one of two cases. (i)
u ∈ B and all of its neighbors are in B ∪ Wi (Line 10). Indeed, if Player 1 controls u he
wins by proceeding to Wi and if Player 2 owns u, she can avoid Wi by moving to B, then
Player 1 grabs and proceeds to Wi. (ii) Player 2 controls u in the initial configuration and
all of its neighbors are in B (Line 12). Indeed, Player 2 cannot avoid proceeding into B,
and following Player 2’s move, Player 1 grabs and proceeds to Wi. Finally, note that the
algorithm terminates once a fixed point is reached, thus it runs for at most |V | iterations. ◀
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3.2 MVPP: EXPTIME-hardness via Lock & Key games
We prove hardness of MVPP optional-grabbing pawn games by reduction through a class of
games that we introduce and call Lock & Key games, and may be of independent interest.
A Lock & Key game is G = ⟨V, E, T, L, K, λ, κ⟩, where ⟨V, E, T ⟩ is a turn-based game,
L = {ℓ1, . . . , ℓn} is a set of locks K = {k1, . . . , kn} is a set of keys, each ℓj is associated to
key kj ∈ K for j ∈ [n], and each edge is labeled by a set of locks and keys respectively given
by λ : E → 2L and κ : E → 2K . Note that a lock and a key can appear on multiple edges.

Intuitively, a Lock & Key game is a turn-based game, only that the locks impose restric-
tions on the edges that a player is allowed to cross. Formally, a configuration of a Lock & Key
game is c = ⟨v, A⟩ ∈ V × 2L, meaning that the token is placed on v and each lock in A is
closed (all other locks are open). When v ∈ Vi, for i ∈ {1, 2}, then Player i moves the token
as in turn-based games with the restriction that he cannot choose an edge that is labeled
by a closed lock, thus e = ⟨v, u⟩ ∈ E is a legal move at c when λ(e) ⊆ (L \ A). Crossing e

updates the configuration of the locks by “turning” all keys that e is labeled with. Formally,
let ⟨u, A′⟩ be the configuration after crossing e. For kj ∈ κ(e) (“key kj is turned”), we have
ℓj ∈ A iff ℓj /∈ A′. For kj /∈ κ(e) (“key kj is unchanged”), we have ℓj ∈ A iff ℓj ∈ A′.

Note that, similar to pawn games, each Lock & Key game corresponds to an exponentially
sized two-player turn-based game. Thus, membership in EXPTIME is immediate. For the
lower bound, we show a reduction for the problem of deciding whether an alternating
polynomial-space Turing machine (ATM) accepts a given word.

▶ Theorem 8. Given a Lock & Key game G and an initial configuration c, deciding whether
Player 1 wins from c in G is EXPTIME-complete.

Proof. We briefly describe the syntax and semantics of ATMs, see for example [28], for
more details. An ATM is A = ⟨Q, Γ, δ, q0, qacc, qrej⟩, where Q is a collection of states that
is partitioned into Q = Q1 ∪ Q2 owned by Player 1 and Player 2 respectively, Γ is a tape
alphabet, δ : Q × Γ → 2Q×Γ×{L,R} is a transition function, q0, qacc, qrej ∈ Q are respectively
an initial, accepting, and rejecting states. A configuration of A is c = ⟨q, i, ⟨γ1, . . . , γm⟩⟩,
meaning that the control state is q, the head position is i, and ⟨γ1, . . . , γm⟩ is the tape
content, where m is polynomial in the length of the input word w. In order to determine
whether A accepts w we construct a (succinctly-represented) turn-based game over the
possible configurations of A, the neighbors of a configuration are determined according to δ,
and, for i ∈ {1, 2}, Player i moves from states in Qi. We say that A accepts w iff Player 1
has a winning strategy from the initial configuration for the target state qacc.

Given A and w, we construct a Lock & Key game G = ⟨V, E, T, L, K, λ, κ⟩ and an
initial configuration ⟨v0, A⟩ such that Player 1 wins from ⟨v, A⟩ in G iff w is accepted by
A. The vertices of G consist of main and intermediate vertices. Consider a configuration
c = ⟨q, i, ⟨γ1, . . . , γm⟩⟩ of A. We simulate c in G using c′ = ⟨v, A⟩ as follows. First, the main
vertices are Q × {1, . . . , m} × Γ and keep track of the control state and position on the tape.
The main vertex that simulates c = ⟨q, i, ⟨γ1, . . . , γm⟩⟩ is v = ⟨q, i, γi⟩. We define v ∈ Vi iff
q ∈ Qi. Second, we use locks to keep track of the tape contents. For each 1 ≤ i ≤ m and
γ ∈ Γ, we introduce a lock ℓi,γ . Then, in the configuration c′ = ⟨v, A⟩ that simulates c, the
only locks that are open are ℓi,γi

, for i ∈ {1, . . . , m}. Next, we describe the transitions, where
intermediate vertices are used for book-keeping. The neighbors of a main vertex v are the
intermediate vertices {⟨v, t⟩ : t ∈ δ(q, γ)}, where a transition of A is t = ⟨q′, γ′, B⟩, meaning
that the next control state is q′, the tape head moves to i + 1 if B = R and to i − 1 if B = L,
and the i-th tape content changes from γ to γ′. We update the state of the locks so that
they reflect the tape contents: for the edge ⟨v, ⟨v, t⟩⟩, we have κ(⟨v, ⟨v, t⟩⟩) = {ki,γ , ki,γ′}.
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Figure 2 From turn-based to optional-grabbing games.

That is, traversing the edge turn the keys to close ℓi,γ and open ℓi,γ′ . The neighbors of
⟨v, t⟩ are main vertices having control state q′ and head position i′. Recall that the third
component of a main vertex is the tape content at the current position. We use the locks’
state to prevent moving to main vertices with incorrect tape content: outgoing edges from
⟨v, t⟩ are of the form ⟨⟨v, t⟩, ⟨q′, i′, γ′′⟩⟩ and is labeled by the lock ℓi′,γ′′ . That is, the edge
can only be traversed when the i′-th tape position is γ′′. It is not hard to verify that there is
a one-to-one correspondence between runs of A and plays of G. Thus, Player 1 forces A to
reach a configuration with control state qacc iff Player 1 forces to reach a main vertex with
control state qacc. Note that the construction is clearly polynomial since G has |Q| · m · |Γ|
main vertices. ◀

3.2.1 From Lock & Key games to optional-grabbing pawn games
Throughout this section, fix a Lock & Key game G and an initial configuration c. We
construct an optional-grabbing pawn game G′ over a set of pawns [d], and identify an initial
configuration c′ such that Player 1 wins in G from c iff Player 1 wins from c′ in G′.

From turn-based games to optional-grabbing games

In this section, we consider the case in which G has no keys or locks, thus G is a turn-based
game. The reduction is depicted in Fig. 2. Denote the turn-based game G = ⟨V, E, T ⟩ with
V = V1 ∪V2 and initial vertex v0. We construct an OVPP optional-grabbing G′ = ⟨V ′, E′, T ′⟩,
where V ′ = V ∪ {v′ : v ∈ V } ∪ {s, t}. We add edges to ensure that the player who owns a
vertex v ∈ V is the player who moves from v in G′: we have ⟨v′, v⟩ ∈ E′, and if v ∈ V1, then
⟨v, s⟩ ∈ E′, and if v ∈ V2, then ⟨v, t⟩ ∈ E′. We redirect each edge ⟨u, v⟩ in G to ⟨u, v′⟩ in G′.
Intuitively, for v ∈ V1, a Player 1 winning strategy will guarantee that v′ is always in the
control of Player 2, and following her move at v′, Player 1 must grab v otherwise Player 2
wins and choose the next location. And dually for v ∈ V2. Let V ′

1 = V1 ∪ {v′ : v ∈ V2}, the
initial configuration of G′ is ⟨v0, V ′

1⟩, that is Player 2 controls V2 ∪ {v′ : v ∈ V1}. Formally,
we prove the following in the full version.

▶ Lemma 9. For a turn-based game G, Player 1 wins G from a vertex v0 ∈ V iff Player 1
wins the optional-grabbing game G′ from configuration ⟨v0, V ′

1⟩.

Gadgets for simulating locks and keys

For each lock ℓ ∈ L and its corresponding key k ∈ K, we construct gadgets Gℓ and Gk

that simulate the operations of ℓ and k in G′. The gadgets in two states are depicted in
Fig. 3. We highlight three pawns colored blue, green, and red, respectively owning, {vℓ

1, vk
1 },

{vℓ
2, vk

2 , vk
7 , vk

8 }, and {vk
in, vk

4 , vk
5 , vk

6 }. Each of the other vertices (colored white) is owned by
a fresh pawn. Intuitively, for each lock ℓ, we identify two sets Pℓ

O, Pℓ
C ⊆ 2[d], respectively

representing an open and closed state of ℓ. We will ensure that when entering and exiting
a gadget, the configuration is in Pℓ

O ∪ Pℓ
C . When the set of pawns that Player 1 controls

is in Pℓ
O and Pℓ

C , we respectively say that Gℓ is in open and closed state, and similarly
for Gk as stated below. Formally, we define Pℓ

O = {P ∈ 2[d] : vℓ
1 /∈ P ∧ vℓ

2 ∈ P} and
Pℓ

C = {P ∈ 2[d] : vℓ
1 ∈ P ∧ vℓ

2 /∈ P}.
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Figure 3 From left to right: Gℓ in open and closed state and Gk in open and closed state.

▶ Lemma 10. Let i ∈ {1, 2}. An open lock stays open: If Player i enters Gℓ in Pℓ
O, then

he has a strategy that guarantees that either he wins G′ or Gℓ is exited in Pℓ
O. A closed lock

cannot be crossed: If Player i enters Gℓ in Pℓ
C , then Player −i has a strategy that guarantees

that Player i loses G′.

Proof. We prove for Player 1 and the proof is dual for Player 2. First, suppose Player 1
enters Gℓ in Pℓ

O. Player 2 may or may not grab vℓ
in, and the game can proceed to either vℓ

1
or vℓ

2. We argue that if the game proceeds to vℓ
1, then Player 1 will not grab vℓ

1. We can
also similarly show that if the game proceeds to vℓ

2, then Player 2 will not grab vℓ
2. Player 2

controls vℓ
1. We claim that if Player 1 grabs vℓ

1, he will lose the game. Indeed, following
Player 1’s move in vℓ

1, Player 2 will grab vℓ
3 and move the token to the sink vertex s to win

the game. Thus, Player 1 does not grab vℓ
1 and keeps it in the control of Player 2. Following

Player 2’s move in vℓ
1, Player 1 grabs vℓ

3 and proceeds to exit Gℓ. Note that when Gℓ is exited,
Player 1 maintains control of vℓ

2 and Player 2 maintains control of vℓ
1, thus the configuration

is in Pℓ
O. Second, suppose that Player 1 enters Gℓ in Pℓ

C . Then, Player 2 grabs vℓ
in and moves

the token to vℓ
1. Since Player 1 controls vℓ

1 he must make the next move. Player 2 then grabs
vℓ

3 and moves the token to s to win the game. ◀

Next, we present the gadget Gk for simulating the operation of a key k (see Fig. 3).
Intuitively, we maintain that Gk is in open state iff Gℓ is in open state, and traversing Gk swaps
the state of both. We define sets of configurations Pk

O = {P ∈ 2[d] : {vk
in, vk

1 , vk
4 , vk

5 , vk
6 } ∩ P =

∅ ∧ {vk
2 , vk

7 , vk
8 } ⊆ P} and Pk

C = {P ∈ 2[d] : {vk
in, vk

1 , vk
4 , vk

5 , vk
6 } ⊆ P ∧ {vk

2 , vk
7 , vk

8 } ∩ P = ∅}
(see Fig. 3). Note that Pk

O ⊆ Pℓ
O and Pk

C ⊆ Pℓ
C since vk

i and vℓ
i are owned by the same pawn

for i ∈ [2]. In the full version, we prove the following.

▶ Lemma 11. Turning k closes an open ℓ: Let i ∈ {1, 2}. If Player i enters Gk in Pk
O, then

he has a strategy that ensures that either Player i wins G′ or Gk is exited in Pk
C . Turning k

opens a closed ℓ: when Player i enters Gk in Pk
C , Player i ensures that either he wins G′ or

Gk is exited in Pk
O.

Putting it all together

We describe the construction of a pawn game G′ from a Lock & Key game G. We assume
w.l.o.g. that each edge ⟨u, v⟩ in G is labeled by at most one lock or key since an edge that
is labeled by multiple locks or keys can be split into a chain of edges, each labeled by a
single lock or a key. We describe the construction of G′. We first apply the construction for
turn-based games on G while “ignoring” the locks and keys. Recall that the construction
introduces fresh vertices so that an edge e = ⟨u, v⟩ in G is mapped to an edge e′ = ⟨u′, v⟩ in
G′. We re-introduce the locks and keys so that the labeling of e′ coincides with the labeling of
e. Next, we replace an edge e′ that is labeled by a lock ℓ, by a copy of Gℓ, and if e is labeled
by a key k, we replace e′ by a copy of Gk. Note that multiple edges could be labeled by the
same lock ℓ. In such a case we use fresh vertices in each copy of Gℓ, but crucially, all gadgets
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Figure 4 A δ-path is a path between two primed main vertices in an optional- or always-grabbing
game, and it crosses two key gadgets and one lock gadget.

share the same pawns so that they share the same state. And similarly for keys. For an
illustration of this construction, see Fig. 4, which applies the construction on a Lock & Key
game that is output from the reduction in Thm. 8.

Finally, given an initial configuration c = ⟨v, A⟩ of G we define an initial configuration
c′ = ⟨v, P ⟩ of G′. Note that the initial vertex is the entry point of the gadget that simulates
v in G′. For each lock ℓ and corresponding key k, if ℓ is open according to A, then P ∈ Pℓ

O,
i.e., both Gℓ and Gk are initially in open state. And similarly when ℓ is closed according to
A. Combining the properties in Lemmas 9, 10, and 11 implies that Player 1 wins G from c

iff Player 1 wins G′ from c′. Thus, by Thm. 8, we have the following.

▶ Theorem 12. MVPP optional-grabbing PAWN-GAMES is EXPTIME-complete.

4 Always-Grabbing Pawn Games

In this section, we study always-grabbing pawn games and show that MVPP always-grabbing
pawn-games are EXPTIME-complete. The main challenge is proving the lower bound. We
proceed as follows. Let M be an ATM. Apply the reduction in Thm 8 and the one in
Thm. 12 to obtain pairs ⟨G, c⟩ and ⟨G′, c′⟩, where G and G′ are respectively Lock & Key
and optional-grabbing games with initial configurations c and c′ respectively. We devise a
construction that takes ⟨G′, c′⟩ and produces an always-grabbing game G′′ and a configuration
c′′ such that Player 1 wins from c′′ in G′′ iff he wins from c in G.

Our analysis heavily depends on the special structure of G′. The construction in Thm. 8
outputs a game G with main vertices of the form ⟨q, i, γ⟩ (q is a state, i is a tape position, and
γ is a letter in the tape alphabet). A play of G can be partitioned into paths between main
vertices. Each such path corresponds to one transition of the Turing machine and traverses
two keys and a lock before again reaching a main vertex. Recall that when constructing G′

from G, we replace locks and keys with their respective gadgets, and for every vertex v that
belongs to G, we add a new primed vertex v′ such that if v is controlled by Player i then v′

is controlled by Player −i. We call a path in G′ that corresponds to a path in G between
two successive main vertices, say v and v′, a δ-path. Fig. 4 depicts a δ-path. An important
property of the specific optional-grabbing game G′ that is constructed in Thm 8 from an
ATM is that every play of G′ consists of a sequence of δ-paths. More details on δ-paths can
be found in the full version. The following observation can easily be verified:

▶ Observation 13. A δ-path from v′ to v′
2 consists of 20 turns.

The following lemma is crucial for the construction of G′′.

▶ Lemma 14. For i ∈ {1, 2}, if Player i has a strategy in the optional-grabbing game G′ to
cross a δ-path from v′ to v′

2, then Player i has a strategy that moves the token in at least 10
rounds and Player −i moves the token in at most 10 rounds in the δ-path.
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Let G′ = ⟨V ′, E′, T ′⟩ with d pawns. The game G′′ is constructed from G′ by adding 2(d+10)
fresh isolated vertices each owned by a fresh unique pawn. Formally, G′′ = ⟨V ′′, E′, T ′⟩,
where V ′′ = V ′ ∪ {v1, v2, . . . , v2(d+10)} such that vj /∈ V ′, for j ∈ [2(d + 10)]. Consider a
configuration c′ = ⟨v, P ⟩ in G′. Let c′′ = ⟨v, P ∪ {1, 2, . . . , d + 10}⟩ be a configuration in G′′.
Note that Lemma 14 also applies to the always-grabbing game G′′, and we get the following.

▶ Corollary 15. For i ∈ {1, 2}, if Player i has a strategy in the always-grabbing game G′′ to
cross a δ-path from v′ to v′

2, then Player i has a strategy such that out of the 20 rounds in
the δ-path, the following hold.
1. Player −i grabs a pawn in at least 10 rounds, and
2. Player i grabs a pawn in at most 10 rounds.

Corollary 15 follows directly from Lemma 14 since in an always-grabbing game, the
number of times Player −i grabs equals the number of times Player i moves. In the remaining
part of this section, we show that Player 1 wins G′ from c′ iff Player 1 wins G′′ from the
configuration c′′ described above.

▶ Lemma 16. For i ∈ {1, 2}, Player i wins from c′ in the optional-grabbing game G′ iff he
wins from c′′ in the always-grabbing game G′′.

Proof sketch. We prove that if Player 1 has a winning strategy f ′ in G′ from c′, then he
has a winning strategy f ′′ from c′′ in G′′. The case for Player 2 is analogous and the other
direction follows from determinacy (Thm. 2). We construct f ′′ to mimic f ′ with the following
difference. Whenever f ′ chooses not to grab, in order to follow the rules of the always-
grabbing mechanism, f ′′ grabs a pawn owning an isolated vertex. This is possible since
we show that we maintain the invariant that along a play in G′′ that consists of sequences
of δ-paths, at the beginning of each δ-path, Player 2 has at least 10 isolated pawns. Note
that the invariant holds initially due to the definition of c′′. We show that it is maintained.
Recall from the proof of Theorem 8 that crossing a δ-path simulates a transition in the
Turing machine. Since Player 1 has a winning strategy in G′, in a winning play, the strategy
enables her to cross the δ-path. Thus, by Lem. 14, Player 1 moves in at least 10 rounds.
Thus, Player 2 moves in at most 10 rounds, and during each such round, Player 1 grabs a
pawn. Hence, Player 1 grabs at most 10 times which thus maintains the invariant. In the
full version, we show that f ′′ is a winning Player 1 strategy. ◀

We now state the following theorem. While the lower bound follows from Thm. 12 and
Lem. 16, the upper bound follows from Thm. 4.

▶ Theorem 17. MVPP always-grabbing PAWN-GAMES is EXPTIME-complete.

We conclude this section by adapting Thm. 5 to always-grabbing. Namely, we show that
adding pawns to a player is never beneficial in MVPP always-grabbing games. (with the
exception of the pawn that owns the current vertex). The proof can be found in the full
version.

▶ Theorem 18. Consider a configuration ⟨v, P ⟩ of an MVPP always-grabbing pawn game G.
Let j ∈ [d] such that v ∈ Vj and P ′ ⊆ P . Assuming that j ∈ P implies j ∈ P ′, if Player 1
wins from ⟨v, P ⟩, he wins from ⟨v, P ′⟩. Assuming that j ∈ P ′ implies j ∈ P , if Player 2 wins
from ⟨v, P ′⟩, she wins from ⟨v, P ⟩.
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5 Always Grabbing-or-Giving Pawn Games

In this section, we show that MVPP always grabbing or giving games are in PTIME. We find
it intriguing that a seemingly small change in the mechanism – allowing a choice between
grabbing and giving instead of only grabbing – reduces the complexity to PTIME from
EXPTIME-complete. We make the following simple observation.

▶ Observation 19. In an always grabbing or giving game, every time Player i makes a move
from a vertex v to a vertex u, Player −i can decide which player controls u.

If Player −i does not control pu that owns u and he wants to control u, he can grab pu from
Player i. If he does not want to control u and if he has pu, he can give it to Player i.

Consider an always-grabbing-or-giving game G = ⟨V, E, T ⟩ and an initial configuration c.
We construct a turn-based game G′ and an initial vertex v0 so that Player 1 wins in G from
c iff he wins in G′ from v0. Let G′ = ⟨V ′, E′, T ′⟩, where V ′ = {⟨v, i⟩, ⟨v̂, i⟩ | v ∈ V, i ∈ {1, 2}}
with V ′

1 = {⟨v, 1⟩, ⟨v̂, 1⟩ | v ∈ V } and V ′
2 = {⟨v, 2⟩, ⟨v̂, 2⟩ | v ∈ V }, T ′ = T × {1, 2}, and

E′ = {(⟨v, i⟩, ⟨û, 3 − i⟩), (⟨û, 3 − i⟩, ⟨u, i⟩), (⟨û, 3 − i⟩, ⟨u, 3 − i⟩) | (v, u) ∈ E, i ∈ {1, 2}}. We
call each vertex ⟨v, i⟩ a main vertex and each ⟨v̂, i⟩ an intermediate vertex. Suppose that
Player i moves the token from v to u in G. If Player −i decides to control u, then in G′, the
token moves from the main vertex ⟨v, i⟩ to the main vertex ⟨u, 3 − i⟩, else from ⟨v, i⟩ to the
main vertex ⟨u, i⟩, and in each case, through the intermediate vertex (û, 3 − i) that models
the decision of Player −i on the control of u. The target vertices T ′ are main vertices. The
proof of the following lemma appears in the full version.

▶ Lemma 20. Suppose Player 1 wins from configuration ⟨v, P ⟩ in G. If he controls v, he
wins from ⟨v, 1⟩ in G′, and if Player 2 controls v, Player 1 wins from ⟨v, 2⟩ in G′. Dually,
suppose that Player 2 wins from ⟨v, P ⟩ in G. If she controls v, then she wins from ⟨v, 2⟩ in
G′, and if Player 1 controls v, Player 2 wins from ⟨v, 1⟩ in G′.

Since the size of G′ is polynomial in the size of G, Thm. 2 implies the following.

▶ Theorem 21. MVPP always-grab-or-give PAWN-GAMES is in PTIME.

6 k-Grabbing Pawn Games

In this section, we consider pawn games under k-grabbing in increasing level of generality of
the mechanisms. We start with positive news.

▶ Theorem 22. OVPP k-grabbing PAWN-GAMES is in PTIME.

Proof. Let k ∈ N, an OVPP k-grabbing game G = ⟨V, E, T ⟩, and an initial configuration
c = ⟨v0, P0⟩, where we refer to P0 as a set of vertices rather than pawns. For a vertex u ∈ V ,
let η(u) denote the minimum number of grabs with which Player 1 can guarantee winning G
from configuration ⟨u, P0⟩. The algorithm recursively computes η based on repeated calls to
an algorithm to solve turn-based games (see Thm. 2).

For the base case, consider the turn-based game G0 = ⟨V, E, T ⟩ with V1 = P0. Let
W 1

0 ⊆ V denote Player 1’s winning region in G0. Clearly, for every u ∈ W 1
0 , we have

η(v0) = 0, and for every u /∈ W 1
0 , we have η(v0) ≥ 1. For the inductive step, suppose that for

ℓ ≥ 0, the set W 1
ℓ = {u ∈ V : η(u) ≤ ℓ} has been found. That is, for every u /∈ W 1

ℓ , Player 2
has a strategy that wins the ℓ-grabbing pawn game G from configuration ⟨u, P0⟩. We show
how to find W 1

ℓ+1 in linear time. Let the border of W 1
ℓ , denoted Bℓ, be the set of vertices

from which W 1
ℓ can be reached in one step, thus Bℓ = {v ∈ V : v /∈ W 1

ℓ : N(v) ∩ W 1
ℓ ̸= ∅}.
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Note that the vertices in Bℓ are all controlled by Player 2 since otherwise, such vertices
will be in the set W 1

ℓ . In the full version, we show that a vertex u /∈ W 1
ℓ has η(u) = ℓ + 1

iff Player 1 can force the game from configuration ⟨u, P0⟩ to a vertex in Bℓ in one or more
rounds without making any grab. Player 1 wins from such a vertex u by forcing the game into
Bℓ, grabbing the pawn in Bℓ, and proceeding to Wℓ, where by the induction hypothesis, he
wins with the remaining grabs. Computing W 1

ℓ+1 roughly entails a solution to a turn-based
game with target set Bℓ ∪ W 1

ℓ . ◀

The proof of the following theorem, which can be found in the full version, is obtained by
a reduction from SET-COVER.

▶ Theorem 23. MVPP k-grabbing game PAWN-GAMES is NP-hard.

We conclude this section by studying OMVPP games.

▶ Lemma 24. OMVPP k-grabbing PAWN-GAMES is PSPACE-hard.

Proof. Consider an input ϕ = Q1x1 . . . QnxnC1 ∧ . . . ∧ Cm to TQBF, where Qi ∈ {∃, ∀}, for
1 ≤ i ≤ n, each Cj , for 1 ≤ j ≤ m, is a clause over the variables x1, . . . , xn. We construct
an OMVPP n-grabbing pawn game G = ⟨V, E, T ⟩ such that Player 1 wins iff ϕ is true. We
describe the intuition and the details can be found in the full version. The structure of
G is chain-like. Player 1 needs to cross the chain in order to win. The first part of the
chain requires Player 1 to grab, for each variable xi, either a pawn pi or a pawn ¬pi. For
existentially-quantified variables, Player 1 decides which of the two is grabbed, and for
universally-quantified variables, Player 2 decides. In the second part of G, we verify that
the corresponding assignment is valid. Certain positions of G correspond to a clause Cj , for
j ∈ [m], which Player 1 must take control over during the first part of G. The key is to use
OMVPP: We define that if xi appears in Cj , then pi is an owner of Cj , and if ¬xi appears
in Cj , then ¬pi is an owner of Cj . Thus, Player 1 controls Cj iff he grabbed a pawn that
owns Cj which is iff the assignment satisfies Cj . ◀

We turn to study the upper bound. The following lemma bounds the provides a polynomial
bound on the length of a winning play for Player 1. The core of the proof, which can be
found in the full version, intuitively shows that we can restrict attention to Player 1 strategies
that grab at least once in a sequence of |V | rounds. Otherwise, the game enters a cycle that
is winning for Player 2.

▶ Lemma 25. Consider an OMVPP k-grabbing PAWN-GAME G = ⟨V, E, T ⟩, and an initial
configuration c that is winning for Player 1. Then, Player 1 has a strategy such that, for
every Player 2 strategy, a target in T is reached within |V | · (k + 1) rounds.

For the upper bound, in the full version, we describe an algorithm performing a depth-first
traversal of the configuration graph of a game while storing, at a time, only a branch in
PSPACE. By Lem. 25, each branch of such a traversal has polynomial length, leading to the
PSPACE upper bound. We thus have the following.

▶ Theorem 26. OMVPP k-grabbing PAWN-GAMES is PSPACE-complete.

7 Discussion

We introduce pawn games, a class of two-player turn-based games in which control of
vertices changes dynamically throughout the game. Pawn games constitute a class of
succinctly-represented turn-based games. We identify natural classes that are in PTIME.

CONCUR 2023
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Our EXPTIME-hardness results are based on Lock & Key games, which we hope will serve
as a framework for proving lower bounds. We mention directions for future research. First,
we leave several open problems; e.g., for MVPP k-grabbing pawn games, we only show
NP-hardness and membership in PSPACE. Second, we focused on reachability games. It
is interesting to study pawn games with richer objectives such as parity or quantitative
objectives. Third, it is interesting to consider other pawn-transferring mechanisms and to
identify properties of mechanisms that admit low-complexity results. Finally, grabbing pawns
is a general concept and can be applied to more involved games like stochastic or concurrent
games.
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