
Faithful Simulation of Randomized BFT Protocols
on Block DAGs
Hagit Attiya #

Technion, Haifa, Israel

Constantin Enea #

LIX, Ecole Polytechnique, CNRS and Institut Polytechnique de Paris, France

Shafik Nassar #

Technion, Haifa, Israel

Abstract
Byzantine Fault-Tolerant (BFT) protocols that are based on Directed Acyclic Graphs (DAGs) are
attractive due to their many advantages in asynchronous blockchain systems. These DAG-based
protocols can be viewed as a simulation of some BFT protocol on a DAG. Many DAG-based BFT
protocols rely on randomization, since they are used for agreement and ordering of transactions,
which cannot be achieved deterministically in asynchronous systems. Randomization is achieved
either through local sources of randomness, or by employing shared objects that provide a common
source of randomness, e.g., common coins.

A DAG simulation of a randomized protocol should be faithful, in the sense that it precisely
preserves the properties of the original BFT protocol, and in particular, their probability distributions.
We argue that faithfulness is ensured by a forward simulation. We show how to faithfully simulate
any BFT protocol that uses public coins and shared objects, like common coins.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Com-
puting methodologies → Distributed algorithms; General and reference → Verification

Keywords and phrases Byzantine failures, Hyperproperties, Forward Simulation

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2023.27

Related Version Extended Version: https://eprint.iacr.org/2023/192

Funding Hagit Attiya: partially supported by the Israel Science Foundation (grants 380/18 and
22/1425).
Constantin Enea: partially supported by the project AdeCoDS of the French ANR Agency.
Shafik Nassar : partially funded by the European Union (ERC, FASTPROOF, 101041208). Views
and opinions expressed are however those of the author(s) only and do not necessarily reflect those
of the European Union or the European Research Council. Neither the European Union nor the
granting authority can be held responsible for them.

1 Introduction

Asynchronous distributed computation is naturally captured by a directed acyclic graph
(DAG), whose nodes describe local computation and edges correspond to causal dependency
between computation at different processes. Lamport’s happens-before relation [14] is an
example of such DAG, where each node is a single local computation event, and each edge is
a single message delivery event. Block DAGs [21] go one step further and incorporate more
than one local computation step in each block (node); these steps may even belong to several
independent protocols.

By exchanging blocks in a manner that preserves their dependencies, a distributed
protocol can now be abstracted as a joint computation of a block DAG. In particular, a
general Byzantine fault-tolerant (BFT) DAG-based algorithm combines two components:

© Hagit Attiya, Constantin Enea, and Shafik Nassar;
licensed under Creative Commons License CC-BY 4.0

34th International Conference on Concurrency Theory (CONCUR 2023).
Editors: Guillermo A. Pérez and Jean-François Raskin; Article No. 27; pp. 27:1–27:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hagit@cs.technion.ac.il
https://orcid.org/0000-0002-8017-6457
mailto:cenea@lix.polytechnique.fr
https://orcid.org/0000-0003-2727-8865
mailto:shafiknassar@cs.technion.ac.il
https://orcid.org/0000-0002-7388-3858
https://doi.org/10.4230/LIPIcs.CONCUR.2023.27
https://eprint.iacr.org/2023/192
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


27:2 Faithful Simulation of Randomized BFT Protocols on Block DAGs

one component builds the DAG using a communication protocol that tolerates malicious
failures, and the other component performs the local computation embodied in each node of
the DAG. The first component can be used to separate the task of injecting user input to
the system, such as transactions, from the task of processing these inputs and producing an
output, e.g., an ordering of those transactions.

This generality makes block DAGs an attractive approach for designing coordination
protocols for, e.g., Byzantine Atomic Broadcast [10,13,20], consensus [4, 16] and cryptocur-
rencies [6]. (For a survey of the techniques used in block DAG approaches, see [21].) A block
DAG can be seen as a strict extension of a blockchain, which is a DAG where all blocks
are totally ordered, i.e., a directed path. The DAG approach was shown to achieve high
throughput [19] due to the flexibility it provides over the standard blockchain approach.

Schett and Danezis [17] show that any deterministic BFT protocol can be simulated as a
block DAG. They provide generic mechanisms for processes to maintain a consistent view of
the block DAG, and to individually interpret the DAG as an execution of some protocol.

The restriction to deterministic protocols, however, handicaps the applicability of this
result, since many algorithms in the asynchronous domain are necessarily non-deterministic,
due to the FLP impossibility result [9]. For example, DAG-based agreement protocols with
provable security, like Aleph [10] or DAG-Rider [13], are either randomized or assume the
existence of a shared source of randomness. This calls for a framework that can handle
randomized BFT protocols; those that either utilize local randomness or even a shared object.

The problem of using or defining block DAG simulations in the context of randomized
protocols has two aspects: (1) using a block DAG simulation of a deterministic protocol
as a building block of a randomized protocol, and (2) defining block DAG simulations of
randomized protocols.

Concerning the first aspect above, we aim to enable modular reasoning when using such
simulations instead of the original protocols (Section 2 describes a concrete example). Schett
and Danezis [17] establish that the traces of the block DAG simulation are included in
the set of traces of the original protocol (for some notion of trace which is not important
for this discussion). However, as shown in other contexts, e.g., concurrent objects [2, 11],
such a notion of refinement is not sufficient to conclude that relevant specifications of a
randomized protocol that builds on some other deterministic protocol are preserved when
the latter is replaced by the block DAG simulation. Indeed, the specifications of randomized
protocols characterize sets (probabilistic distributions) of executions and are instances of
hyper-properties which are not preserved by standard trace inclusion [2].

Therefore, we establish a stronger notion of refinement between a block DAG simulation
and the original protocol, namely, that there exists a forward simulation between the two.
(A forward simulation maps every step of one protocol to a sequence of steps of the other
protocol, starting from the initial state of the first and advancing in a forward manner; a
backward simulation is similar, but it goes in the reverse direction, from end states back to
initial states.). Based on the results in [2], this implies that any finite-trace specification of
a randomized protocol against an adaptive adversary is preserved when a sub-protocol is
replaced by its block DAG simulation. We recall that an adaptive adversary is a scheduler
that resolves all the non-determinism introduced by the interleaving semantics and which
can observe everything about the local state of a process or the messages in transit.

Armed with this understanding of the precise nature of block DAG simulation, we present
an extension of the construction of Schett and Danezis [17], which applies also to protocols
using randomization and shared objects. Specifically, we consider randomized protocols in
which the local coin flips of each process may be public, we call those protocols public-coin
protocols. We prove that any public-coin protocol that uses shared objects, e.g., common
coins, can be simulated on a block DAG, preserving its usage of shared objects.



H. Attiya, C. Enea, and S. Nassar 27:3

Algorithm 1 Binary consensus using a common coin.

Input: x

1: r := 0; est := x;
2: while true do
3: r++;
4: val := r.BCA(est);
5: c := r.Toss();
6: if val ̸= ⊥ and c = val then
7: output val;
8: est := val;
9: else if val ̸= ⊥ then

10: est := val;
11: else
12: est := c;

call r.BCA(0)

ret 

ret cr 

call r.BCA(1)

ret 1-cr 
call r.Toss()
ret cr 

est = cr est = 1-cr 

call r.Toss()

Figure 1 A randomized consensus algorithm on the left, and an execution template (c0 ∈ {0, 1})
on the right, which represents the executions of an adaptive adversary which disallows termination.

A relationship based on a forward simulation allows to conclude that probabilistic
specifications of a randomized protocol, e.g., termination time, are preserved by its block
DAG simulation. Such a simulation precisely preserves the finite trace distribution and the
probabilistic relationship between inputs and outputs. This means that whatever “adverse”
effects can occur in the simulation, can already be demonstrated in the original protocol.

Organization. Section 2 presents an example that demonstrates why simulations should
preserve hyperproperties. Sections 3 and 4 describe the model and introduce important
definitions and notations. Section 5 formally defines block DAGs. Our results are presented
and proved in Section 6. The relation of our simulation to the work of Schett and Danezis [17],
and some applications appear in Section 7. We summarize with future work, in Section 8.

2 Motivating Example

We describe a class of protocols solving Binary Crusader Agreement, and a hyperproperty
about them, called binding [1], which is assumed when such protocols are used to solve
randomized consensus. This motivates the need for establishing a notion of refinement
for block DAG simulations that is stronger than trace inclusion and which enables the
preservation of such hyperproperties.

Randomized consensus based on Binary Crusader Agreement. Let us consider the
consensus protocol listed in Algorithm 1 (from [1]). This is a randomized protocol based
on two sub-protocols, Binary Crusader Agreement, invoked as BCA, and a common coin,
invoked via Toss. Every process participating in this consensus protocol goes through a
sequence of asynchronous rounds (the current round is stored in the variable r), and each
round consists of one instance of BCA followed by one instance of Toss. We prefix invocations
with the value of r in order to emphasize that these instances are different from one round
to another.

CONCUR 2023



27:4 Faithful Simulation of Randomized BFT Protocols on Block DAGs

Binary Crusader Agreement [7] is a weak form of consensus, where processes start with a
value in {0, 1} and can return a value in {0, 1, ⊥} (note the special value ⊥). The requirements
are: (1) validity: if all non-faulty processes start with the same input, then this is the only
output, (2) agreement: no two non-faulty processes output two distinct non-⊥ values, and
(3) termination: every non-faulty process eventually outputs a value. It is weaker than
consensus because a process can output the “don’t know” value ⊥ instead of one of the inputs.
The common coin protocol allows to implement a shared source of uniform randomness, it
guarantees that all processes receive the same output in {0, 1} (drawn with equal probability)
and that this output is unpredictable to an outsider (adversary).

Each round of the consensus protocol starts with a round of BCA where each process
inputs the current estimation of the agreement value est (initially, this is the input x),
followed by a round of the common coin. If BCA returns a non-⊥ value then this will be
the value of est in the next round. Otherwise, the value of est is the value returned by the
coin protocol. Furthermore, if the values returned by BCA and Toss are the same, then the
process outputs the decision value. A process continues running the protocol after outputting
the decision in order to “help” other processes reach a decision (e.g., so that future instances
of BCA and the common coin satisfy honest super majority assumptions).

Termination under binding. We say that the protocol terminates when all non-faulty
processes output a decision. It has been shown [1] that the protocol of Figure 1 terminates
against an adaptive adversary with probability 1, provided that BCA satisfies a property
called binding. The binding property states that for every execution prefix of BCA that ends
with a process returning ⊥, there is a single non-⊥ value that can be returned by a process
in any future extension of this prefix. It is important to note that this is an instance of a
hyperproperty because it characterizes sets of executions, i.e., all possible extensions of a
prefix, instead of individual executions as in standard safety or liveness properties.

To explain the usefulness of binding, we use the execution template on the right of Figure 1.
This defines non-terminating executions of the consensus protocol against a specific adaptive
adversary assuming a “worst-case” BCA protocol, which satisfies the specification described
earlier but does not satisfy binding. Therefore, assuming two processes with different inputs,
for every round r, the adversary schedules BCA so that a first process returns ⊥ and the
second process’s return value is not yet fixed. Then, it schedules the first process to get a
value cr ∈ {0, 1} from the common coin and after observing this value, it resumes BCA so
that the second process gets the value 1 − cr (this is admitted by the BCA specification).
The conditional at lines 6–12 implies that the first process will enter the next round with
est being the outcome of the coin toss, and the second process with est being the value
returned by BCA. Therefore, they enter the next round with different estimations of the
agreement value, and the same can be repeated infinitely often. Since this repeats for all
possible outcomes of the coin tosses, non-termination happens with probability 1.

Note that this would not be possible for both outcomes cr ∈ {0, 1} of the coin toss if
BCA satisfies binding. Indeed, after the first process gets ⊥ from BCA (and before the coin
toss), the value returned by BCA to the second process is fixed in any possible extension, i.e.,
it is the same no matter the outcome of the coin toss. Therefore, for one of the two possible
outcomes of the coin toss, this return value equals that outcome, and the two processes will
enter with equal values of est in the next round.

When binding holds, an adaptive adversary can not impose the schedule described above
and the protocol terminates with probability 1. In every round, if the BCA value is not ⊥,
then it equals the outcome of the coin toss with probability 1/2, which leads to outputting a
decision. If all processes get ⊥ from BCA, then the common coin leads directly to agreement.
Therefore, the protocol terminates within a constant expected number of rounds.



H. Attiya, C. Enea, and S. Nassar 27:5

Preserving binding. In the context of this consensus protocol, we discuss the possibility
of replacing a given BCA protocol with a block DAG simulation as defined by Schett and
Danezis [17]. The results in [17] are not sufficient to deduce that the block DAG simulation
satisfies binding if the original protocol did, because, as mentioned above, binding is an
instance of a hyper-property and hyper-properties are not preserved by standard trace
inclusion [2]. Therefore, based on the results in [17], the proof of termination that assumed
binding is not applicable to the block DAG simulation.

In this work, we present a block DAG simulation that handles protocols that use public-
coins and shared objects (including a common coin like Toss). We establish that it is a
forward simulation, which by previous work [2], implies that the set of traces defined by an
adaptive adversary of the consensus protocol with the original BCA protocol is the same
when the latter is replaced with the block DAG simulation (the results in [2] were applied in
the context of concurrent objects and programs using such objects, but they are stated in
terms of LTSs models of such programs and apply more generally to distributed protocols
as well). Therefore, if one satisfies binding, then the other one satisfies it as well. This is
enough to conclude that the termination argument used for the original protocol holds for
the block DAG simulation as well.

3 Preliminaries

For any n ∈ N, we denote [n] = {1, . . . , n}. For any two strings s1 and s2, we denote by
s1 ◦ s2 the concatenation of the two strings.

We consider an asynchronous network with n processes p1, . . . , pn. Each process pi has
a local process state PSi, and buffers Inj→i and Outi→j , for each j ∈ [n], that serve for
communicating with pj , as well as a buffer Rqstsi that contains incoming user requests. A
schedule consists of two types of events:

A compute(i) event lets process pi receive all the messages in the buffers Inj→i, as well as
the requests in Rqstsi, and update the local state PSi. The local computation performed
to update PSi may result in new messages being deposited in the outgoing buffers Outi→j

and indications being sent to the user.
A deliver(i, j) event moves the oldest message in Outi→j to Inj→i.

We assume a computationally bounded adversary that may adaptively corrupt up to f

processes, and also controls the scheduling of the system. Initially, all n processes are correct
and honestly follow the protocol. Once a process is corrupted, it may behave arbitrarily.
The adversary can also read all messages in the system, even those sent by correct processes.
Although the scheduling of message delivery is adversarial, we assume eventual delivery, i.e.,
every message sent is eventually delivered.

In a randomized protocol, the local computation of a process can depend on the result of
local coin flips. To model this, we assume each process pi has access to a random tape, from
which it can draw a random string at each compute(i) event. Our simulation can be applied
to public-coin protocols, which are randomized protocols that do no require processes to keep
secrets, i.e., they can broadcast the random string they draw as soon as they use it. This
definition captures protocols in the full-information model such as [12].

To allow for easy composition, we define shared objects. A shared object is an implemen-
tation of an interface that is accessible by all processes. For example, in the context of the
randomized consensus protocol in Fig. 1 we used a shared object called common coin with
a method Toss. For any shared object o, each process pi can invoke o as it performs any

CONCUR 2023



27:6 Faithful Simulation of Randomized BFT Protocols on Block DAGs

local computation. Invocations are non-blocking, and o may at any point return a value in a
designated buffer o.buff i. Whenever a compute(i) event is scheduled, the contents of o.buff i

are dequeued and may affect the local computation.

4 Modeling protocols with Labeled Transition Systems

We model a protocol as a Labeled Transition System (LTS), which is a tuple L =
(Q, Σ, qstart, δ) where Q is a (possibly infinite) set of states, Σ is a set of (transition) labels,
qstart is the starting state, and δ ⊆ Q × Σ × Q is a (possibly infinite) set of transitions,
written as q1

l−→ q2 for any (q1, l, q2) ∈ Q × Σ × Q.
An execution of L is an alternating sequence of states and transition labels α =

q0, l0, q1, l1, . . . s.t. qi
li−→ qi+1 for any i ≥ 0. If there is a partial execution qi, li, . . . , lj−1, qj

then we write qi
li,...,lj−1−−−−−−→ qj . We define a subset of labels ΣE ⊆ Σ as the external actions,

and define a trace of L to be the projection of an execution over ΣE . Typically, external
actions correspond to requests and indications in the interface of a protocol, and define the
“observable” behavior of a protocol. For instance, the external actions of a consensus protocol
are about setting the input of each process and outputting their decisions.

LTSs can easily be used to model deterministic protocols. Essentially, LTS states
correspond to tuples of states of participating processes and communication channels, and
each transition corresponds to a step of some process (more details are given below).

Randomized protocols can be modeled using an extension of LTSs called (simple) proba-
bilistic automata [18] where a transition from a state q leads to a probability distribution over
states instead of a single state. The semantics of a probabilistic automaton is formalized in
terms of probabilistic executions, which are probability distributions over executions defined by
a deterministic scheduler that resolves the non-determinism. Probabilistic traces are defined
as projections of probabilistic executions to external actions (similarly to the non-probabilistic
case). The deterministic scheduler corresponds to the notion of adaptive adversary described
above which controls message delivery and process scheduling. To simplify the formalization,
we model randomized protocols using LTSs instead of probabilistic automata by including
results of random choices in the transition labels. The transition labels corresponding to
random choices are defined as external actions. The relevance of this modeling choice will be
detailed later when discussing forward simulations.

Let P be a public-coin protocol and O be a set of shared objects used by P . We define the
LTS of P as follows L = (Q, Σ, qstart, δ). A state q ∈ Q consists of the local state PSi, the
incoming messages (Inj→i)j∈[n], the outgoing messages (Outi→j)j∈[n] and the incoming object
return values (o.buff i)o∈O of each process pi. For convenience, we assume that incoming user
requests are stored in Ini→i and outgoing user indications are stored in Outi→i. Overall,
q =

(
PSi, (Inj→i)j∈[n], (Outi→j)j∈[n], (o.buff i)o∈O

)
i∈[n]. We use register notation to refer to

the components of each state, e.g., q.Inj→i refers to the incoming messages buffer from j to
i in the state q. In the initial state qstart, all of the processes have the initial local state and
all of the message buffers are empty. For the consensus protocol in Fig. 1, local states are
valuations of r, val, c, and est, and the buffer for incoming object return values will contain
values returned by Toss. User indications are decision values outputted at line 7.

The transition labels Σ correspond to the different types of steps in a protocol execution,
namely, local computation, message delivery, return values from objects in O, or user requests
and indications. Observe that we do not need to label sending requests to o ∈ O as this is
done in an ordinary local computation event. In addition, the local computation label would
include the randomness (if any) that is used by the process in the said computation event.



H. Attiya, C. Enea, and S. Nassar 27:7

Formally, the labels in Σ are as follows:
1. compute(i, ρ) denotes a transition where process pi performs a local computation with ρ

as its randomness. For the consensus protocol in Fig. 1, a local computation step would
consist in assigning a value to est depending on the conditions starting with line 6.

2. deliver(i → j) denotes a transition where all messages in Outi→j are moved to Ini→j .
3. o.indicate(i, w) denotes a transition where the value w has been added to o.buff i. In

Fig. 1, this would correspond to the common coin object returning a value for Toss.
4. request(i, x) denotes a transition where process pi receives x as input. In Fig. 1, this

models a process receiving an input value to use in the consensus protocol.
5. indicate(i, y) denotes a transition where process pi returns y as output. In Fig. 1, this

corresponds to the output at line 7.
The external actions in ΣE ⊆ Σ are user requests (request(i, x)) and indications (indicate(i, y)),
and local computation events (compute(i, ρ)). The latter are included in ΣE in order to
be able to relate probability distributions in different protocols, as discussed hereafter. A
transition (q1, l, q2) ∈ Q × Σ × Q is in δ if and only if the protocol can get from state q1 to
state q2 by executing the step denoted by the label l.

Showing that a block DAG protocol is a “correct” simulation of some other protocol relies
on the notion of forward simulation between the LTSs modeling the two protocols.

▶ Definition 1 (forward simulation). Let L = (Q, Σ, qstart, δ) and L′ = (Q′, Σ′, q′
start, δ′) be

two LTSs with the same set of external actions ΣE. A relation R ⊆ Q × Q′ is a forward
simulation from L to L′ if both of the following hold:

(qstart, q′
start) ∈ R

For any (q1, l, q2) ∈ δ and any q′
1 such that (q1, q′

1) ∈ R, there exists q′
2 ∈ Q′ such that:

(q2, q′
2) ∈ R,

q′
1

σ−→ q′
2 is a partial execution of L′ (σ is a sequence of labels in Σ′), and

if l ∈ ΣE, then the projection of the label sequence σ over ΣE is exactly l.

When L is an LTS modeling a block DAG simulation of a deterministic protocol P that
is modeled as an LTS L′, the existence of a forward simulation R from L to L′ implies
that the set of traces of L is included in the set of traces of L′ [15]. It also implies the
preservation of (hyper-)properties of finite probabilistic traces of randomized protocols when
some sub-protocol P is replaced by a block DAG simulation of it [2] (a concrete example
was given in Section 2). If the forward simulation is weak progressive [8], i.e., there exists a
well-founded order such that if σ = ϵ in Definition 1 then either q2 is smaller than q1 in this
order or there exists an infinite execution from q′

2 with empty trace, then (hyper-)properties
of infinite probabilistic traces are also preserved.

These results extend to randomized protocols as well. Assuming that the random choices
follow the uniform distribution, a forward simulation would imply that any random choice in
L is mimicked in precisely the same manner by L′. This is because the label of every step
that includes a random choice is an external action and the result of that random choice is
included in the label itself. This holds even for non-uniform random sampling as long as
probabilities are recorded in transition labels. More formally, it will imply the existence of a
weak probabilistic simulation which is known to imply that the probability distributions over
traces of L defined by a deterministic scheduler are included in the probability distributions
over traces of L′ defined by a deterministic scheduler [18]. Moreover, it will also imply
the preservation of probability distributions over executions of programs that use the block
DAG simulation instead of the original protocol (this is a consequence of weak probabilistic
simulations being sound for the trace distribution precongruence [18]).

CONCUR 2023



27:8 Faithful Simulation of Randomized BFT Protocols on Block DAGs

It follows that any standard specification of a protocol, e.g., safety or (almost-sure)
termination against an adaptive adversary, is preserved by a block DAG simulation provided
the existence of a forward simulation. Moreover, typical specifications of programs using the
DAG simulation instead of the original protocol will also be preserved.

5 Block DAGs

A block is the main type of message that is exchanged in DAG-based protocols and our block
DAG simulations. A block issued by some process pi allows pi to: (1) inject data into the
system, e.g., user inputs or shared object outputs, and (2) establish a dependency between
events of different processes. To that end, the main fields of a block B are the identity of the
issuing process B.p, injected data B.d, and references to other blocks B.preds (on which B

directly depends). The reference of B is denoted by ref(B).
We require that each reference must uniquely identify a specific block. One way to achieve

this is using cryptographic collision resistant hash functions: the reference ref(B) consists of
a hash of the block B. By the collision resistance of the hash function, it is infeasible for a
computationally bounded adversary (or correct processes) to issue two distinct blocks that
hash to the same value and this ensures that the reference identifies a unique block.

Since blocks are supposed to represent local computation, and local computation steps of
any one process are always totally ordered, then each block B must include one reference to
a parent block which we denote by B.parent, except for one genesis block for each process
which does not have a parent. In addition, all of the blocks issued by one honest process
should form a chain, i.e., a directed path that starts with the genesis block.

We define the ancestors of a block B to be all of the predecessors of B, and their
predecessors and so on; this set is denoted ancestors(B).

A block B is authentic if it was issued by the process B.p. It is crucial to ensure the
authenticity of each block before allowing it into the system. Otherwise, faulty processes can
impersonate honest processes and sabotage safety properties. We can ensure authenticity by
using a cryptographic digital signature scheme. That is each process must sign each block it
issues, and other processes validate the block by checking the signature attached to it.

Ensuring that each individual block is authentic is not enough to ensure that only
authentic blocks enter the system. We should also require that a block depends only on
authentic blocks, that is ancestors(B) must all be authentic in order for B to enter. We say
that a block is valid if it is authentic and all of B.preds are valid. Note that this recursive
definition is equivalent to requiring ancestors(B) all be authentic. Following this discussion,
to ensure safety, only valid blocks would be considered by correct processes. When a process
pi validates a block B, we write valid(pi, B).

Each process pi maintains a local DAG Gi consisting of the valid blocks that pi receives
as nodes and includes a directed edge B′ → B if and only if B′ ∈ B.preds. Note that we
need a mechanism for pi to ensure that Gi is a DAG. A simple mechanism would be for pi to
validate B only after it has validated B.preds and not validate multiple blocks “atomically”.
This alongside the fact that each reference identifies a unique block, would ensure that no
block in a directed cycle would ever be considered valid. Formally, a Block DAG of a correct
process pi is a graph G = (VG , EG) such that

VG ⊆ {B : valid(pi, B)}.
If B ∈ VG then for all B′ ∈ B.preds it holds that B′ ∈ VG .
EG = {(B′, B) ∈ VG × VG : B′ ∈ B.preds}.
G is acyclic.

Observe that by the definition of G, for every B ∈ VG it holds that ancestors(B) ⊆ VG . When
B′ ∈ ancestors(B), we write path(B′, B).



H. Attiya, C. Enea, and S. Nassar 27:9

6 Simulating Public-Coin Protocols That Use Shared Objects

Simulating a protocol on a block DAG consists of two components: first, a mechanism
that allows processes to build and maintain a joint block DAG and second, an algorithm to
interpret this joint block DAG as an execution of the original protocol. Given those two
ingredients, we can execute an instance of the protocol without sending any actual messages
that are specific to the protocol itself. Of course, maintaining the joint block DAG would
require exchanging one type of message (block), but those messages are agnostic to the
protocol being simulated. This means that we can use the same joint block DAG to interpret
multiple instances of the same protocol or even instances of different protocols.

Figure 2 describes how to simulate a public-coin protocol P using the components
mentioned above. We refer to this protocol as the block DAG simulation of P and denote it
by BD(P). We allow BD(P) to access the same shared objects as P.

Simulation of Public-Coin Protocols on Block DAGs
From the perspective of process pi, user requests go directly to Rqstsi.
Initially, Gi = ({Bj}j∈[n], Ei), where Bj is a dummy genesis block for process pj .
On every compute(i) event:
1. Run genBlock(Gi, blks).
2. If new blocks were added to Gi, then run interpret(Gi, P).
3. Run exchangeBlocks(Gi, blks).

Figure 2 The simulation algorithm for public-coin protocols.

Interpreting the block DAG as an execution of P is done using the interpret algorithm,
described in Section 6. This algorithm runs locally and involves no communication, yet
guarantees that if two correct processes are interpreting the same (partial) block DAG, then
their interpretations would be identical.

Maintaining the joint block DAG is done using the genBlock and exchangeBlocks al-
gorithms (discussed in Section 6): genBlock is responsible for creating new blocks and
exchangeBlocks is responsible for passing those blocks around to ensure that all correct
processes receive the same blocks even if the process that issued the block is corrupted.

The aforementioned components, together, ensure that correct processes have consistent
views of the execution of P at all times. However, this does not guarantee that the execution
is useful, e.g., it might give the adversary more power or it might be a “liveless” execution
where the correct processes are not making any progress. For that reason, we prove in
Section 6 that the execution (defined by the views) is faithful in the sense that there exists a
forward simulation towards the original protocol. This guarantees that the simulation of P
on the block DAG preserves P’s original specification.

Common Interpretation. Given a block DAG G = (V, E), we want to interpret it as an
execution of the protocol. We call this execution the simulated execution. Furthermore, we
need the interpretation to be consistent among all correct processes doing it.

The idea is to view G as a causality graph, where a block in G issued by some process pi

corresponds to a node that belongs to pi in the causality graph, and the node corresponds to
a compute(i) in the simulated execution. In order to interpret G, we interpret each block
separately, where the interpretation of the block consists of the local process state and its
outgoing messages after the corresponding compute(i) event. For convenience, we also treat
the incoming messages (right before the event) as part of the interpretation. Formally:

CONCUR 2023



27:10 Faithful Simulation of Randomized BFT Protocols on Block DAGs

▶ Definition 2 (Block Interpretation). The interpretation of a block B has the following fields:
1. A local process state B.PS .
2. A list of incoming messages B.Min.
3. A list of outgoing messages B.Mout. For convenience, we denote by Mout [j] the outgoing

messages in Mout that are designated to pj.

Note that the interpretation of a block is not sent over the network. This is crucial
because we do not want the size of the block sent over the network to increase with the
number of protocol instances being interpreted, and instead we only want the block to
include information that processes cannot locally compute unambiguously. As such, it is the
responsibility of each process to interpret each block it has locally.

In a regular execution of a deterministic protocol, whenever a compute(i) event is
scheduled, the process pi performs the following: it passes all of the message in Inj→i to
the local state of its protocol instance PSi and performs a local computation. This updates
the local state PSi, produces new outgoing messages that are deposited into Outi→j and
may return user indications. Our interpretation protocol tries to mimic the execution by
assigning to B.PS the local state of the process after the corresponding event, B.Mout [j] the
messages that would be deposited in Outi→j , and B.Min the messages that would have been
in Inj→i before the event. In addition, if the block B was issued by the process doing the
interpretation and B.PS produces a user indication, then the process must actually return
the indication to the user. The way to compute B.PS is as follows: B.PS is initially copied
from the parent block (or initialized as an initial state for genesis blocks), and then we feed
it all of the relevant outgoing messages from the interpretation of the predecessor blocks,
that is all messages in B′.Mout [i] for all B′ ∈ B.preds, where B.p = pi.

When extending this approach to randomized protocols, we need to account for the local
randomness. In this case, the process state expects to additionally receive a random tape. It
is the responsibility of the issuing process to include the tape in the block B and attach it as
a part of the block in a data field B.rand. The interpretation is thus similar to that of a
deterministic protocol, but B.rand is now also passed to the process state as randomness.

When further extending this to protocols with shared objects, we need to handle object
invocations and object indications. In a regular execution of a protocol with a shared objects
o, a process pi might invoke o following a compute(i) event. Similarly, when interpreting a
block, B.PS might dictate that B.p should invoke o. In this case, the interpreting process
pi actually performs the invocation only if it is the issuing process of the block pi = B.p.
The process states in the original protocol expect to receive indications from o, so these
indications should be passed to B.PS when interpreting B. When o returns an indication
to pi, it is the responsibility of pi to attach the indications to the block in a special buffer
B.buff [o]. The contents of B.buff [o] are passed to B.PS when interpreting B. This concludes
the high level description of block interpretation. In order to interpret an entire block DAG,
we interpret blocks in a topological order since the interpretation of each block B depends
on the interpretation of its predecessors. Since the graph is a DAG, such an order exists and
every block can be interpreted. The full algorithm interpret(G, P) is presented in Algorithm 2.
The main guarantee of interpret(G, P) is the fact that the interpretation of B is independent
of G. This is formalized in the following lemma (proved in the full version [3]):

▶ Lemma 3. For any two block DAGs G1 and G2, if B ∈ G1 and B ∈ G2 then the
interpretation of B in both interpret(G1, P) and interpret(G2, P) is identical.



H. Attiya, C. Enea, and S. Nassar 27:11

Algorithm 2 interpret(Gi, P) for process pi.
Gi = (Vi, Ei) is a block DAG and P is a public-coin protocol.
Gi is process-local variable that maintains its value across different invocations

1: while ∃B ∈ Gi s.t. B is not interpreted s.t. ∀B′ ∈ B.preds : B′ is interpreted do
2: if B.k = 0 then
3: Initialize B.PS as a new state according to the protocol P and process B.p

4: else
5: B.PS := B.parent.PS
6: for all B′ ∈ B.preds do
7: Copy messages from B′.Mout [B.p] to B.Min

8: Pass the user requests B.rqsts, messages B.Min , random tape B.rand and the object
indications B.buff to the state B.PS

9: Overwrite the new state in B.PS
10: Store the outgoing messages in B.Mout
11: if B.p = i then
12: Return user indications produced by B.PS to the user
13: Perform object invocations as dictated by B.PS

Joint Block DAG. We now explain how processes build and maintain the block DAGs.
Algorithm 3 presents the genBlock(Gi) algorithm, which allows a process to generate

blocks and inject data into the system. The algorithm gets a valid block DAG Gi of pi.
It then generates a new block B and assigns it a parent in Gi, then adds to B.preds all
references to blocks in Gi that do not have a path to B.parent. Note that since B.preds ⊆ Vi,
then B.pred only includes blocks B′ s.t. valid(pi, B′). This guarantees that B is a valid
block. Next the external data is filled into the block: this includes moving the user requests
from Rqstsi to B.rqsts, moving the object indications from o.buff i to B.buff [o] for each
relevant o ∈ O and finally assigning a random string ρ to B.rand. Note that we do not know
exactly how long ρ needs to be until B is actually interpreted. Since all B′ ∈ B.preds are
already in Gi, process pi can already interpret B and generate ρ while generating B.

Next, we describe the communication component that is responsible for exchanging blocks
and growing the DAGs. We have shown that processes that interpret the same blocks reach
the same conclusion. But for this to be useful, the communication component must ensure
correct processes eventually interpret the same blocks. That is, if a correct process pi adds
some B to Gi, then every correct process pj eventually adds B to Gj . This can be viewed as
a consistency property between two processes.

Note that a naive approach of having each process simply send its blocks to everyone
does not guarantee consistency, since an honest process pi may add a block B∗ by some
corrupted process B∗ as a predecessor for its own block B. pi naturally considers B valid
and adds it to its block DAG, but for any other honest process pj , B will never be considered
valid until it receives B∗ from p∗.

Consistency can be achieved with the following simple echoing mechanism. For each
block B that pi issues using genBlock, pi generates a signature for B which we denote by
B.σ, and sends (B, B.σ) to everyone. When pi receives a block B by some other process,
it first ensures B is authentic (by verifying the signature). After collecting all authentic
blocks, pi tries to validate as many of them as possible. The validation fails only if some
B′ ∈ B.preds of B is missing, so pi requests B′ from the process B.p that issued B, using a
forward request message which we denote by FWD(ref(B′)). The idea is that if B.p is correct

CONCUR 2023



27:12 Faithful Simulation of Randomized BFT Protocols on Block DAGs

Algorithm 3 genBlock(Gi) for process pi.
Gi = (Vi, Ei) is a block DAG.

1: Initialize a new block B as follows B.p := pi, B.preds := ∅, B.rqsts := ∅
2: Assign to B.parent the reference of the most recent block in Gi issued by pi.
3: B.k := B.parent.k + 1
4: for all B′ ∈ Vi s.t. ¬path(B′, B.parent) do
5: B.preds := B.preds ∪ {ref(B′)}
6: Fill the external data fillData(B).
7: return B

Algorithm 4 exchangeBlocks(Gi) for process pi.
Gi = (Vi, Ei): a block DAG
toValidate, isSent: process-local variables, maintain their values across invocations
Initialize toV alidate := ∅ and isSent := ∅

1: for all B ∈ Gi s.t. B.p = pi and B /∈ isSent do
2: Sign B and denote the signature by B.σ

3: Send (B, B.σ) to everyone
4: Move all authentic blocks from all Inj→i to a set auth

5: toV alidate := toV alidate ∪ auth ▷ Throw inauthentic blocks
6: while ∃B ∈ toV alidate s.t. valid(pi, B) do
7: Gi.insert(B)
8: toV alidate := toV alidate \ {B}
9: auth := auth \ {B}

10: for all B ∈ auth do ▷ Try to validate all authentic blocks
11: for all B′ ∈ B.preds s.t. B′ /∈ Gi do
12: Send FWD(ref(B′)) to B.p ▷ Request missing blocks from B.p

13: for all FWD(ref(B′)) in some Inj→i do ▷ Respond to forward requests
14: If B′ ∈ Gi, send (B′, B′.σ) to pj

15: Empty all Inj→i.

then it must have those blocks, so it will eventually send them to pi, allowing pi to validate
the block B.p. Finally, pi of course has to respond to the forward requests it has received.
The consistency guarantee ensured by exchangeBlocks is formalized in the following lemma:

▶ Lemma 4. For any two correct processes pi and pj executing the protocol of Figure 2, if
pi adds a block to its block DAG Gi, then pj eventually inserts B into Gj.

We note that Lemma 4 really refer to any protocol in which Algorithms 3 and 4 are
continuously run, and are not specific to Figure 2. The proof is deferred to the full version [3].

Correctness Proof. Combining Lemma 4 with Lemma 3 and assuming eventual delivery of
blocks, we get eventual delivery of simulated messages. In other words, if a correct process
pi wants to send a message m to some correct process pj , then this is expressed in the block
DAG framework as a block B issued by pi, such that B.Mout[j] contains the message m.
Delivering the message m to pj is expressed by pj creating a block B′ such that m ∈ B′.Min.
Note that referring to unambiguous interpretations of B and B′ is only possible through
Lemma 3. By Lemma 4, we know that if pi issues the block B then pj eventually receives



H. Attiya, C. Enea, and S. Nassar 27:13

B and considers it valid. By the algorithm in Algorithm 3, eventually pj creates a new
block B′ such that B ∈ B′.preds and by Algorithm 2, m will be added to B.Min. This
discussion demonstrates that the block DAG framework guarantees eventual delivery of
simulated messages, if we assume eventual delivery of blocks. This guarantees the liveness of
the block DAG simulation.

We show that the block DAG simulation of a protocol P is faithful in the sense that
there exists a forward simulation from the block DAG simulation denoted as BD(P) to P
(modeled as LTSs). As mentioned after 1, this implies that the block DAG simulation inherits
finite-trace probability distributions of P and that typical specifications of programs using
the DAG simulation instead of P are preserved.

Section 3 describes the modeling of P using LTSs. We describe below a modeling of BD(P)
using an LTS L′ = (Q′, Σ′, q′

start , δ′) which simplifies the forward simulation proof. A state
q′ ∈ Q′ contains the block DAG Gi of each process pi and (InB

j→i)j∈[n] and (OutB
i→j)j∈[n]

for each process pi, where InB
j→i is the incoming buffer of process i with blocks sent by

process j and OutB
i→j is the outgoing buffer with blocks sent by i to j. As before, we assume

that incoming user requests are stored in InB
i→i and outgoing user indications are stored in

OutB
i→i. The shared object indications are stored in separate buffers (o.buff i)o∈O as before.

Overall, q′ =
(
Gi, (InB

j→i)j∈[n], (OutB
i→j)j∈[n](o.buff i)o∈O

)
i∈[n]. In the initial state q′

start , all
of the block DAGs and the buffers are empty. The transition labels correspond to computing
and validating blocks, exchanging blocks, and user requests or indications. In comparison to
the “standard” model described in Section 3 we decompose a compute step of a process as
defined in Figure 2 into a sequence of steps. This simplifies the forward simulation proof.
As before, we include the randomness (that is attached to the newly created block) in the
computation label. Formally, the transition labels are as follows:
1. validateBlock(i → j) denotes a transition where pj validates a block issued by pi (inside

the genBlock algorithm).
2. compute(i, ρ) denotes a transition where process pi produces and disseminates a new

block (inside the genBlock algorithm) with ρ as its randomness, and then runs interpret
to interpret the new block (and other previously uninterpreted blocks).

3. sendFWD(i → j) denotes a transition where pi sends a FWD request to pj .
4. replyFWD(i → j) denotes a transition where pi sends a reply to a FWD sent by pj .
5. deliverBlocks(i → j) is a transition where all the blocks in OutB

i→j are moved to InB
i→j .

6. o.indicate(i, w) denotes a transition where the value w has been added to o.buff i.
7. labels for user requests (request(i, x)) or indications (indicate(i, y)) are used as in Section 3.

The external actions ΣE are defined exactly as for the LTS L modeling P, presented
in Section 3 (ΣE includes request(i, x), indicate(i, y), and compute(i, ρ)). A transition
(q′

1, e, q′
2) ∈ Q′ × Σ′ × Q′ (denoted q′

1
e−→ q′

2) is in δ′ if and only if the protocol BD(P)
can get from state q′

1 to state q′
2 by executing the step denoted by the label e. Theorem 5 is

proved in the full version [3].

▶ Theorem 5. There exists a forward simulation from the LTS L′ modeling BD(P) to the
LTS L modeling P.

7 Relation to Prior Work

Comparison with the deterministic simulation. We can now discuss how our simulation
and proof are related to the work of Schett and Danezis [17]. They show how block DAGs
can be used to simulate deterministic protocols, which are a special case of the protocols

CONCUR 2023



27:14 Faithful Simulation of Randomized BFT Protocols on Block DAGs

that we handle here. Readers that are familiar with their work will notice that we were able
to achieve a simulation that is a natural extension of theirs. We emphasize, however, that
our techniques for proving the faithfulness of our simulation are novel and different from
theirs. This is necessary because their techniques do not capture the probabilistic guarantees
of randomized protocols.

Our network component which consists of genBlock and exchangeBlocks algorithms is a
natural extension of the gossip algorithm of [17]. Indeed, the code responsible for generating
new blocks and echoing them is almost identical to that of gossip. The difference is that
because we want to exchange only blocks, they should carry enough information to resolve
the randomized decisions that can come from local randomness or shared objects. In our
protocol, each process is responsible to pass along its local randomness or the indications it
got from the shared object in the blocks that it creates. Lemma 4 is proved in a manner
similar to [17, Lemma 3.7].

Our interpretation algorithm is the natural extension of interpret algorithm of [17] for our
context. That is, when interpreting a deterministic protocol, the computation of each process
is only determined by the incoming messages and its state prior to processing those messages.
When interpreting a randomized protocol with shared objects, the local computation may
depend on local randomness and object indications. Our interpretation algorithm used those
fields that were already attached to each block by our genBlock. Lemma 3 that states the
common interpretation of block DAGs, is analogous to [17, Lemma 4.2]. However, the proof
of the latter had a minor mistake and our proof is slightly different.

Finally, the guarantees of randomized protocols, unlike those of deterministic protocols,
cannot always be expressed as trace properties. Particularly, for our simulation to be faithful
to the original protocol, we need a more careful and precise statement and proof. Therefore,
the modeling in Sections 3 and 6 as well as the proof of Theorem 5 are totally different from
what appears in [17].

Analyzing existing protocols. Several recent works rely on the block DAG approach, e.g.,
Aleph [10], DAG-Rider [13] and Bullshark [20]. All of these protocols are randomized. While
each of these works presents a new protocol, we provide a formal and systematic framework
for analyzing DAG-based protocols, especially randomized block DAG protocols.

Here we discuss how our simulation applies to existing protocols, concentrating on
Aleph [10] and DAG-Rider [13]. These protocols aim to order the blocks of the DAG, so
as to implement Byzantine Atomic Broadcast (BAB). A BAB protocol allows all processes
to receive the same messages in the same order. One natural way of implementing a BAB
protocol using a block DAG is by having each process attach the messages it wants to
broadcast to a block and then broadcast the block to everyone. The processes then just need
to agree on an order of the blocks, which would induce an order of the messages. Like our
simulation, both Aleph and DAG-Rider have a communication component that is responsible
for building and maintaining the common DAG. In both protocols, each block in the DAG
belongs to a specific round, and each correct process has a single block in each round.

Aleph orders the blocks in the DAG by electing a leader block in each round, and then
having that leader block (deterministically) dictate the order of its ancestor blocks that have
not been ordered yet.

DAG-Rider divides the DAG into waves. Each wave consists of four consecutive rounds,
and a leader block is elected for each wave. The block leader election is done by interpreting
the (same) block DAG as a consensus protocol and utilizing a shared object for generating
randomness, namely, a common coin. It is critical to note that our simulation preserves the



H. Attiya, C. Enea, and S. Nassar 27:15

properties of the shared object, for example the unpredictability of the common coin. This is
because our forward simulation preserves the compute events, in which the object invocations
happen. This means that the object cannot distinguish if it is being used in the context of
the original protocol or in the context of the block DAG simulation of the protocol. This
means that its properties are preserved.

Aleph and DAG-Rider can be analyzed using our framework. The consensus protocol
used can be analyzed independently of Aleph or DAG-Rider, while assuming it has access
to a common coin. By Theorem 5, the simulation of the consensus protocol on the block
DAG is faithful to the original consensus protocol. This not only simplifies reasoning about
safety and liveness of Aleph and DAG-Rider, but also supports modularity: the simulated
consensus protocol in Aleph or DAG-Rider can be seamlessly replaced using Theorem 5.

8 Discussion

We have presented a faithful simulation of DAG-based BFT protocols, which use public coins
and shared objects, including protocols that utilize a common source of randomness, e.g., a
common coin. Being faithful, the simulation precisely preserves properties of the original
BFT protocol, and in particular, their probability distributions.

One of the appealing properties of our block DAG framework is that it allows to minimize
the communication when running multiple instances of potentially different protocols. This
can be done by using the same joint block DAG to interpret multiple protocol instances.
The logic of the communication layer does not change, other than the need to specify the
associated instance for each user request and object indication that is attached to the blocks.
Each process would then run multiple interpretation instances, one for each protocol instance.
We note that a process does not necessarily need to attach a separate randomness tape
for each instance, and can instead attach a small random seed. Processes can then use a
pseudorandom generator to expand the seed to a large enough pseudorandom string that
can be used for all of the instances. This ensures that block size does not grow beyond the
size of the user requests and the object indications.

Our simulation relies on the fact that it is safe to reveal the randomness to the adversary
as soon as it is used. We can similarly define private-coin protocols, whose security relies
on processes ability to keep secrets from the adversary. A classical example would be any
Asynchronous Verifiable Secret Sharing scheme (e.g. [5]). From a theoretical point of view, it
would be interesting to demonstrate how we can simulate such algorithms on block DAGs.
However, we note that some protocols are entirely public-coin other than a dedicated private-
coin sub-protocol, such as Aleph-Beacon in Aleph [10] (which is used to implement a common
coin). In this case, the dedicated sub-protocol can be encapsulated as a shared object, thus
factoring out the use of private-coin simulations.

References
1 Ittai Abraham, Naama Ben-David, and Sravya Yandamuri. Efficient and adaptively secure

asynchronous binary agreement via binding crusader agreement. In Alessia Milani and Philipp
Woelfel, editors, PODC ’22: ACM Symposium on Principles of Distributed Computing, Salerno,
Italy, July 25–29, 2022, pages 381–391. ACM, 2022. doi:10.1145/3519270.3538426.

2 Hagit Attiya and Constantin Enea. Putting strong linearizability in context: Preserving
hyperproperties in programsthat use concurrent objects. In Jukka Suomela, editor, 33rd
International Symposium on Distributed Computing, DISC 2019, October 14-18, 2019, Bu-
dapest, Hungary, volume 146 of LIPIcs, pages 2:1–2:17. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPIcs.DISC.2019.2.

CONCUR 2023

https://doi.org/10.1145/3519270.3538426
https://doi.org/10.4230/LIPIcs.DISC.2019.2


27:16 Faithful Simulation of Randomized BFT Protocols on Block DAGs

3 Hagit Attiya, Constantin Enea, and Shafik Nassar. Faithful simulation of randomized bft
protocols on block dags. Cryptology ePrint Archive, Paper 2023/192, 2023. URL: https:
//eprint.iacr.org/2023/192.

4 Leemon Baird. The Swirlds Hashgraph consensus algorithm: Fair, fast, Byzantine fault
tolerance. https://www.researchhub.com/paper/337/the-swirlds-hashgraph-consensus-
algorithm-fair-fast-byzantine-fault-tolerance, 2016.

5 Ran Canetti and Tal Rabin. Fast asynchronous Byzantine agreement with optimal resilience.
In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the Twenty-
Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA,
USA, pages 42–51. ACM, 1993. doi:10.1145/167088.167105.

6 Anton Churyumov. Byteball: A decentralized system for storage and transfer of value.
https://byteball.org/Byteball.pdf, 2016.

7 Danny Dolev. The Byzantine generals strike again. J. Algorithms, 3(1):14–30, 1982. doi:
10.1016/0196-6774(82)90004-9.

8 Brijesh Dongol, Gerhard Schellhorn, and Heike Wehrheim. Weak progressive forward simulation
is necessary and sufficient for strong observational refinement. In Bartek Klin, Slawomir Lasota,
and Anca Muscholl, editors, 33rd International Conference on Concurrency Theory, CONCUR
2022, September 12-16, 2022, Warsaw, Poland, volume 243 of LIPIcs, pages 31:1–31:23. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CONCUR.2022.31.

9 Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus
with one faulty process. In Ronald Fagin and Philip A. Bernstein, editors, Proceedings of
the Second ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, March
21-23, 1983, Colony Square Hotel, Atlanta, Georgia, USA, pages 1–7. ACM, 1983. doi:
10.1145/588058.588060.

10 Adam Gagol, Damian Lesniak, Damian Straszak, and Michal Swietek. Aleph: Efficient atomic
broadcast in asynchronous networks with Byzantine nodes. In Proceedings of the 1st ACM
Conference on Advances in Financial Technologies, AFT 2019, Zurich, Switzerland, October
21-23, 2019, pages 214–228. ACM, 2019. doi:10.1145/3318041.3355467.

11 Wojciech M. Golab, Lisa Higham, and Philipp Woelfel. Linearizable implementations do not
suffice for randomized distributed computation. In Lance Fortnow and Salil P. Vadhan, editors,
Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose,
CA, USA, 6-8 June 2011, pages 373–382. ACM, 2011. doi:10.1145/1993636.1993687.

12 Shang-En Huang, Seth Pettie, and Leqi Zhu. Byzantine agreement in polynomial time with
near-optimal resilience. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th
Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20–24, 2022,
pages 502–514. ACM, 2022. doi:10.1145/3519935.3520015.

13 Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you need
is DAG. In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21:
ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, July 26-30,
2021, pages 165–175. ACM, 2021. doi:10.1145/3465084.3467905.

14 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, 1978. doi:10.1145/359545.359563.

15 Nancy A. Lynch and Frits W. Vaandrager. Forward and backward simulations: I. untimed
systems. Inf. Comput., 121(2):214–233, 1995. doi:10.1006/inco.1995.1134.

16 Sean Rowan and Naïri Usher. The Flare consensus protocol: Fair, fast federated Byzantine
agreement consensus. https://flareportal.com/wp-content/uploads/simple-file-list/
FCP.pdf, 2019.

17 Maria Anna Schett and George Danezis. Embedding a deterministic BFT protocol in a block
DAG. In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21:
ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, July 26-30,
2021, pages 177–186. ACM, 2021. doi:10.1145/3465084.3467930.

https://eprint.iacr.org/2023/192
https://eprint.iacr.org/2023/192
https://www.researchhub.com/paper/337/the-swirlds-hashgraph-consensus-algorithm-fair-fast-byzantine-fault-tolerance
https://www.researchhub.com/paper/337/the-swirlds-hashgraph-consensus-algorithm-fair-fast-byzantine-fault-tolerance
https://doi.org/10.1145/167088.167105
https://byteball.org/Byteball.pdf
https://doi.org/10.1016/0196-6774(82)90004-9
https://doi.org/10.1016/0196-6774(82)90004-9
https://doi.org/10.4230/LIPIcs.CONCUR.2022.31
https://doi.org/10.1145/588058.588060
https://doi.org/10.1145/588058.588060
https://doi.org/10.1145/3318041.3355467
https://doi.org/10.1145/1993636.1993687
https://doi.org/10.1145/3519935.3520015
https://doi.org/10.1145/3465084.3467905
https://doi.org/10.1145/359545.359563
https://doi.org/10.1006/inco.1995.1134
https://flareportal.com/wp-content/uploads/simple-file-list/FCP.pdf
https://flareportal.com/wp-content/uploads/simple-file-list/FCP.pdf
https://doi.org/10.1145/3465084.3467930


H. Attiya, C. Enea, and S. Nassar 27:17

18 Roberto Segala. A compositional trace-based semantics for probabilistic automata. In Insup
Lee and Scott A. Smolka, editors, CONCUR ’95: Concurrency Theory, 6th International
Conference, Philadelphia, PA, USA, August 21-24, 1995, Proceedings, volume 962 of Lecture
Notes in Computer Science, pages 234–248. Springer, 1995. doi:10.1007/3-540-60218-6_17.

19 Yonatan Sompolinsky, Shai Wyborski, and Aviv Zohar. PHANTOM GHOSTDAG: a scalable
generalization of nakamoto consensus: September 2, 2021. In Foteini Baldimtsi and Tim
Roughgarden, editors, AFT ’21: 3rd ACM Conference on Advances in Financial Technologies,
Arlington, Virginia, USA, September 26–28, 2021, pages 57–70. ACM, 2021. doi:10.1145/
3479722.3480990.

20 Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-Kogias. Bull-
shark: DAG BFT protocols made practical. In Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi, editors, Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, pages
2705–2718. ACM, 2022. doi:10.1145/3548606.3559361.

21 Qin Wang, Jiangshan Yu, Shiping Chen, and Yang Xiang. SoK: Diving into DAG-based
blockchain systems. CoRR, abs/2012.06128, 2020. arXiv:2012.06128.

CONCUR 2023

https://doi.org/10.1007/3-540-60218-6_17
https://doi.org/10.1145/3479722.3480990
https://doi.org/10.1145/3479722.3480990
https://doi.org/10.1145/3548606.3559361
https://arxiv.org/abs/2012.06128

	1 Introduction
	2 Motivating Example
	3 Preliminaries
	4 Modeling protocols with Labeled Transition Systems
	5 Block DAGs
	6 Simulating Public-Coin Protocols That Use Shared Objects
	7 Relation to Prior Work
	8 Discussion

