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Abstract
We introduce the notion of a Real Equation System (RES), which lifts Boolean Equation Systems
(BESs) to the domain of extended real numbers. Our RESs allow arbitrary nesting of least and
greatest fixed-point operators. We show that each RES can be rewritten into an equivalent RES
in normal form. These normal forms provide the basis for a complete procedure to solve RESs.
This employs the elimination of the fixed-point variable at the left side of an equation from its
right-hand side, combined with a technique often referred to as Gauß-elimination. We illustrate
how this framework can be used to verify quantitative modal formulas with alternating fixed-point
operators interpreted over probabilistic labelled transition systems.
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1 Introduction

The modal mu-calculus is a logic that allows to formulate and verify a very wide range
of properties on behaviour, far more expressive than virtually any other behavioural logic
around [3, 2]. For instance, CTL and LTL can be mapped to it, but the reverse is not
possible. By allowing data parameters in the fixed point variables in modal formulas, this
can even be done linearly, without loss of computational effectiveness [5]. Using alternating
fixed-points, the modal mu-calculus can intrinsically express various forms of fairness, which
in other logics can often only be achieved by adding special fairness operators.

An effective way to evaluate a modal property on a labelled transition system is by
translating both to a single Boolean Equation System (BES) with alternating fixed-points [20,
22]. Exactly if the initial boolean variable of the obtained BES has the solution true, the
property is valid for the labelled transition system. A BES with alternating fixed-points is
equivalent to a parity game [21, 2]. There are many algorithms to solve BESs and parity
games [26, 4, 17, 25]. Although, it is a long standing open problem whether a polynomial
algorithm exists to solve BESs [4, 17], the existing algorithms work remarkably well in
practical contexts.

For a while now, it has been argued that modal logics can become even more effective
if they provide quantitative answers [15, 16], such as durations, probabilities and expected
values. In this paper we lift boolean equation systems to real numbers to form a framework
for the evaluation of quantitative modal formulas, and call the result Real Equation Systems
(RESs), i.e., fixed-point equation systems over the domain of the extended reals, R∪{−∞, ∞}.

© Jan Friso Groote and Tim A. C. Willemse;
licensed under Creative Commons License CC-BY 4.0

34th International Conference on Concurrency Theory (CONCUR 2023).
Editors: Guillermo A. Pérez and Jean-François Raskin; Article No. 28; pp. 28:1–28:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:J.F.Groote@tue.nl
http://www.win.tue.nl/~jfg
https://orcid.org/0000-0003-2196-6587
mailto:T.A.C.Willemse@tue.nl
http://www.win.tue.nl/~timw
https://orcid.org/0000-0003-3049-7962
https://doi.org/10.4230/LIPIcs.CONCUR.2023.28
https://arxiv.org/abs/2307.07455
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


28:2 Real Equation Systems with Alternating Fixed-Points

Conjunction and disjunction are interpreted as minimum and maximum, and new operators
such as addition and multiplication with positive constants are added. A typical example of
a real equation system is the following

µX = ( 1
2 X + 1) ∨ ( 1

5 Y + 3),
νY = (( 1

10 Y − 10) ∨ (2X + 5)) ∧ 17.

Based on Tarski’s fixed-point theorem, this real equation system has a unique solution.
Using the method provided in this paper we can determine this solution using algebraic
manipulation. In the case above, see Section 4, the second fixed-point equation can be
simplified to νY = − 100

9 ∨ ((2X + 5) ∧ 17). It is sound to substitute this in the first equation,
which becomes µX = ( 1

2 X + 1) ∨ 7
9 ∨ (( 2

5 X + 4) ∧ 32
5 ). This equation can be solved for X

yielding X = 32
5 , from which it directly follows that Y = 17.

Concretely, this paper has the following results. We define real equation systems with
alternating fixed-points. The base syntax for expressions is equal to that of [7] with constants,
minimum, maximum, addition and multiplication with positive real constants. We add four
additional operators, namely two conditional operators, and two tests for infinity, which turn
out to be required to algebraically solve arbitrary real equation systems.

We provide algebraic laws that allow to transform any expression to conjunctive/disjunctive
normal form. Based on this normal form we provide rules that allow to eliminate each variable
bound in the left-hand side of an equation from the right-hand side of that equation. This
enables “Gauß-elimination”, developed for BESs, using which any real equation system can
be solved.

We provide a quantitative modal logic, and define how a quantitative formula and a
(probabilistic) labelled transition system ((p)LTS) can be transformed into a RES. The
solution of the initial variable of this equation system is equal to the evaluation of the
quantitative formula on the labelled transition system. We also briefly touch upon the
embedding of BESs into RESs.

The approach in this paper follows the tradition of boolean equation systems [19, 20, 21].
By allowing data parameters in the fixed-point variables we obtain Parameterised Boolean
Equation Systems (PBESs) which is a very expressive framework that forms the workhorse
for model checking [22, 13, 11]. In this paper we do not address such parametric extensions,
as they are pretty straightforward, but in combination with parameterised quantitative modal
logic, it will certainly provide a very versatile framework for quantitative model checking.

There are a number of extensions of the boolean equation framework to the setting of
reals but these typically limit themselves to only single fixed-points. In [7] the minimal
integer solutions for a set of equations with only minimal fixed-points is determined. In [8]
a polynomial algorithm is provided to find the minimal solution for a set of real equation
systems. In [1] convex lattice equation systems are introduced, also restricted to a single
fixed-point. In that paper a proof system is given to show that all models of the equations
are consistent, meaning that the evaluation of a quantitative modal formula is limited by
some upper-bound.

In [24], the Łukasiewicz µ-calculus is studied, which resembles RESs restricted to the
interval [0, 1]. This logic does allow minimal and maximal fixed-points. They provide two
algorithmic ways of computing the solutions for formulas in their logic, viz. an indirect
method that builds formulas in the first-order theory of linear arithmetic and exploits
quantifier elimination, and a method that uses iteration to refine successive approximations
of conditioned linear expressions. Embedding our logic in the Łukasiewicz µ-calculus can be
done by mapping the extended reals onto the interval [0, 1] using an appropriate sigmoid
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function. But such a mapping does not map our addition and constant multiplication to
available counterparts in the Łukasiewicz µ-calculus, which prevents using algorithms for
Łukasiewicz µ-terms [18, 24] to our setting. However, as the Łukasiewicz µ-calculus is directly
encodable into the RES framework, all our results are directly applicable to the Łukasiewicz
µ-calculus.

2 Expressions and normal forms

We work in the setting of extended real numbers, i.e., R∪{∞, −∞}, denoted by R̂. We assume
the normal total ordering ≤ on R̂ where −∞ ≤ x and x ≤ ∞ for all x ∈ R̂. Throughout
this text we employ a set X of variables and valuations η : X → R̂ that map variables to
extended reals. We write η(X) to apply η to X, and η[X := r] to adapt valuations by:

η[X := r](Y ) =
{

r if X = Y,

η(Y ) otherwise.

We consider expressions over the set X of variables with the following syntax.

e ::= X | d | c·e | e + e | e ∧ e | e ∨ e | e ⇒ e ⋄ e | e → e ⋄ e | eq∞(e) | eq−∞(e)

where X ∈ X , d ∈ R̂ is a constant, c ∈ R>0 a positive constant, + represents addition, ∧
stands for minimum, ∨ for maximum, _ ⇒ _ ⋄ _ and _ → _ ⋄ _ are conditional operators,
and eq∞ and eq−∞ are auxiliary functions to check for ±∞. The conditional operators and
the checks for infinity occur naturally while solving fixed-point equations and therefore, we
made them part of the syntax. We apply valuations to expressions, as in η(e), where η

distributes over all operators in the expression.
The interpretation of these operators on the domain R̂ is largely obvious. A variable

X gets a value by a valuation. Multiplying expressions with a constant c is standard, and
yields ±∞ if applied on ±∞. The conditional operators, addition and infinity operators are
defined below where e, e1, e2, e3 ∈ R̂.

e1 + e2 =


e1 + e2 if e1, e2 ∈ R, i.e., apply normal addition,

∞ if e1 = ∞ or e2 = ∞,

−∞ if ei=−∞ and e3−i ̸= ∞ for i = 1, 2.

e1 ⇒ e2 ⋄ e3 =
{

e2 ∧ e3 if e1 ≤ 0,

e3 if e1 > 0.
e1 → e2 ⋄ e3 =

{
e2 if e1 < 0,

e2 ∨ e3 if e1 ≥ 0.

eq∞(e) =
{

∞ if e = ∞,

−∞ if e ̸= ∞.
eq−∞(e) =

{
∞ if e ̸= −∞,

−∞ if e = −∞.

Note that all defined operators are monotonic on R̂. We have the identity eq∞(e) = e + −∞,
and so, we do not treat eq∞ as a primary operator. We write e[X := e′] for the expression
representing the syntactic substitution of e′ for X in e. We write occ(e) for the set of variables
from X occurring in e. Table 1 contains many useful algebraic laws for our operators.

The addition operator + has as property that −∞ + ∞ = ∞ + −∞ = ∞. One may
require the other natural addition operator +̂, as used in [8], satisfying that −∞+̂∞ =
∞+̂ − ∞ = −∞. It can be defined as follows:

e1+̂e2 = eq−∞(e1) ⇒ −∞ ⋄ (eq−∞(e2) ⇒ −∞ ⋄ (e1 + e2)).

CONCUR 2023



28:4 Real Equation Systems with Alternating Fixed-Points

We can extend the syntax with unary negation −e with its standard meaning, and,
provided no variable occurs in the scope of its definition within an odd number of negations,
negation can be eliminated using standard simplification rules. Therefore, we do not consider
it as a primary part of our syntax. At the end of Table 1 we list several identities involving
negation. Note that operators + and +̂ are each other’s dual with regard to negation.

We introduce normal forms, crucial to solve real equation systems, where the sum,
conjunction and disjunction over empty domains of variables equal 0, ∞ and −∞, respectively.

▶ Definition 1. Let X be a set of variables. An expression e is in simple conjunctive normal
form iff it has the shape∧

i∈I

∨
j∈Ji

((
∑

X∈Xij

cX
ij ·X) + (

∑
X∈X ′

ij

eq−∞(X)) + dij)

and it is in simple disjunctive normal form iff it has the shape∨
i∈I

∧
j∈Ji

((
∑

X∈Xij

cX
ij ·X) + (

∑
X∈X ′

ij

eq−∞(X)) + dij)

where Xij ⊆ X and X ′
ij ⊆ X are finite sets of variables, cX

ij ∈ R>0, and dij ∈ R̂.
An expression e is in conjunctive, resp. disjunctive normal form iff

1. e is in simple conjunctive, resp. disjunctive normal form, or
2. e has the shape e1 ⇒ e2 ⋄ e3 or e1 → e2 ⋄ e3 where e1 is in simple conjunctive, resp.

disjunctive normal form and e2 and e3 are conjunctive resp. disjunctive normal forms.

▶ Lemma 2. Each expression e not containing the conditional operators e1 ⇒ e2 ⋄ e3 or
e1 → e2 ⋄ e3 can be rewritten to a simple conjunctive or disjunctive normal form using the
equations in Table 1.

▶ Lemma 3. Expression of the forms e1 ⇒ e2 ⋄ e3 and e1 → e2 ⋄ e3 can be rewritten to
equivalent expressions where the first argument of such a conditional operator is a simple
conjunctive or disjunctive normal form using the equations in Table 1.

▶ Theorem 4. Each expression e can be rewritten to both a conjunctive and a disjunctive
normal form using the equations in Table 1.

3 Real equation systems and Gauß-elimination

In this section we introduce Real Equation Systems (RESs) as sequences of fixed-point
equations, introduce a natural equivalence between RESs, and provide a generic solution
method, known as Gauß-elimination [20].

▶ Definition 5. Let X be a set of variables. A Real Equation System (RES) E is a finite
sequence of (fixed-point) equations

σ1X1=e1, . . . , σnXn=en

where σi is either the minimal fixed-point operator µ or the maximal fixed-point operator
ν, Xi ∈ X are variables and ei are expressions. We write bnd(E) for the set of variables
occurring in the left-hand side, i.e., bnd(E) = {X1, . . . , Xn}.



J. F. Groote and T. A. C. Willemse 28:5

Table 1 Algebraic laws.

I∨ e ∨ e = e I∧ e ∧ e = e

D+
+ (e1 + e2) + e3 = e1 + (e2 + e3) C+ e1 + e2 = e2 + e1

D∨
∨ (e1∨2) ∨ e3 = e1 ∨ (e2 ∨ e3) C∨ e1 ∨ e2 = e2 ∨ e1

D∧
∧ (e1 ∧ e2) ∧ e3 = e1 ∧ (e2 ∧ e3) C∧ e1 ∧ e2 = e2 ∧ e1

D⇒
⇒ (e1 ⇒ e2 ⋄ e3) ⇒ f1 ⋄ f2 = ((e1 ∨ e2) ∧ e3) ⇒ f1 ⋄ f2

D⇒
→ (e1 ⇒ e2 ⋄ e3) → f1 ⋄ f2 = e1 → (e2 ⇒ f1 ⋄ f2) ⋄ (e2 ∨ e3 ⇒ f1 ⋄ f2)

Dc
⇒ c·(e1 ⇒ e2 ⋄ e3) = e1 ⇒ c·e2 ⋄ c·e3

D+
⇒ (e1 ⇒ e2 ⋄ e3) + f = e1 ⇒ (e2 + f) ⋄ (e3 + f)

D∧
⇒ (e1 ⇒ e2 ⋄ e3) ∧ f = e1 ⇒ (e2 ∧ f) ⋄ (e3 ∧ f)

D∨
⇒ (e1 ⇒ e2 ⋄ e3) ∨ f = e1 ⇒ (e2 ∨ f) ⋄ (e3 ∨ f)

D→
→ (e1 → e2 ⋄ e3) → f1 ⋄ f2 = (e2 ∨ (e1 ∧ e3)) → f1 ⋄ f2

D⇒
→ (e1 → e2 ⋄ e3) ⇒ f1 ⋄ f2 = e1 ⇒ (e2 ∧ e3 → f1 ⋄ f2) ⋄ (e3 → f1 ⋄ f2)

Dc
→ c·(e1 → e2 ⋄ e3) = e1 → c·e2 ⋄ c·e3

D+ (e1 → e2 ⋄ e3) + f = e1 → (e2 + f) ⋄ (e3 + f)
D∧

→ (e1 → e2 ⋄ e3) ∧ f = e1 → (e2 ∧ f) ⋄ (e3 ∧ f)
D∨

→ (e1 → e2 ⋄ e3) ∨ f = e1 → (e2 ∨ f) ⋄ (e3 ∨ f)
D+

∧ e1 + (e2 ∧ e3) = (e1 + e2) ∧ (e1 + e3) D+
∨ e1 + (e2 ∨ e3) = (e1 + e2) ∨ (e1 + e3)

Dc
+ c·(e1 + e2) = c·e1 + c·e2

Dc
∧ c·(e1 ∧ e2) = c·e1 ∧ c·e2 Dc

∨ c·(e1 ∨ e2) = c·e1 ∨ c·e2

D∧
∨ e1 ∧ (e2 ∨ e3) = (e1 ∧ e2) ∨ (e1 ∧ e3) D∨

∧ e1 ∨ (e2 ∧ e3) = (e1 ∨ e2) ∧ (e1 ∨ e3)

D∞
∞ eq∞(eq∞(e)) = eq∞(e) D−∞

∞ eq−∞(eq∞(e)) = eq∞(e)
D∞

−∞ eq∞(eq−∞(e)) = eq−∞(e) D−∞
−∞ eq−∞(eq−∞(e)) = eq−∞(e)

D∞
c eq∞(c·e) = eq∞(e) D−∞

c eq−∞(c·x) = eq−∞(x)
D∞

+ eq∞(e1 + e2) = eq∞(e1) + eq∞(e2) = eq∞(e1) ∨ eq∞(e2)
D−∞

+ eq−∞(e1 + e2) = (eq−∞(e1) ∨ eq∞(e2)) ∧ (eq∞(e1) ∨ eq−∞(e2))
D∞

∨ eq∞(e1 ∨ e2) = eq∞(e1) ∨ eq∞(e2) D−∞
∨ eq−∞(e1 ∨ e2) = eq−∞(e1) ∨ eq−∞(e2)

D∞
∧ eq∞(e1 ∧ e2) = eq∞(e1) ∧ eq∞(e2) D−∞

∧ eq−∞(e1 ∧ e2) = eq−∞(e1) ∧ eq−∞(e2)
E∧

∞ eq∞(e) ∧ eq−∞(e) = eq∞(e) E∨
−∞ eq∞(e) ∨ eq−∞(e) = eq−∞(e)

D∞
⇒ eq∞(e1 ⇒ e2 ⋄ e3) = e1 ⇒ eq∞(e2) ⋄ eq∞(e3)

D−∞
⇒ eq−∞(e1 ⇒ e2 ⋄ e3) = e1 ⇒ eq−∞(e2) ⋄ eq−∞(e3)

D∞
→ eq∞(e1 → e2 ⋄ e3) = e1 → eq∞(e2) ⋄ eq∞(e3)

D−∞
→ eq−∞(e1 → e2 ⋄ e3) = e1 → eq−∞(e2) ⋄ eq−∞(e3)

D−
c −c·e = c· −e

D−
+ −(e1 + e2) = −e1+̂ −e2 D−

+̂ −(e1+̂e2) = −e1+ −e2

D−
∨ −(e1 ∨ e2) = −e1 ∧ −e2 D−

∧ −(e1 ∧ e2) = −e1 ∨ −e2

D−
⇒ −(e1 ⇒ e2 ⋄ e3) = −e1 → −e3 ⋄ −e2 D−

→ −(e1 → e2 ⋄ e3) = −e1 ⇒ −e3 ⋄ −e2

D−
∞ −eq∞(e) = eq−∞(−e) D−

−∞ −eq−∞(e) = eq∞(−e)

CONCUR 2023
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The empty sequence of equations is denoted by ε.
The semantics of a real equation system is a valuation giving the solutions of all variables,

based on an initial valuation η giving the solution for all variables not bound in E .

▶ Definition 6. Let X be a set of variables and E be a real equation system over X . The
solution [[E ]]η : X → R̂ yields an extended real number for all X ∈ X , given a valuation
η : X → R̂ of E. It is inductively defined as follows:

[[ε]]η = η,

[[σX=e, E ]]η = [[E ]](η[X := σ(X, E , η, e)])

where σ(X, E , η, e) is defined as

µ(X, E , η, e) =
∧

{r ∈ R̂ | r ≥ [[E ]](η[X := r])(e)} and
ν(X, E , η, e) =

∨
{r ∈ R̂ | [[E ]](η[X := r])(e) ≥ r}.

It is equivalent to write = instead of ≥ in the above sets. This makes the fixed-points
easier to understand. Note that if the real equation system is closed, i.e., all variables in the
right-hand sides occur in bnd(E), the value [[E ]]η(X) is independent of η for all X ∈ bnd(E).

Following [14], we introduce the notion of equivalency between equation systems. We use
the symbol ≡ to distinguish this equivalence from “=” used in equation systems.

▶ Definition 7. Let E , E ′ be real equation systems. We say that E ≡ E ′ iff [[E , F ]]η = [[E ′, F ]]η
for all valuations η and real equation systems F with bnd(F) ∩ (bnd(E) ∪ bnd(E ′)) = ∅.

In [14] it was observed that defining E ≡ E ′ as [[E ]]η = [[E ′]]η for all η is not desirable, as the
resulting equivalence is not a congruence. With this alternative notion, we find that µX=Y

and νX=Y are equivalent. But µX=Y, νY =X and νX=Y, νY =X are not as the first one
has solution X = Y = −∞ and the second one has X = Y = ∞.

However, if the fixed-point symbol is the same, it is not necessary to take surrounding
equations into account. This is a pretty useful lemma which makes the proofs in this paper
much easier, and of which we are not aware that it occurs elsewhere in the literature.

▶ Lemma 8. Let X be a variable, e and f be expressions and σ either the minimal or the
maximal fixed-point symbol. If for any valuation η it holds that [[σX = e]]η = [[σX = f ]]η
then σX = e ≡ σX = f .

The proof of the main Theorem 11 is quite involved and heavily uses the following two
lemmas, which we only give for the minimal fixed-point. The formulations for the maximal
fixed-point are dual.

▶ Lemma 9. Let X ∈ X be a variable and e, f be expressions. It holds that µX = e ≡ µX =
f if for every valuation η:
1. for the smallest r ∈ R̂ such that r = η[X := r](e) it holds that there is an r′ ∈ R̂ satisfying

that r′ ≤ r and r′ ≥ η[X := r′](f), and, vice versa,
2. for the smallest r ∈ R̂ such that r = η[X := r](f) it holds that there is an r′ ∈ R̂ satisfying

that r′ ≤ r and r′ ≥ η[X := r′](e).

▶ Lemma 10. If µX = e ≡ µX = f , then for any valuation η it holds that
1. for any r ∈ R̂ such that r ≥ η[X := r](e), there is an r′ ∈ R̂ such that r′ ≤ r and

r′ = η[X := r′](f), and, vice versa,
2. for any r ∈ R̂ such that r ≥ η[X := r](f), there is an r′ ∈ R̂ such that r′ ≤ r and

r′ = η[X := r′](e).
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Table 2 Properties of the equivalence ≡ on RESs.

E1 E ≡ E ′

F , E ≡ F , E ′ . E2 E ≡ E ′

E , F ≡ E ′, F
.

E3 σX=e, E , σ′Y =e′ ≡ σX=e[Y := e′], E , σ′Y =e′ if X, Y ̸∈ bnd(E).

E4 σX=e, E ≡ E , σX=e if occ(e) = ∅ and X ̸∈ bnd(E).

E5 σX=e, σY =e′ ≡ σY =e′, σX=e.

E6 µX = e1 ≡ µX = f1 and µX = e2 ≡ µX = f2

µX = e1 ∧ e2 ≡ µX = f1 ∧ f2
.

E7 νX = e1 ≡ νX = f1 and νX = e2 ≡ νX = f2

νX = e1 ∨ e2 ≡ νX = f1 ∨ f2
.

The notion of equivalence of Definition 7 is an equivalence relation on RESs and it satisfies
the properties E1-E7 in Table 2. E1-E5 are proven for boolean equation systems in [14] and
the proofs carry over to our setting. In the table, σ and σ′ stand for the fixed-point symbols
µ and ν. The equivalences E3 and E4 above give a method to solve arbitrary equation
systems, provided a single equation can be solved. Here, solving a single equation σX=e

means replacing it by an equivalent equation σX=e′ where X does not occur in e′, which is
the topic of the next section. This method is known as Gauß-elimination as it resembles the
well-known Gauß-elimination procedure for sets of linear equations [20].

The idea behind Gauß-elimination for a real equation system E is as follows. First, the
last equation σnXn=en of E is solved for Xn. Assume the solution is σnXn=e′

n, where Xn

does not occur in e′
n. Using E3 the expression e′

n is substituted for all occurrences Xn in
right-hand sides of E removing all occurrences of Xn except in the left hand side of the last
equation. Subsequently, this process is repeated for the one but last equation of E up to the
first equation. Now the first equation has the shape X1=e1 where no variable X1 up till
Xn occurs in e1. Using E4 this equation can be moved to the end of E , and by applying E3
all occurrences of X1 are removed from the right-hand sides of E . This is then repeated for
X2, which now also does not contain X1, . . . , Xn, until all variables X1, . . . , Xn have been
removed from all right-hand sides of E .

A concrete, but simple example is the following. Consider the real equation system

µX=Y, νY =(X + 1) ∧ Y.

We can derive:

µX=Y, νY =(X + 1) ∧ Y
(†)
≡ µX=Y, νY =X + 1 E3≡ µX=X + 1, νY =X + 1

(‡)
≡

µX= − ∞, νY =X + 1 E4≡ νY =X + 1, µX= − ∞,
E3≡ νY = − ∞, µX= − ∞.

Solving the equation νY = (X + 1) ∧ Y at (†) above, and µX=X + 1 at (‡) can be done
with simple fixed-point iteration. In νY = (X + 1) ∧ Y fixed-pointed iteration starts with
Y = ∞. This yields in the first iteration Y = X + 1, and this iteration is stable, and hence
it is the maximal fixed-point solution. For µX=X + 1, the initial approximation X = −∞ is
also a solution, and hence the minimal solution. Unfortunately, fixed-point iteration does
not terminate always. For instance, µX=(X + 1) ∨ 0 has minimal solution X = ∞, which
can only be obtained via an infinite number of iteration steps.

CONCUR 2023
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4 Solving single equations

In this section we show that it is possible to solve each fixed-point equation σX = e in a
finite number of steps. First assume that e does not contain conditional operators. If we
have a minimal fixed-point equation µX=e, we know via Theorem 4 that we can rewrite e

to simple conjunctive normal form. We want to explicitly expose occurrences of the variable
X in the normal form of e and do this by denoting the normal form of e as shown in (1).
Here, all expressions containing variables different from X are moved to fij or mi.∧

i∈I

(
∨

j∈Ji

(cij ·X + c′
ij ·eq−∞(X) + fij) ∨ mi). (1)

The expressions fij and mi do not contain X. Subexpressions cij ·X are optional, i.e., abusing
notation, we allow cij to be 0 if this sub-term is not present. Likewise, eq−∞(X) is optional
and therefore, c′

ij is either 0 or 1, where 0 means that the expression is not present. Constants
cij and c′

ij cannot both be 0, as in that case the conjunct does not contain X and is hence
part of mi.

We define the solution of µX=e, in which e is assumed to be of shape (1), as µX = Solµ
X=e

where:

Solµ
X=e =

∧
i∈I

((eq∞(
∨

j∈Ji

fij))

⇒ (eq−∞(mi) ⇒ −∞ ⋄ ((
∨

j∈Ji|cij≥1

fij + (cij − 1)·Ui) ∨
∨

j∈Ji|c′
ij

=1

∞ ⇒ Ui ⋄ ∞))

⋄ ∞)

(2)

where Ui = mi ∨
∨

j∈Ji|cij<1

1
1 − cij

·fij .

Note that we use the notation
∨

j∈Ji|cond where cond is a condition. This means that the
disjunction is only taken over elements j that satisfy the condition. Also observe that we
use expressions such as 1

1−cij
·fij . This is an ordinary multiplication with 1

1−cij
as positive

constant. It is worth noting that if only rational numbers are used in the equations, the
solutions to the variables are restricted to −∞, ∞ and rationals.

It can be understood that (2) is a solution of (1) as follows. First observe that due to
property E6 the solution of a minimal fixed-point distributes over the initial conjunction

∧
i∈I

of clauses. This means that we can fix some i ∈ I and only concentrate on understanding how
one single clause

∨
j∈Ji

(cij ·X + c′
ij ·eq−∞(X) + fij) ∨ mi must be solved. If fij is equal to ∞

for some j ∈ Ji, the solution must be infinite. This is ensured by the outermost conditional
operator in (2). Now, assuming that no fij is equal to ∞, we inspect mi. If mi equals
−∞, then the minimal solution for the given i ∈ I is also −∞. This explains the nested
conditional operator in (2).

Next consider the innermost conditional operator of (2) and additionally assume mi > −∞.
If there is some c′

ij that is equal to 1, then the minimal solution is at least mi due to the
disjunct mi that appears in the clause. But then it must also be at least 1·eq−∞(mi) = ∞.
Hence, in this case the solution is ∞, which is ensured by the expression in the condition of
the innermost conditional

∨
j∈Ji|c′

ij
=1 ∞. Otherwise, all c′

ij equal 0, and both the right-hand
side of (1) and the solution (2) can be simplified to∨

j∈Ji

(cij ·X + fij) ∨ mi and (
∨

j∈Ji|cij≥1

fij + (cij − 1)·Ui) ⇒ Ui ⋄ ∞.
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Figure 1 Solving a simple minimal fixed-point equation/An LTS with an infinite sequence of b’s.

This resulting situation is best explained using Figure 1 (left). The simple conjunctive normal
form consists of a number of disjunctions of the shape cij ·X + fij . These characterise lines
of which we are interested in their intersection with the line x = y. In Figure 1 such lines
are drawn as l1, . . . , l4, and h1 and h2. Due to the disjunction, we are interested in the
maximal intersection point. If we first concentrate on those lines with cij < 1, then we see
that (Ui, Ui) is the maximal intersection point of these lines above mi. This intersection
point is the solution for the equation unless there is a steep line, with cij ≥ 1 which at x = Ui

lies above (Ui, Ui). In the figure there is such a line, viz. h2. In such a case the fixed-point
lies at the intersection of h2 with the line x = y for x > Ui. As this point does not exist in
R, the solution is ∞. The expression

∨
j∈Ji|cij≥1 fij + (cij − 1)·Ui in (2) takes care of this

situation. Steep lines, like h1 which lie below (Ui, Ui) at x = Ui can be ignored, as they do
not force the minimal fixed-point Ui to become larger.

In case of a maximal fixed-point equation, νX=e where e is a simple disjunctive normal
form, it is useful to again expose the occurrences of X. We can denote the normal form of e

in the following way:∨
i∈I

(
∧

j∈Ji

(cij ·X + c′
ij ·eq−∞(X) + fij) ∧ mi) (3)

where cij ·X and eq−∞(X) are optional, i.e., cij can be 0, and c′
ij is either 0 or 1, where 0

means that the expression is not present. One of cij and c′
ij is not equal to 0. Again, the

expressions fij and mi do not contain X.
The solution of νX=e, where e is of the shape (3), is νX = Solν

X=e with

Solν
X=e =

∨
i∈I

(eq∞(mi)

⇒ (
∧

j∈Ji|cij≥1∧c′
ij

=0

(fij + (cij − 1))·Ui) → −∞ ⋄ Ui

⋄ ∞)

(4)

where Ui = mi ∧
∧

j∈Ji|cij<1∧c′
ij

=0

1
1 − cij

·fij .

The two fixed-point solutions are not syntactically dual which is due to the fact that simple
conjunctive and disjunctive normal forms are not each other’s dual, because of the presence of
+ and eq−∞. We refrain from sketching the intuition underlying the solution to the maximal
fixed-point as it is similar to that of the minimal fixed-point.
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A full normal form can contain the conditional operators e1 ⇒ e2 ⋄ e3 and e1 → e2 ⋄ e3.
Suppose we have an equation σX = e1 ⇒ e2 ⋄ e3 with σ either µ or ν. For the minimal
fixed-point the right-hand side of the solution is Solµ

X=e1⇒e2⋄e3
= (e1[X := Solµ

X=e2
∧

Solµ
X=e3

]) ⇒ Solµ
X=e2

⋄ Solµ
X=e3

. For the maximal fixed-point we find the right-hand side
Solν

X=e1⇒e2⋄e3
= (e1[X := Solν

X=e3
]) ⇒ Solν

X=e2∧e3
⋄ Solν

X=e3
.

In case of the other conditional operator σX = e1 → e2 ⋄ e3 we obtain for the right side of
the minimal fixed-point Solµ

X=e1→e2⋄e3
= (e1[X := Solµ

X=e2
]) → Solµ

X=e2
⋄ Solµ

X=e2∨e3
, and

for the right side of the maximal fixed-point Solν
X=e1→e2⋄e3

= (e1[X := Solν
X=e2

∨Solν
X=e3

]) →
Solν

X=e2
⋄ Solν

X=e3
.

The following theorem summarises that these solutions solve fixed-point equations.

▶ Theorem 11. For any fixed-point symbol σ, variable X ∈ X and expression e, it holds that

σX = e ≡ σX = Solσ
X=e

and X /∈ occ(Solσ
X=e), where Solσ

X=e is defined above.

Proof. By Theorem 4 we can assume that e is in normal form. The proof follows induction
on the number of conditional operators. It is straightforward to see that, by construction, X

does not occur in Solσ
X=e.

We only consider the case with a minimal fixed-point where e is a conjunctive normal
form. Using property E6 it is possible to solve all conjuncts separately. So, without loss of
generality, we assume that e has the shape

e =
∨
j∈J

(cj ·X + c′
j ·eq−∞(X) + fj) ∨ m (5)

where cj ≥ 0 and c′
j ∈ {0, 1} are constants such that cj and c′

j are not both 0, and fj and m

are expressions in which X does not occur. We show that the right-hand side of equation (2)
without the initial conjunction provides the required term Solµ

X=e in this theorem. Concretely,

Solµ
X=e = (eq∞(

∨
j∈J

fj))

⇒ (eq−∞(m) ⇒ −∞ ⋄ (((
∨

j∈J|cj≥1

fj + (cj − 1)·U) ∨
∨

j∈J|c′
j
=1

∞) ⇒ U ⋄ ∞))

⋄ ∞

(6)

where U = m ∨
∨

j∈J|cj<1

1
1 − cj

·fj .

Using Lemma 9 we must prove case 1 and 2 for a valuation η. We start with case 1. So,
consider the smallest r = η[X := r](e). We define r′ = η(Solµ

X=e) automatically satisfying
the first proof obligation of Lemma 9, where it should be noted that X does not occur in
Solµ

X=e. Hence, we only need to show that r′ ≤ r. We distinguish a number of cases.
Suppose there is some fj such that η[X := r](fj) = ∞. In that case both r = ∞ and
r′ = ∞. So, clearly, r′ ≤ r. Below we can now assume that there is no j ∈ J such that
η[X := r](fj) = ∞.
Now assume η(m) = −∞. By the previous case we know that fj ≠ ∞. In that case
r′ = η(Solµ

X=e) = −∞, as η(eq−∞(m)) = −∞ ≤ 0, and hence, r′ ≤ r. Below we assume
that η(m) ̸= −∞.
If there is at least one j ∈ J such that c′

j = 1, then r = η[X := r](e) = ∞. The
reason for this is that r > −∞, as r at least has the value η(m). But then r = ∞ as
η[X := r](c′

j ·eq−∞(X)) = ∞. Clearly, r′ ≤ r. So, below we can assume that c′
j = 0 for

all j ∈ J .
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With the assumptions above, we can write e more compactly.

e =
∨
j∈J

(cj ·X + fj) ∨ m.

We know that r is the smallest value satisfying

r = η[X := r](e) = η[X := r](
∨
j∈J

(cj ·X + fj) ∨ m).

Consider r1 = η(m ∨
∨

j∈J|cj<1( fj

1−cj
)).

First assume that there is no j ∈ J with cj ≥ 1 such that r1 < η[X := r1](cj ·X + fj).
We show that r1 is the solution, i.e., r1 = r.
Consider the case where η(m) ≥ η(fj)

1−cj
for all j ∈ J with cj < 1. So, r1 = η(m). In

this case η(m) is a solution as (i) for those j ∈ J for which cj < 1, it holds that
η(m) ≥ cj ·η(m) + η(fj), and (ii) by the assumption of this item for those j ∈ J such
that cj ≥ 1, also η(m) < cj ·η(m) + η(fj). It is obvious that η(m) must be the smallest
solution.
Now consider the case where η(m) <

η(fj)
1−cj

for some j ∈ J . In this case r1 =∨
j∈J|cj<1( η(fj)

1−cj
) = η(fj′ )

1−cj′
for some j′ ∈ J , where j′ is the index of the largest solution.

It is straightforward to check that η(fj′ )
1−cj′

is a solution. It is also the smallest solution,

which can be seen as follows. Suppose there were a smaller solution r2 <
η(fj′ )
1−cj′

. Hence,

r2 = η(m) ∧
∧

j∈J (cj ·r2 + η(fj)) ≥ cj′ ·r2 + η(fj′). From this it follows that r2 ≥ η(fj′ )
1−cj′

contradicting that it is a smaller solution.
It follows that r1 = r is the smallest solution. Furthermore, r′ = η(Solµ

X=e) = η(U) =
η(m ∨

∨
j∈J|cj<1

fj

1−cj
) = r1 = r. Obviously, r′ ≤ r.

Now assume that there is a j ∈ J with cj ≥ 1 such that r1 < η[X := r1](cj ·X + fj).
We show that r = ∞. Using the argumentation of the previous item, the smallest
solution r is at least r1. But clearly, r1 is larger than the non-infinite solution of
X = η[X := r1](cj ·X + fj) as by the assumption r1 >

η(fj)
1−cj

. Note that if cj > 1, this
solution exists, and if cj = 1 there is only a finite solution if fj = 0, but in this latter
case the assumption of this item is invalid. Hence, the only remaining minimal solution
is r = ∞. Clearly, for any choice of r′ it holds that r′ < r.

Now we concentrate on case 2 for the minimal fixed-point of Lemma 9. We know that
r = η(Solµ

X=e) is the minimal solution for η(Solµ
X=e) and we must show that there is an

r′ ≤ r such that r′ ≥ η[X := r′](e). We take r′ = r leaving us with the obligation to show
that r ≥ η[X := r](e).

We distinguish the following cases.
Assume that there is some fj such that η(fj) = ∞. In that case r = ∞, which satisfies
∞ ≥ η[X := ∞](e). Below we assume that η(fj) < ∞ for all j ∈ J .
Now assume that η(m) = −∞. Note that for any j ∈ J it is the case that cj ̸= 0 or
c′

j ̸= 0. In this case, r = −∞ is the solution as η[X := −∞](e) = −∞ and this implies
our proof obligation. So, in the steps below we assume that η(m) > −∞.
With the conditions above, if there is at least one j ∈ J such that c′

j = 1, then r = ∞
is the fixed-point satisfying our proof obligation. Below we assume that for all j ∈ J it
holds that c′

j = 0.
As all c′

j can be assumed to be 0, we can simplify the equation for X to:

µX =
∨
j∈J

(cj ·X + fj) ∨ m.
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We find η(U) = η(m ∨
∨

j∈J|cj<1
fj

1−cj
). If there is no j ∈ J with cj ≥ 1 such that

η(fj −(1−cj)·U) > 0 we find that r = η(Solµ
X=e) = η(U). We show that r ≥ η[X := r](e).

If η(m) ≥
∨

j∈J|cj<1
η(fj)
1−cj

then r = η(m). For a j ∈ J with cj < 1 we find that
cj ·η(m) + η(fj) ≤ η(m) as η(m) ≥ η(fj)

1−cj
. For a j ∈ J with cj ≥ 1, we find by the

condition above that η(fj + cj ·U) ≤ η(U), or in other words η(fj + cj ·m) ≤ η(m). So,
r = η(m) = η[X := r](e) as we had to show.
Otherwise, there is some j′ ∈ J with cj′ < 1 such that η(fj′ )

1−cj′
=

∨
j∈J|cj<1

η(fj)
1−cj

. In this

case r = η(fj′ )
1−cj′

. From the conditions, we can see that r = η[X := r](e) as we had to show.
Now assume that there is a j ∈ J with cj ≥ 1 such that η(fj − (1 − cj)·U) > 0. In this
case r = η(Solµ

X=e) = ∞, clearly satisfying our proof obligation.
This finishes our proof for a minimal fixed-point equation. ◀

5 Relation to boolean equation systems

A boolean equation system (BES) is a restricted form of a real equation system where
solutions can only be true or false [20]. Concretely, the syntax for expressions is

e ::= X | true | false | e ∨ e | e ∧ e

where X is taken from some set X of variables [20]. A boolean equation system is a sequence
of fixed-point equations σ1X1 = e1, . . . , σnXn = en where σi are fixed-point operators, Xi

are variables from X ranging over true and false, and ei are boolean expressions.
We do not spell out the semantics of boolean equation systems, as it is similar to that

of RESs. However, we believe that it is useful to indicate the relation with real equation
systems.

The simplest embedding is where a given BES is literally transformed to a RES and true
and false are interpreted as ∞ and −∞. We consider a minimal fixed-point equation. The
right-hand side can be rewritten to a simple conjunctive normal form. We write this in the
shape of equation (1). So, cij = 1, c′

ij = 0, fij is absent and mi does not contain X and can
only be interpreted as ±∞. Exactly if Ji is not empty, X is present in conjunct i.

µX =
∧
i∈I

((
∨

j∈Ji

X) ∨ mi).

The solution is given by equation (2), which can be simplified to:∧
i∈I

(eq−∞(mi) ⇒ −∞ ⋄ ((
∨

j∈Ji

0) ⇒ mi ⋄ ∞)) =
∧
i∈I

mi =
∧
i∈I

((
∨

j∈Ji

−∞) ∨ mi).

The latter exactly coincides with the Gauß-elimination rule for BESs that says that in an
equation µX = e, any occurrence of X in e can safely be replaced by false. For the maximal
fixed-point operator, dual reasoning applies. As Gauß-elimination is a complete way to solve
a BES with true and false, and exactly the same reduction works with the corresponding
RES with ∞ and −∞, this confirms that this interpretation works.

An alternative interpretation is given by taking two arbitrary constants ctrue and cfalse with
as only constraint that ctrue > cfalse. A boolean equation system σ1X1 = e1, . . . , σnXn = en

is translated into σ1X1 = cfalse ∨ (ctrue ∧ e1), . . . , σnXn = cfalse ∨ (ctrue ∧ en) of which the
validity can be established in the same way as above.
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6 Quantitative modal formulas and their translation to RESs

We can write quantitative modal formulas that yield a value instead of true and false. In the
next section we provide examples of what can be expressed. Our formulas have the syntax

ϕ ::= X | d | c·ϕ | ϕ + ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ⟨a⟩ϕ | [a]ϕ | µX.ϕ | νX.ϕ.

Here d ∈ R̂ and c ∈ R with c > 0 are constants, X ∈ X is a variable, and a ∈ A is an action
from some set of actions A. Although there are many similar logics around, we have not
encountered this exact form before.

We evaluate these modal formulas on probabilistic LTSs. For a finite set of states S, we
use distributions d : S → [0, 1] where d(s) is the probability to end up in state s. Distributions
satisfy that

∑
s∈S d(s) = 1. The set of all distributions over S is denoted by D(S).

▶ Definition 12. A probabilistic labelled transition system (pLTS) is a four-tuple M =
(S, A, → , d0) where S is a finite set of states, A is a finite set of actions, the relation
→ ⊆ S×A×D(S) represents the transition relation, and d0 ∈ D(S) is the initial distribution.

We leave out the definition of the interpretation of quantitative modal formulas on probabilistic
LTSs, as it is standard. Instead, we define the real equation system that is generated given a
modal formula ϕ and a probabilistic labelled transition system M = (S, A, → , d0), following
the translations in [20, 14, 21, 11]. The function Eq(ϕ) generates the required sequence of
RES equations for ϕ and rhs(s, ϕ) yields the expression for the right-hand side of such an
equation representing the value of ϕ in state s.

Eq(X) = ϵ,

Eq(d) = ϵ,

Eq(c·ϕ) = Eq(ϕ),
Eq(ϕ1 + ϕ2) = Eq(ϕ1), Eq(ϕ2),
Eq(ϕ1 ∨ ϕ2) = Eq(ϕ1), Eq(ϕ2),
Eq(ϕ1 ∧ ϕ2) = Eq(ϕ1), Eq(ϕ2),
Eq(⟨a⟩ϕ) = Eq(ϕ),
Eq([a]ϕ) = Eq(ϕ),
Eq(µX.ϕ) = ⟨µXs = rhs(s, ϕ) | s ∈ S⟩, Eq(ϕ),
Eq(νX.ϕ) = ⟨νXs = rhs(s, ϕ) | s ∈ S⟩, Eq(ϕ).

rhs(s, X) = Xs,

rhs(s, d) = d,

rhs(s, c·ϕ) = c·rhs(s, ϕ),
rhs(s, ϕ1 + ϕ2) = rhs(s, ϕ1) + rhs(s, ϕ2),
rhs(s, ϕ1 ∨ ϕ2) = rhs(s, ϕ1) ∨ rhs(s, ϕ2),
rhs(s, ϕ1 ∧ ϕ2) = rhs(s, ϕ1) ∧ rhs(s, ϕ2),
rhs(s, ⟨a⟩ϕ) =

∨
{d∈D(S)|s a→ d}

∑
s′∈S d(s′)·rhs(s′, ϕ),

rhs(s, [a]ϕ) =
∧

{d∈D(S)|s a→ d}
∑

s′∈S d(s′)·rhs(s′, ϕ),
rhs(s, µX.ϕ) = Xs,

rhs(s, νX.ϕ) = Xs.

We use the notation ⟨σXs = es | s ∈ S⟩ for the sequence of all equations σXs = es for all
states s ∈ S.

The evaluation of a modal formula ϕ in M with initial distribution d0 is the solution in R̂
of variable Xinit in the RES µXinit = (

∑
s∈S d0(s)·rhs(s, ϕ)), Eq(ϕ). The use of the minimal

fixed-point for the initial variable is of no consequence as Xinit does not occur elsewhere in
the equation system. A maximal fixed-point could also be used.

7 Applications

7.1 The longest a-sequence to a b-loop
We are interested in the longest sequence of actions a to reach a state where an infinite
sequence of actions b can be done. The modal formula that expresses this is the following:

µX.(1 + ⟨a⟩X) ∨ (0 ∧ νY.⟨b⟩Y ).

CONCUR 2023



28:14 Real Equation Systems with Alternating Fixed-Points
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Figure 2 A probabilistic LTS with a loop/An LTS with rewards.

The last part with the maximal fixed-point 0 ∧ νY.⟨b⟩Y when evaluated in a state equals
−∞ if no infinite sequence of b’s is possible. Otherwise, it evaluates to 0. The first part
1 + ⟨a⟩X yields 1 plus the maximum values of the evaluation of X in all states reachable by
an action a. If no infinite b-sequence can be reached from such a state, this value is −∞, and
otherwise it represents the maximal number of steps to reach such an infinite b-sequence.

We evaluate this formula in the labelled transition system given at the right in Figure 1.
This leads to the following real equation system where Xi and Yi correspond to the value of
X, resp. Y in state si. The solution of the equation system is written behind each equation.

µX1 = (1 + (X2 ∨ X3 ∨ X4 ∨ X6)) ∨ (0 ∧ Y1) 2 νY1 = −∞ −∞
µX2 = (1 + X3) ∨ (0 ∧ Y2) 1 νY2 = −∞ −∞
µX3 = (1 + −∞) ∨ (0 ∧ Y3) 0 νY3 = Y3 ∞
µX4 = (1 + X5) ∨ (0 ∧ Y4) −∞ νY4 = −∞ −∞
µX5 = (1 + X6) ∨ (0 ∧ Y5) −∞ νY5 = −∞ −∞
µX6 = (1 + −∞) ∨ (0 ∧ Y6) −∞ νY6 = −∞ −∞

We find that the longest sequence of actions a is 2, which matches our expectation.

7.2 The probability to reach a loop

We are interested in the probability to reach a b-loop. We apply it to the LTS at the left
in Figure 2. Due to the non-determinism there are more paths to such loops, and we are
interested in the path with the highest probability. This is expressed by the modal formula

µX.⟨a⟩X ∨ ⟨b⟩X ∨ ((νY.⟨b⟩Y ∨ 0) ∧ 1).

As we want a probability, we use _ ∧ 1 and _ ∨ 0 to enforce that the solution is in [0, 1]. The
formula νY.⟨b⟩Y ∨0 yields ∞ if an infinite sequence of actions b is possible and 0 otherwise.

The translation of this formula on the labelled transition system in Figure 2 yields the
following real equation system.

µX1 = ( 1
3 ·X2 + 2

3 ·X3) ∨ ( 1
2 ·X4 + 1

2 ·X5) ∨ (Y1 ∧ 1) νY1 = −∞ ∨ 0 = 0,

= 1
3 ∨ 1

2 ∨ 0 = 1
2 ,

µX2 = X2 ∨ (Y2 ∧ 1) = X2 ∨ 1 = 1, νY2 = Y2 = ∞,

µX3 = −∞ ∨ (Y3 ∧ 1) = −∞ ∨ 0 = 0, νY3 = −∞ ∨ 0 = 0,

µX4 = X4 ∨ (Y4 ∧ 1) = X4 ∨ 1 = 1, νY4 = Y4 = ∞,

µX5 = −∞ ∨ (Y5 ∧ 1) = −∞ ∨ 0 = 0, νY5 = −∞ ∨ 0 = 0.

This shows that the maximal probability to reach a b-loop is 1
2 .
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7.3 Determining the reward of process behaviour
In Figure 2 at the right a labelled transition system is drawn, where a reward R is changed
when a transition takes place. The transition labelled with action a costs one unit, b yields
1
2 R + 5 units, and the transition c adapts the reward by 9

10 R + 2. We want to know what
the maximal stable reward is. This is expressed by the following formula:

µR.⟨a⟩(R − 1) ∨ ⟨b⟩( 1
2 ·R + 5) ∨ ⟨c⟩( 9

10 ·R + 2) ∨ 0.

Note that we express this as the minimal reward larger than 0, which is the maximum of all
individual rewards. Translating this to a real equation system yields

µR1 = (R2 − 1) ∨ −∞ ∨ −∞ ∨ 0, µR2 = −∞ ∨ ( 1
2 ·R1 + 5) ∨ ( 9

10 R1 + 2) ∨ 0.

We solve this using Gauß-elimination. This means that the second equation is substituted in
the first, which, after some straightforward simplifications, gives us

µR1 = ( 1
2 ·R1 + 4) ∨ ( 9

10 ·R1 + 1) ∨ 0.

We solve this equation using the technique of Section 4, leading to:

R1 = 4
1 − 1

2
∨ 1

1 − 9
10

∨ 0 = 10.

8 Conclusions and outlook

We introduce real equation systems (RESs) as the pendant of Boolean Equation Systems
with solutions in the domain of the reals extended with ±∞. By a number of examples we
show how this can be used to evaluate a wide range of quantitative properties of process
behaviour.

We provide a complete method to solve RESs using an extension of what is called
“Gauß-elimination” [21] to solve boolean equation systems. It shows that any RES can be
solved by carrying out a finite number of substitutions. As solving RESs generalises solving
BESs, and Gauß-elimination on BESs is exponential, our Gauß-elimination technique can
also lead to exponential growth of intermediate terms. A prototype implementation shows
that depending on the nature of the system being analysed, this may or may not be an issue.
For instance, analysing the Game of the Goose [12] or The Ant on a Grid [6], are practically
undoable with the method proposed here, while the Lost Boarding Pass Problem [10] is easily
solved, even for planes with 100,000 passengers.

We believe that the next step is to come up with algorithms that are more efficient in
practice than Gauß-elimination. This is motivated by the situation with BESs where for
instance the recursive algorithm [23, 26] turns out to be practically far more efficient than
Gauß-elimination [9].
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