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Abstract
We introduce the class of tree constraint automata with data values in Z (equipped with the less
than relation and equality predicates to constants), and we show that the nonemptiness problem is
ExpTime-complete. Using an automata-based approach, we establish that the satisfiability problem
for CTLpZq (CTL with constraints in Z) is ExpTime-complete, and the satisfiability problem for
CTL˚

pZq is 2ExpTime-complete (only decidability was known so far). By-product results with
other concrete domains and other logics, are also briefly discussed.
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1 Introduction

In this paper, we study the satisfiability problem for the branching-time temporal logics
CTLpZq and CTL˚pZq, extending the classical temporal logics CTL and CTL˚ in that atomic
formulae express constraints about the relational structure pZ,ă,“, p“dqdPZq. Formulae in
these logics are interpreted over Kripke structures that are annotated with values in Z. A
typical CTL˚pZq formula is the formula AGFpx ă Xxq stating that on all paths infinitely often
the value of the variable x at the current position is strictly smaller than the value of x at the
next position. Formalisms defined over relational structures, also known as concrete domains,
are considered in many works, including works on temporal logics [40, 13, 54, 48, 19, 35],
description logics [50, 51, 52, 53, 16, 45, 3], and automata [38, 61, 43, 71, 65, 57]. Combining
reasoning in your favourite logic with reasoning in a relevant concrete domain reveals to
be essential for numerous applications, for instance for reasoning about ontologies, see
e.g. [52, 46], or data-aware systems, see e.g. [28, 34]. A brief survey can be found in [26].

Decidability results for concrete domains handled in [53, 38, 3] exclude the ubiquitous
concrete domain pZ,ă,“, p“dqdPZq. By contrast, decidability results for logics with concrete
domain Z require dedicated proof techniques, see e.g. [11, 23, 61, 46]. In particular, fragments
of CTL˚pZq are shown decidable in [11] using integral relational automata from [17], and
the satisfiability problem for existential and universal CTL˚ with gap-order constraints
(more general than the ones in this paper) can be solved in PSpace [12, Theorem 14].
Another important breakthrough came with the decidability of CTL˚pZq [15, Theorem 32]
(see also [14]) by designing a reduction to a decidable second-order logic, whose formulae are
made of Boolean combinations of formulae from MSO and from WMSO+U [10], where U is
the unbounding second-order quantifier, see e.g. [8, 9]. This is all the more remarkable as
the decidability result is part of a powerful general approach [15], but no sharp complexity
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29:2 Constraint Automata on Infinite Data Trees

upper bound can be inferred. More recently, the condition CZ [23] to approximate the set
of satisfiable symbolic models of a given LTLpZq formula is extended to the branching case
in [46] leading to the ExpTime-easiness of a major reasoning task for the description logic
ALCFPpZcq. However, no elementary complexity upper bounds for the satisfiability problem
for CTLpZq nor CTL˚pZq were known since their decidability was established in [13, 15].

In this paper, we prove that the satisfiability problem for CTLpZq is ExpTime-complete,
and the satisfiability problem for CTL˚pZq is 2ExpTime-complete. We pursue the automata-
based approach for solving decision problems for temporal logics, following seminal works
for temporal logics, see e.g. [68, 69, 44]. This popular approach consists of reducing logical
problems (satisfiability, model-checking) to automata-based decision problems while taking
advantage of existing results and decision procedures from automata theory, see e.g. [67].

It is well-known that decision procedures for CTL˚ are difficult to design, and the
combination with the concrete domain Z is definitely challenging. Moreover, we aim at
proposing a general framework: we do not wish for every new logic with concrete domain
to study again and again what is the proper way to define products of automata leading
to optimal complexity. That is why our main goal in this work is to investigate a new
class of tree constraint automata, understood as a target formalism in the pure tradition
of the automata-based approach, and easy to reuse. The structures accepted by such tree
constraint automata are infinite trees in which nodes are labelled by a letter from a finite
alphabet and a tuple in Zβ for some β ě 1 (this excludes the automata designed in [36, 37]
dedicated to finite trees where no predicate ă is involved). Decision problems for alternating
automata over infinite alphabets are often undecidable, see e.g. [56, 47, 25, 41], and therefore
we advocate the introduction of nondeterministic constraint automata without alternation.
Our definition of tree constraint automata naturally extends the definition of constraint
automata for words (see e.g. [17, 59, 61, 43, 57]) and as far as we know, the extension to
infinite trees in the way done herein has not been considered earlier in the literature.

As a key result, we show that the nonemptiness problem for tree constraint automata
over pZ,ă,“, p“dqdPZq is ExpTime-complete. In order to obtain the ExpTime upper
bound, we adapt results from [46, 45] (originally expressed in the context of interpretations
for description logics) and we take advantage of several automata-based constructions for
Rabin/Streett tree automata. As a corollary, we establish that the satisfiability problem for
CTLpZq is ExpTime-complete (Theorem 14), which is one of the main results of the paper.
As a by-product, it also allows us to conclude that the concept satisfiability problem w.r.t.
general TBoxes for ALCFPpZcq is in ExpTime, a result known since [46].

Our main contribution is the characterisation of the complexity for CTL˚pZq satisfiability,
which is an open problem evoked in [15, Section 9] and [46, Section 5] (decidability was
established ten years ago in [14]). In Section 6, we show that the satisfiability problem for
CTL˚pZq is in 2ExpTime by using Rabin tree constraint automata (introduced herein).
We have to check that the essential steps for CTL˚ can be lifted to CTL˚pZq to get the
optimal upper bound. In general, our contributions stem from the cross-fertilisation of
automata-based techniques for temporal logics and reasoning about (infinite) structures
made of Z-constraints.

A complete version with all the proofs can be found in [27].
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2 Temporal Logics with Numerical Domains

2.1 Concrete Domain pZ, ă, “, p“dqdPZq and Kripke Structures
In the sequel, we consider the concrete domain pZ,ă,“, p“dqdPZq (also written Z), where “d

is a unary predicate stating the equality with the constant d and, ă and “ are the usual
relations on Z. Let VAR “ tx, y, . . .u be a countably infinite set of variables. A term t
over VAR is an expression of the form Xix, where x P VAR and Xi is a (possibly empty)
sequence of i symbols “X”. A term Xix should be understood as a variable (that needs to be
interpreted) but, later on, we will see that the prefix Xi will have a temporal interpretation.
We write TVAR to denote the set of all terms over VAR. For all i P N, we write Tďi

VAR to
denote the subset of terms of the form Xjx, where j ď i. For instance, Tď0

VAR “ VAR. An
atomic constraint θ over TVAR is an expression of one of the forms below:

t ă t1 t “ t1 “d ptq (also written t “ d),

where d P Z and t, t1 P TVAR. A constraint Θ is defined as a Boolean combination of
atomic constraints. Constraints are interpreted on valuations v : TVAR Ñ Z that assign
elements from Z to the terms in TVAR, so that v satisfies θ, written v |ù θ, if and only if, the
interpretation of the terms in θ makes θ true in Z in the usual way. The Boolean connectives
are interpreted as usual. A constraint Θ is satisfiable def

ô there is a valuation v : TVAR Ñ Z
such that v |ù Θ. Similarly, a constraint Θ1 entails a constraint Θ2 (written Θ1 |ù Θ2) def

ô

for all valuations v, we have v |ù Θ1 implies v |ù Θ2. The satisfiability problem restricted
to finite conjunctions of atomic constraints can be solved in PTime (see e.g. [17, Lemma
5.5]) and entailment is in coNP. In the sequel, quite often, the valuations v are of the form
tx1, . . . , xβu Ñ Z when we are only interested in the values for the variables in tx1, . . . , xβu.

Kripke structures. In order to define logics with the concrete domain Z, the semantical
structures of such logics are enriched with valuations that interpret the variables by elements
in Z. A Z-decorated Kripke structure (or Kripke structure for short) K is a triple pW, R, vq,
where W is a non-empty set of worlds, R Ď W ˆ W is the accessibility relation and
v : W ˆ VAR Ñ Z is a valuation function. A Kripke structure K is total whenever for all
w P W, there is w1 P W such that pw, w1q P R. Given a Kripke structure K “ pW, R, vq

and a world w P W, an infinite path π from w is an ω-sequence w0, w1 . . . wn, . . . such that
w0 “ w and for all i P N, we have pwi, wi`1q P R. Finite paths are defined accordingly.

Labelled trees. Given D ě 1, a labelled tree of degree D is a map t : domptq Ñ Σ where Σ
is some (potentially infinite) alphabet and domptq is an infinite subset of r0, D ´ 1s˚ such
that n P domptq and n ¨ i P domptq for all 0 ď i ă j whenever n ¨ j P domptq for some
n P r0, D ´ 1s˚ and j P r0, D ´ 1s. The elements of domptq are called nodes. The empty
word ε is the root node of t. For every n P domptq, the elements n ¨ i (i P r0, D ´ 1s) are
called the children nodes of n, and n is called the parent node of n ¨ i. We say that the tree
t is a full D-ary tree if every node n has exactly D children n ¨ 0, . . . , n ¨ pD ´ 1q. Given a
tree t and a node n in domptq, an infinite path in t starting from n is an infinite sequence
n ¨ j1 ¨ j2 ¨ j3 . . . , where ji P r0, D ´ 1s and n ¨ j1 . . . ji P domptq for all i ě 1.

A tree Kripke structure K is a Kripke structure pW, R, vq such that pW, Rq is a tree
(not necessarily a full D-ary tree). Tree Kripke structures pW, R, vq such that pW, Rq
is isomorphic to the tree induced by r0, D ´ 1s˚ are represented by maps of the form
t : r0, D ´ 1s˚ Ñ Zβ . This assumes that we only care about the value of the variables
x1, . . . , xβ and tpnq “ pd1, . . . , dβq encodes that for all i P r1, βs, we have vpn, xiq “ di.

CONCUR 2023
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2.2 The Logic CTL˚pZq

We introduce the logic CTL˚pZq extending the temporal logic CTL˚ from [29] but with
constraints over Z. State formulae ϕ and path formulae Φ of CTL˚pZq are defined below

ϕ :“ ␣ϕ | ϕ^ ϕ | EΦ Φ :“ ϕ | t “ d | t1 “ t2 | t1 ă t2 | ␣Φ | Φ^ Φ | XΦ | ΦUΦ,

where t, t1, t2 P TVAR. The size of a formula is understood as its number of symbols with
integers encoded with a binary representation. We use also the universal path quantifier A
and the standard temporal connectives R and G (AΦ def

“ ␣E␣Φ, Φ1RΦ2
def
“ ␣p␣Φ1U␣Φ2q,

and GΦ def
“K R Φ with K equal to Epx ă xq). No propositional variables occur in CTL˚pZq

formulae, but it is easy to simulate them with atomic formulae of the form Epx “ 0q. We say
that a formula in CTL˚pZq is in simple form if it is in negation normal form (using A, R and
_ as primitive) and all terms occurring in the formula are from Tď1

VAR. State formulae are
interpreted on worlds from a Kripke structure, whereas path formulae are interpreted on
infinite paths. The two satisfaction relations are defined as follows (we omit the clauses for
Boolean connectives), where K “ pW, R, vq is a total Kripke structure, and w P W.

K, w |ù EΦ def
ô there is an infinite path π from w such that K, π |ù Φ.

Let π “ w0, w1, . . . be an infinite path of K. Let us define vpπ, Xjxq def
“ vpwj , xq, for all terms

of the form Xjx. For every n, πrn,`8q is the suffix of π truncated by the n first worlds.
K, π |ù t “ d

def
ô vpπ, tq “ d; K, π |ù t1 „ t2

def
ô vpπ, t1q „ vpπ, t2q for all „P tă,“u,

K, π |ù ΦUΨ def
ô there is j ě 0 such that K, πrj,`8q |ù Ψ and for all j1 P r0, j ´ 1s, we

have K, πrj1,`8q |ù Φ;
K, π |ù XΦ def

ô K, πr1,`8q |ù Φ.
Let us define two fragments of CTL˚pZq. Formulae in the logic CTLpZq are of the form

ϕ :“ E Θ | A Θ | ␣ϕ | ϕ^ ϕ | ϕ_ ϕ | EXϕ | EϕUϕ | EϕRϕ | AXϕ | AϕUϕ | AϕRϕ,

where Θ is a constraint. LTLpZq formulae are defined from path formulae for CTL˚pZq
according to Φ :“ Θ | Φ^ Φ | Φ_ Φ | XΦ | ΦUΦ | ΦRΦ, where Θ is a constraint. Negation
occurs only in constraints since the LTL logical connectives have their dual in LTLpZq. In
contrast to CTL˚pZq and CTLpZq, LTLpZq formulae are evaluated over infinite paths of
valuations v : VAR Ñ Z (no branching involved).

The satisfiability problem for CTL˚pZq, written SATpCTL˚pZqq, is defined as follows.
Input: A CTL˚pZq state formula ϕ.
Question: Is there a total Kripke structure K and a world w such that K, w |ù ϕ?
The satisfiability problem SATpCTLpZqq for CTLpZq is defined analogously; for LTLpZq,
SATpLTLpZqq is the problem to decide whether there exists an infinite sequence of valuations
v : VAR Ñ Z for a given LTLpZq formula Φ.

Decidability, and, more precisely, PSpace-completeness of SATpLTLpZqq is shown in [24].
For some strict fragments of CTL˚pZq, decidability is shown in [11, 12]. It is only recently
in [14, 13, 15], that decidability is established for the full logic using a translation into a
decidable second-order logic:

▶ Proposition 1 ([14, 15]). SATpCTL˚pZqq is decidable.

The proof in [14, 15] does not provide a complexity upper bound as the target decidable
2nd-order logic admits an automata-based decision procedure with open complexity [10, 8, 9].

Let us shortly explain why the satisfiability problem is challenging. First of all, observe
that CTL˚pZq has atomic formulae in which integer values at the current and successor states
are compared. This prevents us from using a simple translation from CTL˚pZq to CTL˚
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with new propositions. Models of CTL˚pZq formulae can be viewed as an infinite network
of constraints on Z; even if a formula contains only a finite set of constants, a model may
contain an infinite set of values, as it is the case for, e.g., the formula EGpx ă Xxq. Hence
a direct Boolean abstraction does not work. On the other hand, CTL˚pZq has no freeze
quantifier and no data variable quantification, and hence no way to directly compare values
at unbounded distance (but this can only be done by propagating local constraints), unlike
e.g. the formalisms in [21, 63, 5, 1]. Hence, the lower bounds from [42] cannot apply either.

A problem related to satisfiability is the model-checking problem. Fragments of the
model-checking problem involving a temporal logic similar to CTL˚pZq are investigated
in [17, 11, 12, 34] (see also [39, 20, 70, 2]). However, model-checking problems with CTL˚pZq-
like languages are easily undecidable, see e.g. [17, Theorem 1] and [54, Theorem 4.1] (more
general constraints are used in [54] but undecidability proof uses only the constraints involved
herein). The difference between model-checking and satisfiability is subtle and underlines
that decidability/complexity of CTLpZq/CTL˚pZq satisfiability is not immediate.

In this paper, we prove the precise computational complexity of SATpCTL˚pZqq and
SATpCTLpZqq. We follow the automata-based approach, that is, we translate formulae in
our logics into equivalent automata – tree constraint automata for CTLpZq, and Rabin tree
constraint automata for CTL˚pZq – so that we can reduce the satisfiability problem for the
logics to the nonemptiness problem for the corresponding automata.

3 Tree Constraint Automata

In this section, we introduce the class of tree constraint automata that accept sets of infinite
trees of the form t : r0, D ´ 1s˚ Ñ pΣ ˆ Zβq for some finite alphabet Σ and some β ě 1.
The transition relation of such automata states constraints between the β integer values
at a node and the integer values at its children nodes. The acceptance condition is a
Büchi condition (applied to the infinite branches of the input tree), but this can be easily
extended to more general conditions (which we already consider by the end of this section).
Moreover, our definition is specific to the concrete domain Z but it can be easily adapted to
other concrete domains. Formally, a tree constraint automaton (TCA, for short) is a tuple
A “ pQ, Σ, D, β, Qin, δ, F q, where

Q is a finite set of locations; Σ is a finite alphabet,
D ě 1 is the (branching) degree of (the trees accepted by) A,
β ě 1 is the number of variables (a.k.a. registers),
Qin Ď Q is the set of initial locations; F Ď Q encodes the Büchi acceptance condition,
δ is a finite subset of Q ˆ Σ ˆ pTreeConspβq ˆ QqD, the transition relation. Here,
TreeConspβq denotes the constraints (Boolean combinations of atomic constraints) built
over the terms x1, . . . , xβ , x1

1, . . . , x1
β , where x1

i denotes the term Xxi. δ consists of
tuples pq, a, pΘ0, q0q, . . . , pΘD´1, qD´1qq, where q P Q is called the source location, q0,. . . ,
qD´1 P Q, a P Σ, and Θ0, . . . , ΘD´1 are constraints.

Runs. Let t : r0, D ´ 1s˚ Ñ pΣˆ Zβq be an infinite full D-ary tree over Σˆ Zβ . A run of
A on t is a mapping ρ : r0, D ´ 1s˚ Ñ δ satisfying the following conditions:

ρpεq “ pqin, . . . q such that qin P Qin;
for every n P r0, D´ 1s˚ with ρpnq “ pq, a, pΘ0, q0q, . . . , pΘD´1, qD´1qq, tpn ¨ iq “ pai, ziq,
and ρpn ¨ iq starts by the location qi for all 0 ď i ă D, we have tpnq of the form
pa, zq and Z |ù Θipz, ziq for all 0 ď i ă D. Here, Z |ù Θipz, ziq is a shortcut for
r⃗x Ð z, x⃗1 Ð zis |ù Θi where r⃗x Ð z, x⃗1 Ð zis is a valuation v on the variables
txj , x1

j | j P r1, βsu with vpxjq “ zpjq and vpx1
jq “ zipjq for all j P r1, βs.

CONCUR 2023
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We show an example of a run ρ on t in Figure 1. Suppose ρ is a run of A. Given a path
π “ j1 ¨j2 ¨j3 . . . in ρ starting from ε, we define infpρ, πq to be the set of locations that appear
infinitely often as the source locations of the transitions in ρpεqρpj1qρpj1 ¨ j2qρpj1 ¨ j2 ¨ j3q . . . .
A run ρ is accepting if for all paths π in ρ starting from ε, we have infpρ, πq X F ‰ H. We
write LpAq to denote the set of trees t that admit an accepting run.

Nonemptiness problem. As usual, the nonemptiness problem for TCA asks whether a
TCA A satisfies LpAq ‰ H. To define the size of A in a reasonably succinct encoding, we
need to consider the size of constraints from TreeConspβq. Indeed, unlike (plain) Büchi tree
automata [68], the number of transitions in a tree constraint automaton is a priori unbounded
(TreeConspβq is infinite) and the maximal size of a constraint occurring in transitions is
unbounded too. In particular, this means that cardpδq is a priori unbounded, even if Q and
Σ are fixed. We write MCSpAq to denote the maximal size of a constraint occurring in A
(with binary encoding of the integers). The complexity of the nonemptiness problem should
take into account these parameters. Note also that our automaton model differs from the
Presburger Büchi tree automata from [62, 6] for which, in the runs, arithmetical expressions
are related to constraints between numbers of children labelled by different locations. Herein,
the arithmetical expressions state constraints between integer values.

Next, we introduce a variant of TCA by considering the Rabin acceptance condition (as
opposed to the Büchi acceptance condition). A Rabin tree constraint automaton (Rabin
TCA, for short) is a tuple A “ pQ, Σ, D, β, Qin, δ, Fq defined as for TCA except that F is a
set of pairs of the form pL, Uq, where L, U Ď Q. All the definitions about TCA apply except
that a run ρ : r0, D ´ 1s˚ Ñ δ is accepting iff for all paths π in ρ starting from ε, there is
some pL, Uq P F such that infpρ, πq X L ‰ H and infpρ, πq X U “ H.

Finite alphabet. The set Σ in data trees t : r0, D ´ 1s˚ Ñ pΣˆ Zβq plays no specific role
herein, especially that it could be encoded with simple constraints of the form x‹ “ d, where
x‹ is a distinguished variables. Its inclusion is more handy when the logical atomic formulae
include constraints on variables and propositional variables, as done in [27, Section 5.2]
dedicated to description logics (developments on description logics are very little in this
paper, due to lack of space).

4 Complexity of the Nonemptiness Problem for TCA

This section is dedicated to prove the ExpTime-completeness of the nonemptiness problem
for TCA (Theorem 11) and Rabin TCA (Theorem 13) (we make a distinction between TCA
and Rabin TCA because the complexity bounds differ slightly, see Lemma 10 and Lemma 12).
Before we prove the ExpTime upper bound, let us drop a few words on the lower bound.
We show ExpTime-hardness of the nonemptiness problem for TCA by reduction from the
acceptance problem for alternating Turing machines running in polynomial space, see e.g. [18,
Corollary 3.6]. Indeed, the polynomial-space tape using a finite alphabet Σ can be encoded
by a polynomial amount of variables taking values in r1, cardpΣqs, details can be found
in [27, Section 4.1]. ExpTime-hardness for Rabin TCA follows, as every TCA with set F of
accepting locations can be encoded as a Rabin TCA with a single Rabin pair pF,Hq.

The proof of the ExpTime upper bound is divided into two parts. In order to determine
whether LpAq is nonempty for a given TCA A, we first reduce the existence of some tree
t P LpAq to the existence of some regular symbolic tree that is satisfiable, that is, it admits a
concrete model (Sections 4.1 and 4.2). Second, we characterise the complexity of determining
the existence of such satisfiable regular symbolic trees (Section 4.3). The result for Rabin
TCA is presented in Section 4.4.
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From now on, we assume a fixed TCA A “ pQ, Σ, D, β, Qin, δ, F q with the constants
d1, . . . , dα occurring in A such that d1 ă ¨ ¨ ¨ ă dα (we assume there is at least one constant).

4.1 Symbolic Trees
A type over the variables z1, . . . , zn is an expression of the form

p
ľ

i

ΘCST
i q ^ p

ľ

iăj

zi „i,j zjq, where

for all i P r1, ns, ΘCST
i is equal to either zi ă d1, or zi ą dα or zi “ d for some d P rd1, dαs.

This definition goes a bit beyond the constraint language in Z (because of expressions of
the form zi ă d1 and zi ą dα), but this is harmless in the sequel. What really matters in
a type is the way the variables are compared to each other and to the constants.
„i,jP tą,“,ău for all i ă j.

Checking the satisfiability of a type can be done in polynomial-time, based on a standard
cycle detection, see e.g. [17, Lemma 5.5]. The set of satisfiable types built over the variables
x1, . . . , xβ , x1

1, . . . , x1
β is written SatTypespβq (n above is equal here to 2β). Observe that

cardpSatTypespβqq ď ppdα ´ d1q ` 3q2β ˆ 3β2 . The restriction of the type Θ to some set
of variables X Ď txi, x1

i | i P r1, βsu is made of all the conjuncts in which only variables in
X occur. The type Θ restricted to tx1

i | i P r1, βsu agrees with the type Θ1 restricted to
txi | i P r1, βsu iff Θ and Θ1 are logically equivalent modulo the renaming for which xi and x1

i

are substituted, for all i P r1, βs. For instance, in Figure 1, Θ restricted to tx1
1, x1

2u agrees
with Θ0 restricted to tx1, x2u. The main properties we use about satisfiable types are stated
below.

(I) Let z, z1 P Zβ . There is a unique Θ P SatTypespβq such that Z |ù Θpz, z1q.
(II) For every constraint Θ built over the variables x1, . . . , xβ , x1

1, . . . , x1
β and the constants

d1, . . . , dα there is a disjunction Θ1 _ ¨ ¨ ¨ _Θγ logically equivalent to Θ and each Θi

belongs to SatTypespβq (empty disjunction stands for K).
(III) For all Θ ‰ Θ1 P SatTypespβq, the constraint Θ^Θ1 is not satisfiable.

The proof is by an easy verification and this justifies the term “type” used in this context.

Abstraction with types. A symbolic tree t is a map t : r0, D ´ 1s˚ Ñ Σ ˆ SatTypespβq.
Symbolic trees are intended to be abstractions of trees labelled with concrete values in Z.
Given a tree t : r0, D ´ 1s˚ Ñ Σˆ Zβ , its abstraction is the symbolic tree tt : r0, D ´ 1s˚ Ñ
Σˆ SatTypespβq such that for all n ¨ i P r0, D´ 1s˚ with tpnq “ pa, zq and tpn ¨ iq “ pai, ziq,
ttpn ¨ iq

def
“ pai, Θiq for the unique Θi P SatTypespβq such that Z |ù Θipz, ziq. Note that

the primed variables in Θi refer to the β values at the node n ¨ i, whereas the unprimed
ones refer to the β values at the parent node n. At the root ε with tpεq “ pa, zq, we have
ttpεq

def
“ pa, Θq for the unique Θ P SatTypespβq such that Z |ù Θp0, zq, where 0 P Zβ is

arbitrary as there are actually no parent values at the root. A symbolic tree t is satisfiable
def
ô there is t : r0, D´1s˚ Ñ ΣˆZβ such that tt “ t. We say that t witnesses the satisfaction

of t, also written t |ù t. A symbolic tree t is regular if its set of subtrees is finite.

A-consistency. In our quest to decide whether LpAq ‰ H, we are interested in symbolic trees
that satisfy certain properties that we subsume under the name A-consistent. A symbolic
tree t : r0, D´1s˚ Ñ ΣˆSatTypespβq is A-consistent if the following conditions are satisfied:

t is locally consistent: for every node n, the type Θ labelling n restricted to x1
1, . . . , x1

β

agrees with all types Θi labelling its children nodes n ¨ i restricted to x1, . . . , xβ , and
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ρ
Ta

Tb Ta

Tb Ta

...

...
...

t a, p3, 7q

b, p0, 0q a, p2, 7q

b, p0, 0q a, p1, 7q
...

...
...

tt a, Θ

b, Θ0 a, Θ1

b, Θ0 a, Θ1

...

...
...

Θ def
“ d1 “ x1 “ x2 ă x1

1 ă x1
2

Θ0
def
“ d1 “ x1

1 “ x1
2 ă x1 ă x2

Θ1
def
“ d1 ă x1

1 ă x1 ă x2 “ x1
2

Figure 1 A tree t (middle), a run ρ of some TCA on t (left), where, Ta “ pq, a, pΘ0, qq, pΘ1, qqq

and Tb “ pq, b, pΘ0, qq, pΘ1, qqq, and the symbolic tree tt (abstraction of t) (right).

there is an accepting run ρ of A (but ignoring the conditions on data values) such that
for all n P r0, D ´ 1s˚ with tpnq “ pa, Θq, tpn ¨ iq “ pai, Θiq for all i P r0, D ´ 1s, and
ρpnq “ pq, a, pΘ1

0, q0q . . . pΘ1
D´1, qD´1qq, we have Θi |ù Θ1

i for all i P r0, D ´ 1s.

▶ Example 2. In Figure 1, we show a tree t with concrete values in Zβ for β “ 2 (middle)
and its abstraction tt (right). We assume that d1 “ 0 is the only constant; consequently, tt
uses constraints in SatTypespβq that are built with variables x1, x2, their primed variants
x1

1, x1
2, and the constant d1. We underline constraints to illustrate the property of local

consistency.
It is not hard to prove that the set of all A-consistent symbolic trees is ω-regular, that is, it
can be accepted by a classical tree automaton without constraints. In the following, we use
the standard letter A to distinguish automata without constraints from TCA.

▶ Lemma 3. There exists a Büchi tree automaton (without constraints) Acons(A) such that
LpAcons(A)q is equal to the set of A-consistent symbolic trees.

The locations in Acons(A) are from SatTypespβq ˆ Q and the transition relation for Acons(A)

can be decided in polynomial-time in cardpδq ` β ` cardpΣq `D ` MCSpAq.
However, not every A-consistent symbolic tree admits a concrete model. Thus the more

important property is to check whether LpAcons(A)q contains some satisfiable symbolic tree
(and we explain how to do this in the next two subsections). The result below is a variant
of many similar results relating symbolic models and concrete models in logics for concrete
domains, see e.g. [23, Corollary 4.1], [38, Lemma 3.4], [16, Theorem 25], [46, Theorem 11].

▶ Lemma 4. LpAq ‰ H iff there is a satisfiable symbolic tree in LpAcons(A)q.

4.2 Satisfiability for Regular Locally Consistent Symbolic Trees
Below, we focus on deciding when LpAcons(A)q contains a satisfiable symbolic tree, while
evaluating the complexity to check its existence. Given a locally consistent symbolic tree
t : r0, D ´ 1s˚ Ñ Σ ˆ SatTypespβq, we introduce an infinite labelled graph that contains
exactly the same types as t but expressed in a tree-like graph from which it is convenient
to characterize satisfiability in terms of paths, under the premise that t is regular. Similar
symbolic structures are introduced in [49, 23, 14, 46]. The graph is equal to the structure

GC
t “ pVt,

“
ÝÑ,

ă
ÝÑ, Uăd1 , pUiqiPrd1,dαs, Uądα

q,

where Vt “ r0, D´ 1s˚ˆptx1, . . . , xβuY td1, dαuq,
“
ÝÑ and ă

ÝÑ are two binary relations over Vt,
and tUăd1 , Ud1 , Ud1`1, . . . , Udα

, Uądα
u is a partition of Vt. Elements in tx1, . . . , xβuYtd1, dαu

are denoted by xd, xd1, xd2, . . . (variables or constants). Moreover, V β
t

def
“ r0, D ´ 1s˚ ˆ

tx1, . . . , xβu. The rationale behind the construction of GC
t is to reflect the constraints between

parent and children nodes as well as the constraints regarding constants, in such a way that,
if t witnesses the satisfaction of t, then, e.g., tpnqpxdq ă tpn1qpxd1q if pn, xdq ă

ÝÑ pn1, xd1q, and
tpnqpxdq “ d1 if pn, xdq P Ud1 . Here are all conditions for building GC

t .
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(VAR) For all pn, xiq, pn1, xi1q P V β
t , for all „P tă,“u, pn, xiq

„
ÝÑ pn1, xi1q iff either n1 “ n ¨ j

and xi „ x1
i1 in Θ with tpn1q “ pa, Θq, or n “ n1 and x1

i „ x1
i1 in Θ with tpn1q “ pa, Θq, or

n “ n1 ¨ j and x1
i „ xi1 in Θ with tpnq “ pa, Θq.

(P1) For all d P rd1, dαs and pn, xjq P V β
t , pn, xjq P Ud iff x1

j “ d in Θ with tpnq “ pa, Θq.
(P2) For all pn, xjq P V β

t , pn, xjq P Uăd1 iff x1
j ă d1 in Θ with tpnq “ pa, Θq.

(P3) For all pn, xjq P V β
t , pn, xjq P Uądα iff x1

j ą dα in Θ with tpnq “ pa, Θq.
(P4) For all n P r0, D ´ 1s˚, pn, d1q P Ud1 and pn, dαq P Udα

.
(CONS) This is about elements of Vt labelled by constants and how the edge labels reflect the

relationships between the constants. Formally, for all ppn, xdq, pn1, xd1qq P pVtˆVtqzpV
β

t ˆ

V β
t q, for all d:, d:: in “ă d1”, d1, . . . , dα, “ą dα” s.t. pn, xdq P Ud: and pn1, xd1q P Ud:: ,

for all „P tă,“u, pn, xdq „
ÝÑ pn1, xd1q iff either d:, d:: P rd1, dαs and d: „ d::, or d: “

“ă d1”, d:: ‰ “ă d1” and „ is equal to ă or d: ‰ “ą dα”, d:: “ “ą dα” and „ is equal
to ă.

Below, we illustrate the definition of the graph GC
tt for the symbolic tree tt in Figure 1.

The edges labelled with “ or ă reflect the constraints (we omit edges if they can be inferred
from the other edges). For instance, p1, x1q

ă
ÝÑ pε, x1q corresponds to the constraint x1

1 ă x1.
Grey nodes are in Ud1 , all other nodes are in Uąd1 (no nodes in Uăd1).

pε, d1q pε, x1q pε, x2q

p0, d1q p0, x1q p0, x2q p1, d1q p1, x1q p1, x2q

p10, d1q p10, x1q p10, x2q p11, d1q p11, x1q p11, x2q

...
...

ă ă

“ “

“ ą“

“

ă ă

“

“

“ “

ă ă

“ ą

A map p : N Ñ Vt is a path map in GC
t

def
ô for all i P N, either ppiq

“
ÝÑ ppi ` 1q or

ppiq
ă
ÝÑ ppi ` 1q in GC

t . Similarly, r : N Ñ Vt is a reverse path map in GC
t

def
ô for all i P N,

either rpiq
“
ÝÑ rpi ` 1q or rpi ` 1q ă

ÝÑ rpiq. A path map p (resp. reverse path map r) is
strict def

ô ti P N | ppiq
ă
ÝÑ ppi ` 1qu (resp. ti P N | rpi ` 1q ă

ÝÑ rpiqu) is infinite. An infinite
branch B is an element of r0, D ´ 1sω. We write Bri, js with i ď j to denote the subsequence
Bpiq ¨ Bpi` 1q ¨ ¨ ¨Bpjq. Given pn, xdq P Vt, a path map p from pn, xdq along B is such that
pp0q “ pn, xdq and for all i ě 0, ppiq is of the form pn ¨ Br0, is, ¨q. A reverse path map r from
pn, xdq along B admits a similar definition. We present the condition p‹Cq that is the central
property for characterising regular symbolic trees in LpAcons(A)q that are satisfiable, following
the remarkable result established in [46, Lemma 22] that non-satisfiability of a symbolic tree
can be witnessed along a single branch.
p‹Cq There are no elements pn, xdq, pn, xd1q in GC

t (same node n from r0, D ´ 1s˚) and no
infinite branch B such that
1. there exists a path map p from pn, xdq along B,
2. there exists a reverse path map r from pn, xd1q along B,
3. p or r is strict, and
4. for all i P N, ppiq

ă
ÝÑ rpiq.

The following proposition states a key property: non-satisfaction of a regular locally consistent
symbolic tree can be witnessed along a single branch by violation of p‹Cq.

▶ Proposition 5. For every regular locally consistent symbolic tree t, GC
t satisfies p‹Cq iff t

is satisfiable.
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A proof can be found in [27, Section 7].

▶ Example 6. Assume that every node along the rightmost branch in the symbolic tree
tt in Figure 1 is labelled with pa, Θ1q. Then tt is not satisfiable: in order to satisfy Θ1’s
conjunct x1

1 ă x1, the value of x1 must inevitably become finally smaller than d1, violating
the conjunct d1 ă x1. Consequently, the rightmost branch of GC

tt presented above does not
satisfy p‹Cq: there exists a path map p from pε, d1q along 1ω, there exists a strict reverse
path map r from pε, x1q along 1ω, and for all i P N we have ppiq

ă
ÝÑ rpiq.

New constant nodes. Proposition 5 above is a variant of [46, Lemma 22]. Before going any
further, let us in short explain the improvement of our developments compared to what is
done in [46, 45]. The framified constraint graphs defined in [46, Definition 14] correspond to
the above defined graph GC

t without r0, D´1s˚ˆtd1, dαu and corresponding edges. However,
Example 6 illustrates the importance of taking into account these elements when deciding
satisfiability (without d1, the graph would satisfy p‹Cq). Actually, Example 6 invalidates p‹q
as used in [46, 45] because the constants are missing to apply properly [15]. The problematic
part in [46, 45] is due to the proof of [45, Lemma 5.18] whose main argument takes advantage
of [15] but without the elements related to constant values (see also [24, Lemma 8]). With
Proposition 5, we also propose a proof to characterise satisfiability of symbolic trees that
is independent of [15]. Note also that the condition p‹q in [46, Section 3.3] generalises the
condition CZ from [23, Section 6] (see also the condition C in [24, Definition 2] and a similar
condition in [32, Section 2]). A condition similar to p‹q is also introduced recently in [7,
Lemma 18] to decide a realizability problem based on LTLpZ,ă,“q.

We recall that there are nonregular locally consistent symbolic trees t such that GC
t

satisfies p‹Cq (see e.g. [23, 46]) but t is not satisfiable; indeed, satisfiability of symbolic trees is
not an ω-regular property. The next result states that p‹Cq is ω-regular; hence, satisfiability
of symbolic trees can be overapproximated advantageously.

▶ Lemma 7. There is a Rabin tree automaton A‹C such that LpA‹Cq “ tt | GC
t satisfies p‹Cqu,

the number of Rabin pairs is bounded above by 8pβ ` 2q2 ` 3, the number of locations is
exponential in β, the transition relation can be decided in polynomial-time in

maxprlogp|d1|qs, rlogp|dα|qsq ` β ` cardpΣq `D.

Proof sketch. The proof of Lemma 7 is structured as follows (see [27, Section 4.3]). (1)
We construct a Büchi word automaton AB accepting the complement of p‹Cq for D “ 1.
(2) AB is nondeterministic, but we can determinize it and get a deterministic Rabin word
automaton ABÑR such that LpABq “ LpABÑRq (using the determinisation construction
from [60, Theorem 1.1]). (3) By an easy construction, we obtain a deterministic Street word
automaton AS accepting the complement of LpABÑRq; it accepts words that satisfy p‹Cq for
D “ 1. (4) By [60, Lemma 1.2], we construct a deterministic Rabin word automaton AR s.t.
LpASq “ LpARq. (5) Finally, we construct a Rabin tree automaton A‹C , the intuitive idea is
to “let run the automaton AR” along every branch of a run of A‹C , doable thanks to the
determinism of AR. Since p‹Cq states a property on every branch, we are done. ◀

Differences with [46]. Lemma 7 is similar to [46, Proposition 26] but there is an essential
difference: the number of Rabin pairs in Lemma 7 is not a constant but a value depending on
β, an outcome of our investigations. It is important to know the number of Rabin pairs in A‹C

for our complexity analysis as checking nonemptiness of Rabin tree automata is exponential
in the number of Rabin pairs [30, Theorem 4.1]. Our proof of Lemma 7 also proposes a slight
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novelty compared to the construction in [46]: we design A‹C without firstly constructing a
tree automaton for the complement language (as done in [46]) and then using results from [55]
(elimination of alternation in tree automata). Our new approach shall be rewarding: not
only we can better understand how to express the condition p‹Cq, but also we control the
size parameters of A‹C involved in our forthcoming complexity analysis. Furthermore, it
may be useful to implement the decision procedure for solving the satisfiability problem
for CTLpZq (resp. for CTL˚pZq). Note also that the above analysis about the number of
Rabin pairs is independent from the question discussed above about having the elements in
r0, D ´ 1s˚ ˆ td1, dαu within GC

t .
Summarizing the developments so far, we can conclude this subsection as follows:

▶ Lemma 8. LpAq ‰ H iff LpAcons(A)q X LpA‹Cq ‰ H.

For its proof, by way of example, if LpAcons(A)qXLpA‹Cq is non-empty, then as LpAcons(A)qX

LpA‹Cq is regular, it contains a regular A-consistent symbolic tree t (see e.g. [58] and [64,
Section 6.3] for the existence of regular trees) and by Proposition 5, t is satisfiable. By
Lemma 4, we get LpAq ‰ H. For the other direction, we use Lemma 3 as well as the property
that for every satisfiable symbolic tree t, GC

t satisfies the condition p‹Cq.

4.3 ExpTime Upper Bound for TCAs
Lemma 8 justifies why deciding the nonemptiness of LpAcons(A)q X LpA‹Cq is crucial. In the
proof of Lemma 9 below (see [27, Section 4.4]), we propose a construction for the intersection
of Rabin tree automata that only performs an exponential blow-up for the number of locations,
which is fine for our purposes.

▶ Lemma 9. There is a Rabin tree automaton A such that LpAq “ LpAcons(A)qXLpA‹Cq and the
number of Rabin pairs is polynomial in β, the number of locations is in OpcardpSatTypespβqqˆ
cardpQq ˆ 2P pβqq for some polynomial P p¨q and the transition relation can be decided in
polynomial-time in cardpδq ` β ` cardpΣq `D ` MCSpAq.

Nonemptiness of Rabin tree automata is polynomial in the cardinality of the transition
relation and exponential in the number of Rabin pairs, see e.g. [30, Theorem 4.1]. More
precisely, it is in time pmˆ nqOpnq, where m is the number of locations and n is the number
of Rabin pairs, see the statement [30, Theorem 4.1]. However, this is not exactly what we
need herein, as the complexity expression above concerns binary trees, and it assumes that
the transition relation δ can be decided in constant time. If, as in our case, D ě 1 and
deciding whether a tuple belongs to δ requires γ time units, checking nonemptiness is actually
in time pcardpδq ˆ γ ˆ nqOpnq (by scrutiny of the proof of [30, Theorem 4.1], page 144).
Here, γ may depend on parameters related to A and in Lemma 10 below, γ takes the value
cardpδq ` β ` cardpΣq `D ` MCSpAq (by Lemma 9). Hence the following result:

▶ Lemma 10. The nonemptiness problem for TCA can be solved in time in OpR1
`

cardpQqˆ
cardpδq ˆ MCSpAq ˆ cardpΣq ˆR2pβq

˘R2pβqˆR3pDq
q for some polynomials R1, R2 and R3.

Assuming that the size of the TCA A “ pQ, Σ, D, β, Qin, δ, F q, written sizepAq, is polynomial
in cardpQq`cardpδq`D`β`MCSpAq (which makes sense for a reasonably succinct encoding),
from the computation of the bound in Lemma 10, the nonemptiness of LpAq can be checked in
time OpRpsizepAqqR1

pβ`Dqq for some polynomials R and R1. The ExpTime upper bound of
the nonemptiness problem for TCA is now a consequence of the above complexity expression.

▶ Theorem 11. Nonemptiness problem for tree constraint automata is ExpTime-complete.
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4.4 Rabin Tree Constraint Automata
We can prove the ExpTime upper bound of the nonemptiness problem for Rabin TCA
(Theorem 13) and follow the same lines of arguments as for TCA. Given a Rabin TCA
A “ pQ, Σ, D, β, Qin, δ, Fq, we define a Rabin tree automaton A1

cons(A) such that LpAq ‰ H
iff there is t P LpA1

cons(A)q that is satisfiable (cf. Lemma 4 for TCA). Moreover, we take
advantage of A‹C so that LpAq ‰ H iff LpA1

cons(A)q X LpA‹Cq is non-empty (cf. Lemma 8). It
remains to determine the cost for testing nonemptiness of LpA1

cons(A)q X LpA‹Cq. Here is the
counterpart of Lemma 9 (same kind of arguments).

▶ Lemma 12. There is a Rabin tree automaton A s.t. LpAq “ LpA1
cons(A)q X LpA‹Cq,

the number of Rabin pairs is polynomial in β ` cardpFq, the number of locations is in
OpcardpSatTypespβqq ˆ cardpQq ˆ 2P pβ`cardpFqqq for some polynomial P p¨q, and the trans-
ition relation can be decided in polynomial-time in cardpδq ` β ` cardpΣq `D ` MCSpAq.

As for Lemma 10, we conclude that the nonemptiness problem for Rabin TCA can be solved in
time OpR1

`

cardpQq ˆ cardpδq ˆ MCSpAq ˆ cardpΣq ˆR2pβ ` cardpFqq
˘R2pβ`cardpFqqˆR3pDq

q

for polynomials R1, R2 and R3. The nonemptiness problem for Rabin TCA is also in
ExpTime.

▶ Theorem 13. The nonemptiness problem for Rabin TCA is ExpTime-complete.

This result is mainly useful to characterize the complexity of SATpCTL˚pZqq in Section 6.

5 Tree Constraint Automata for CTLpZq

Below, we harvest the first results from what is achieved in the previous section: SATpCTLpZqq
is in ExpTime. So, enriching the CTL models with numerical values interpreted in Z does
not cause a complexity blow-up. We follow the automata-based approach and (after proving
a refined version of the tree model property for CTLpZq) the key step is to translate CTLpZq
formulae into equivalent TCA. Theorem 14 below is one of our main results.

▶ Theorem 14. The satisfiability problem for CTLpZq is ExpTime-complete.

Sketch. ExpTime-hardness is inherited from CTL. For ExpTime-easiness, let ϕ be a CTLpZq
formula. A first step is to preprocess the formula into a formula in simple form (see definition
in Section 2.2). Then, we can construct from a formula ϕ in simple form a TCA Aϕ s.t. ϕ is
satisfiable iff LpAϕq ‰ H and Aϕ satisfies the following properties.

The degree D and the number of variables β are bounded by sizepϕq.
The number of locations is bounded by pD ˆ 2sizepϕqq ˆ psizepϕq ` 1q.
The number of transitions is in Op2P psizepϕqqq for some polynomial P p¨q.
The finite alphabet Σ in Aϕ is unary; MCSpAϕq is quadratic in sizepϕq.

By Lemma 10, the nonemptiness problem for TCA can be solved in time

OpR1
`

cardpQq ˆ cardpδq ˆ MCSpAq ˆ cardpΣq ˆR2pβq
˘R2pβqˆR3pDq

q.

Since the transition relations of the automata Acons(A) and A‹C can be built in polynomial-time,
we get that nonemptiness of LpAϕq can be solved in exponential-time. ◀

Let N be the concrete domain pN,ă,“, p“dqdPNq for which we can also show that nonemptiness
of TCA with constraints interpreted on N has the same complexity as for TCA with constraints
interpreted on Z. Let CTLpNq be the variant of CTLpZq with constraints interpreted
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on N. As a corollary, SAT(CTLpNq) is ExpTime-complete. With the concrete domain
pQ,ă,“, p“dqdPQq, all the trees in LpAcons(A)q are satisfiable (no need to intersect Acons(A) with
a hypothetical A‹C , see e.g. [49, 4, 23, 38]), and therefore SATpCTLpQqq is in ExpTime too.
TCA can be also used to show that the concept satisfiability w.r.t. general TBoxes for the
description logic ALCFPpZcq is in ExpTime [46, 45], see more details in [27, Section 5.2].

6 Complexity of the Satisfiability Problem for the Logic CTL˚pZq

We show that SATpCTL˚pZqq can be solved in 2ExpTime. We follow the automata-based
approach for CTL˚, see e.g. [31, 30], but adapted to Rabin TCA. The main challenge here
is to carefully check that essential steps for CTL˚ can be lifted to CTL˚pZq, but also that
computationally we are in a position to provide an optimal complexity upper bound.

Let us explain in short all steps necessary to obtain the result. We start by establishing a
special form for CTL˚pZq formulae from which Rabin TCA will be defined, following ideas
from [31] for CTL˚. A CTL˚pZq state formula ϕ is in special form if it has the form below

E px “ 0q ^
`

ľ

iPr1,D´1s

AGE Φi

˘

^
`

ľ

jPr1,D1s

A Φ1
j

˘

,

where the Φi’s and the Φ1
j ’s are LTLpZq formulae in simple form (see Section 2), for some

D ě 1, D1 ě 0. We can restrict ourselves to CTL˚pZq state formulae in special form (see the
proof of [27, Proposition 6]).

▶ Proposition 15. For every CTL˚pZq formula ϕ, one can construct in polynomial time in
the size of ϕ a CTL˚pZq formula ϕ1 in special form s.t. ϕ is satisfiable iff ϕ1 is satisfiable.

So ϕ1 is also of polynomial size in the size of ϕ. Let us state a tree model property of special
formulae, with a strict discipline on the witness paths. Proposition 16 below is a counterpart
of [31, Theorem 3.2] but for CTL˚pZq instead of CTL˚, see also the variant [38, Lemma 3.3].

▶ Proposition 16. Let ϕ be a CTL˚pZq formula in special form built over x1, . . . , xβ. ϕ is
satisfiable iff there is a tree t : r0, D´ 1s Ñ Zβ such that t, ε |ù ϕ and for each i P r1, D´ 1s,
t satisfies AGE Φi via i, that is, if t, n |ù E Φi, then Φi is satisfied on the path n ¨ i ¨ 0ω.

Proposition 16 justifies our restriction to infinite trees and to TCA in the rest of this section.
Proposition 15 allows us to restrict our attention to constructing automata for formulae of
(only) the form AGE Φ and A Φ, where Φ is a simple formula in LTLpZq. The first step is to
translate simple formulae in LTLpZq into equivalent word constraint automata (TCA with
degree D “ 1). Adapting the standard automata-based approach for LTL [69], we can show
the following proposition (see the proof of [27, Proposition 8]).

▶ Proposition 17. Let Φ be an LTLpZq formula in simple form. There is a constraint word
automaton AΦ such that tw : NÑ Zβ | w |ù Φu “ LpAΦq, and the following conditions hold.

(I) The number of locations in AΦ is bounded by sizepΦq ˆ 22ˆsizepΦq.
(II) The cardinality of δ in AΦ is in Op2P psizepΦqqq for some polynomial P p¨q.

(III) The maximal size of a constraint in AΦ is quadratic in sizepΦq.

We can now construct, for every i P r0, D ´ 1s, a TCA Ai such that LpAiq “ tt :
r0, D ´ 1s˚ Ñ Zβ | t |ù AGE Φi and t satisfies AGE Φi via iu. The idea is to construct Ai so
that it starts off the word constraint automaton AΦi

at each node n of the tree and runs it
down the designated path n ¨ i ¨ 0ω to check whether Φi actually holds along this path. This
can be easily done for AGE Φi; however, for formulas of the form A Φ1

j , for this construction
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to be correct, the underlying constraint word automaton A1
j must be deterministic, that

is, for all locations s, letters a and pairs of valuations pz, z1q P Z2β , there exists in A1
j at

most a single transition ps, a, Θ, s1q such that Z |ù Θpz, z1q. A well-known construction to
transform nondeterministic Büchi automata to equivalent deterministic Rabin automata
is due to Safra [60, Theorem 1.1]. An important step towards the optimal complexity for
CTL˚pZq is to show that it is possible to lift this construction to word constraint automata,
which is a result of its own interest. A special attention is given to the cardinality of the
transition relation and to the size of the constraints in transitions, as these two parameters
are, a priori, unbounded in constraint automata but essential to perform a forthcoming
complexity analysis.

▶ Theorem 18. Let A “ pQ, Σ, β, Qin, δ, F q be a Büchi word constraint automaton involving
the constants d1, . . . , dα. There is a deterministic Rabin word constraint automaton A1 “

pQ1, Σ, β, Q1
in, δ1, Fq such that LpAq “ LpA1q verifying the following quantitative properties.

(I) cardpQ1q is exponential in cardpQq and the number of Rabin pairs in A1 is bounded by
2 ¨ cardpQq (same bounds as in [60, Theorem 1.1]).

(II) The constraints in the transitions are from SatTypespβq, are of size cubic in β `

maxprlogp|d1|qs, rlogp|dα|qsq and cardpδ1q ď cardpQ1q2ˆcardpΣqˆppdα´d1q`3q2βˆ3β2 .

This and Proposition 17 lead us to the result below on LTLpZq formulae in simple form.

▶ Corollary 19. Let Φ be an LTLpZq formula in simple form built over the variables x1, . . . , xβ

and the constants d1, . . . , dα. There exists a deterministic Rabin word constraint automaton
AΦ such that tw : NÑ Zβ | w |ù Φu “ LpAΦq, and the following conditions hold.

(I) The number of locations in AΦ is bounded by 22P :psizepΦqq for some polynomial P :p¨q.
(II) The number of Rabin pairs is bounded by 2ˆ sizepΦq ˆ 22ˆsizepΦq.

(III) The cardinality of δ in AΦ is bounded by cardpSatTypespβqq ˆ 22P :psizepΦqq`1 .
(IV) MCSpAΦq is cubic in β `maxprlogp|d1|qs, rlogp|dα|qsq, i.e. polynomial in sizepΦq.

This enables us to use the idea illustrated above for formulas of the form AGE Φi also for
formulas of the form A Φ1

j , and define Rabin TCA A1
j such that LpA1

jq “ tt : r0, D ´ 1s˚ Ñ
Zβ | t satisfies A Φ1

ju. We are now ready to perform the final step towards the main result
of this section. Let us recapitulate what we have so far.

One can define a TCA A0 with two locations such that LpA0q is the set of trees t :
r0, D´ 1s˚ Ñ Zβ such that tpεqpx1q “ 0, to handle Epx1 “ 0q in formulae in special form.
For all 1 ď i ă D, there are (Büchi) TCA Ai such that LpAiq is the set of trees
t : r0, D ´ 1s˚ Ñ Zβ such that t, ε |ù AGE Φi and t satisfies AGE Φi via i. Recall that
TCA can be seen as Rabin TCA with a single Rabin pair.
For all 1 ď j ď D1, there are Rabin TCA A1

j such that LpA1
jq is the set of trees t such

that t satisfies A Φj , with an exponential number of Rabin pairs in sizepΦq.

To define a Rabin TCA A such that LpAq “ LpA0q
Ş

iPr1,D´1s LpAiq
Ş

jPr1,D1s LpA1
jq, and

then use the complexity bounds previously established, we need the result below (see the full
proof in [27, Section 6.5]).

▶ Lemma 20. Let pAkq1ďkďn be a family of Rabin TCA such that Ak “

pQk, Σ, D, β, Qk,in, δk, Fkq, cardpFkq “ Nk and N “ Π
k

Nk. There is a Rabin TCA A
such that LpAq “

Ş

k LpAkq and
the number of Rabin pairs is equal to N ; MCSpAq ď n` MCSpA1q ` ¨ ¨ ¨ ` MCSpAnq,
the number of locations (resp. transitions) is less than

`

Π
k

cardpQkq
˘

p2nqN (resp.
Π
k

cardpδkq).



S. Demri and K. Quaas 29:15

Putting all results together, the nonemptiness of LpAq can be checked in double-exponential
time in sizepϕq, leading to Theorem 21 below, which is the main result of the paper. It
answers open questions from [11, 15, 16, 46].

▶ Theorem 21. SATpCTL˚pZqq is 2ExpTime-complete.

2ExpTime-hardness is from SAT(CTL˚) [66, Theorem 5.2]. As a corollary,
SATpCTL˚pNqq is also 2ExpTime-complete. Furthermore, assuming that ăpre is the
prefix relation on t0, 1u˚, we can use the reduction from [22, Section 4.2] to conclude
SATpCTL˚pt0, 1u˚,ăpreqq is 2ExpTime-complete too. Furthermore, as observed earlier,
when the concrete domain is pQ,ă,“, p“dqdPQq, all the trees in LpAcons(A)q are satisfiable,
and therefore SATpCTL˚pQqq is also in 2ExpTime, which is already known from [38, The-
orem 4.3].

7 Concluding Remarks

We developed an automata-based approach to solve SAT(CTLpZq) and SAT(CTL˚pZq), by
introducing tree constraint automata that accept infinite data trees with data domain Z. The
nonemptiness problem for tree constraint automata with Büchi acceptance conditions (resp.
with Rabin pairs) is ExpTime-complete, see Theorem 11 (resp. Theorem 13). The difficult
part consists in proving the ExpTime-easiness for which we show how to substantially adapt
the material in [45, Section 5.2] that guided us to design the correctness proof of p‹Cq. The
work [46] was indeed a great inspiration but we adjusted a few statements from there (see
also [27]). We recall that p‹q in [46] is not fully correct (see Section 4.2) as we need to
add constants (leading to the variant condition p‹Cq). Moreover, our construction of the
automaton in Lemma 7 does depend on the number of variables unlike [46, Proposition 26].
This is crucial for complexity, as it is related to the number of Rabin pairs. We also use [30]
more precisely than [46, p.621] as we handle non-binary trees. In short, we introduced
TCA for which we characterise complexity of the non-emptiness problem (providing a few
improvements to [46]). We left aside the question of the expressiveness of TCA, which is
interesting but out of the scope of this paper.

This lead us to show that SATpCTLpZqq is ExpTime-complete (Theorem 14), and
SATpCTL˚pZqq is 2ExpTime-complete (Theorem 21). The only decidability proof for
SATpCTL˚pZqq done so far, see [15, Theorem 32], is by reduction to a decidable second-order
logic. Our complexity characterisation for SATpCTL˚pZqq provides an answer to several
open problems related to CTL˚pZq fragments, see e.g. [11, 38, 15, 16, 46]. We believe that
our results on TCA can help to establish complexity results for other logics (see also Section 6
about a domain for strings and [33, Section 4] to handle more concrete domains).
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