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Abstract
We study constraint automata, which are finite-state automata over infinite alphabets consisting of
tuples of words. A constraint automaton can compare the words of the consecutive tuples using
Boolean combinations of the relations prefix, suffix, infix and equality.

First, we show that the reachability problem of such automata is PSpace-complete. Second, we
study automata over infinite sequences with Büchi conditions. We show that the problem: given a
constraint automaton, is there a bound B and a sequence of tuples of words of length bounded by
B, which is accepted by the automaton, is also PSpace-complete. These results contribute towards
solving the long-standing open problem of the decidability of the emptiness problem for constraint
automata, in which the words can have arbitrary lengths.
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1 Introduction

Logics and automata over data values, i.e., values from an infinite domain, have applications
in formal verification, automated reasoning, databases and others [7, 6, 4, 10, 2, 1, 19, 22].

A notable example of a formalism for data values is constraint linear temporal lo-
gic (CLTL) [7, 6, 4]. CLTL formulas are defined w.r.t. a relational structure, e.g. (N, =)
or (Z, <); the variables in formulas range over the domain of the structure. Constraints
are atomic formulas defined using variables and symbols from the structure. CLTL formulas
combine such constraints with LTL modalities and Boolean connectives, i.e., CLTL is LTL in
which propositional variables are replaced with constraints. Every CLTL formula defines a
data language, which is a set of infinite sequences of data values.

Constraint automata is the automata-based formalism accompanying CLTL [5, 11, 7].
Again, they are parameterized by a structure, which can have an infinite domain. A
constraint automaton is a Büchi automaton, in which transitions are labeled with constraints;
an automaton can take a transition only if the current and the next data values satisfy the
constraint labeling this transition. The satisfiability problem for CLTL can be reduced to the
non-emptiness of constraint automata as in the LTL case. Furthermore, constraint automata
can use the equality constraints to store a data value for future use, which makes them
closely related to register automata [14, 22, 8].
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3:2 Reachability and Bounded Emptiness Problems

There are several results for CLTL and constraint automata for specific structures (see
survey [9]) but also for some unified classes, like linear orders [26, 16, 4, 3, 10].

We are interested in data values being strings (A∗) over a finite alphabet A. The structures,
considered in the context of strings, may be equipped with basic relations on strings like
prefix, suffix or subsequence. Motivations come from the fact that although temporal logics
with constraints over integers can be helpful in formal analysis of programs with counters, in
order to analyse pushdown systems we need constraints over strings and the prefix relation.
The most typical of prefix and suffix usage is for queues: adding to a queue (represented as a
word) corresponds to stating that the old word is a prefix of the new one, whereas removing
from a queue corresponds to stating that the new word is a suffix of the old one, so both
prefix and suffix are important (and infix can be expressed as a combination of prefix and
suffix). The reachability problem for queue automata (a PDA with a queue instead of a
stack) is undecidable, therefore analyzing systems with a queue is a challenging task.

There has been a large body of work on various problems involving strings especially for
multiple variants of first-order logic (FO) [15, 12, 18]. These results have implications for
CLTL and constraint automata as pointed out in [23]. The undecidability of the satisfiability
problem for CLTL over structure A = (A∗, ≤sub, (= w)w∈Σ∗), where A is a finite alphabet
and ≤sub is the subsequence order, follows from undecidability of the satisfiability problem
for Σ1-fragment of FO logic over A [12].

The satisfiability problem for CLTL over (A∗, ≤p, =, (= w)w∈Σ∗), where ≤p is prefix order,
is PSpace-complete [6]. Note that words with the prefix order alone form the structure
isomorphic to an infinite tree with descendant/ancestor relations. However, it was shown
in [3] that the known unified technique, involving the “existence of homomorphisms is
decidable”-property, for satisfiability results of branching-time logics (like CTL∗ or ECTL∗) [4]
with integer constraints cannot be used to resolve the satisfiability status of temporal logics
with constraints over trees. This in turn shows the difficulty of the result from [6]. In the
automata approach the emptiness problem for constraint automata is PSpace-complete
when the relation is the infinitely branching infinite order tree [16]. Because of the symmetry,
the same complexity follows in the case when prefix order is replaced with suffix order.

Once the satisfiability for CLTL with the prefix (or the suffix) order alone is answered, a
natural question arises: what happens if we study CLTL over the structure A∗ equipped with
both of them? This question has been asked by Demri and Deters [6]. Having both prefix
and suffix allows for checking properties depending on both ends of strings like in Example 2
provided at the end of Section 2.2. In this work we also explicitly include the infix relation
as well as a form of negation for each of the three relations (i.e., incomparable w.r.t. prefix or
suffix or infix respectively). Although infix alone is definable with prefix and suffix using an
additional variable, it is not the case for its negation. It is an important part of our results.

Peteler and Quaas [23] studied the emptiness problem for constraint automata over the
prefix and the suffix orders. They exemplified that FO logic with the prefix order alone is
decidable [25] while FO logic with the prefix order and the suffix order is undecidable (this
follows from the undecidability result for the FO theory for the substring (infix) orders [17],
and the fact that the substring order is FO-definable using prefix and suffix). On the positive
side, as noted in [6], the Σ1-fragment of FO logic is decidable for finite strings over a finite
alphabet. The proof uses an algorithm based on the word equation approach [24, 21, 13].

In the same paper, Peteler and Quaas proved that it is decidable in NL when the
automaton uses only a single variable that ranges over finite strings. The strings can be over
a finite or countably infinite alphabet. Their proof proceeds by reduction to reachability
queries on the finite graph underlying the automaton. They show that their technique works
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in the presence of equality tests with the empty string (similar to a zero test in one-counter
automata). The result implies PSpace-completeness of the satisfiability problem for CLTL
over a single variable. In contrast, in our work we study the emptiness problem for constraint
automata that can use many variables over finite strings, but the string lengths are bounded.

Our contribution
We study constraint automata with the prefix, infix, suffix and equality (=) relations. Our
crucial technical contribution is Lemma 4 in Section 3, which provides a model-theoretic
characterisation of the satisfiability of a maximal set of constraints expressed using the prefix,
suffix and infix relations (without constants) over some (countable, possibly infinite) set of
variables. It says that such a set of constraints is satisfiable if variables with the prefix (resp.,
the suffix) relation form a forest, and variables with the infix relation form a finitary partial
order, i.e., every variable has finitely many predecessors.

We employ this lemma to show that the reachability problem of constraint automata is
PSpace-complete. To do so, we first introduce type-tracking automata, which store in the
state the type of the processed input tuple, i.e., the information on the relation between
all words in the input tuple. In such automata every path corresponds to some (pre)run
over some sequence. For a constraint automaton, the type-tracking automaton may have
exponential size, but it can be constructed on-the-fly and there is no need to store it in
memory. Therefore, the reachability problem for unrestricted constraint automata can be
solved in PSpace. We also prove the matching lower bound.

For constraint automata over infinite sequences with Büchi conditions, we define the
bounded emptiness problem as follows: given a constraint automaton, is there a bound B such
that some sequence accepted by the automaton and all words in all tuples of that sequence
have length bounded by B? We show that this problem is PSpace-complete as well. To do
so, we first prove that if there is a bounded sequence accepted by the automaton, there is an
ultimately-periodic sequence accepted by the automaton. Next, we establish a condition for
a cycle in such an ultimately-periodic sequence. Finally, we show how to check the existence
of such a cycle in polynomial space. The corresponding lower bound can be obtained from
the lower bound for the reachability problem.

2 Preliminaries

2.1 Relations and constraints
We assume Σ to be a finite alphabet, whose elements are letters. A word is a finite sequence
of letters; ϵ denotes the empty word. For words w, v, the word wv is the concatenation of w

and v. An n-tuple is a tuple consisting of n words. An n-sequence is a sequence of n-tuples.
This is illustrated in Figure 1.

We say that a word w is
a (strict) prefix of v, denoted as w ⊏P v if there is a non-empty word t such that wt = v;
a (strict) suffix of v, denoted as w ⊏S v, if there is a non-empty word t such that tw = v;
a (strict) infix of v, denoted as w ⊏I v if there are words t, t′, at least one of them
non-empty, such that twt′ = v.

We say that two words v, w are incomparable with respect to the prefix order, denoted
as v⊥P w if none of the following holds: v = w, w ⊏P v, v ⊏P w. The v⊥Sw and v⊥Iw

relations for suffix and infix are defined in a similar way.

CONCUR 2023



3:4 Reachability and Bounded Emptiness Problems

ababa

baba

ab


 ba

aba

ab


 aab

ba
ϵ


 cba

a
ac




a letter
a word

a 3-tuple

a 3-sequence

Figure 1 An example of a 3-sequence.

An n-constraint (over {x1, . . . , xn}) is a set consisting of atoms of the form x ⊕ y, where
x, y ∈ {x1, . . . , xn} are variables and ⊕ ∈ {<P , <S , <I , ⊥P , ⊥S , ⊥I , =} is a relation symbol.
Given an n-tuple of words w⃗ = (w1, . . . , wn), we define the interpretation Iw⃗ such that
for each variable xi we have Iw⃗(xi) = wi, and for relational symbols we have I(<P ) =⊏P ,
Iw⃗(<S) =⊏S , Iw⃗(<I) =⊏I , Iw⃗(⊥P ) = ⊥P , Iw⃗(⊥S) = ⊥S , Iw⃗(⊥I) = ⊥I , and Iw⃗(=) is =. An
n-constraint γ is satisfied by w⃗ = (w1, . . . , wn), denoted as w⃗ |= γ, if for every atom x ⊕ y

from γ the expression over words Iw⃗(x ⊕ y) is true. An n-constraint γ is satisfiable if there
exists an n-tuple of words w⃗ satisfying γ.

▶ Example 1. Consider the 6-constraint γ = {x3 = x′
3, x1 ⊥P x′

1, x′
1 <S x1} over variables

x1, x2, x3, x′
1, x′

2, x′
3. Let w1, w2, w3, w4 be the 3-sequence presented in Figure 1. We will

write (wi, wj) to denote a 6-tuple of words containing first the words of wi, and then the
words of wj .

Then, (w1, w2) |= γ holds, because ab = ab, ababa ⊥P ba and ba <S ababa. On the other
hand, (w2, w3) |= γ does not hold because ab ̸= ϵ. ◀

An ordered set (X, <) is finitary if for every t ∈ X, the set {s ∈ X | s < t} is finite. An
ordered set (X, <) is a (finitary) tree if for every t ∈ X, the set {s ∈ X | s < t} is finite and
totally ordered w.r.t. <. A (finitary) forest is a disjoint union of trees.

2.2 Constraint automata and their semantics
A (non-deterministic) n-constraint automaton A = (Q, Q0, QF , δ) is an automaton which
processes tuples of finite words, i.e., (Σ∗)n. Such an automaton consists of:

A finite set of states Q and its subsets: initial states Q0 and final states QF .
A transition relation δ ⊆ Q × Γ × Q, where Γ is the set of all satisfiable 2n-constraints
over {x1, . . . , xn, x′

1, . . . , x′
n}.

The size of an n-constraint automaton is the number of elements of Q and δ.
The semantics of n-constraint automata is defined over n-sequences. Intuitively, an

automaton starts in an initial state with the first n-tuple, and then changes the state
according to the following n-tuples and the transition relation. In transitions, unprimed
variables x1, . . . , xn are interpreted as words at the origin and the primed variables are
interpreted as words at the destination. The formal description follows below.

We will consider two semantics of constraint automata: over finite and infinite sequences.
Let A = (Q, Q0, QF , δ) be an n-constraint automaton.

Constraint automata over finite sequences. A partial run of A over a finite sequence
w0, . . . , wm, with m ≥ 1, is a sequence of states q0, . . . , qm where for each i < m there is γ

such that (qi, γ, qi+1) ∈ δ and (wi, wi+1) |= γ. A run is a special case of a partial run that
starts in an initial state, i.e., q0 ∈ Q0. A run is accepting if the last state qm ∈ QF .
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q0start qa

x1 <P x′
1, x2 = x′

2, x1 <P x′
2

x1 <P x′
1, x2 = x′

2, x′
1 = x′

2

x′
1 <P x′

2, x2 = x′
2

x′
1 <P x′

2, x2 <S x′
2

Figure 2 An example of a 2-constraint automaton.

Constraint automata over infinite sequences. A partial run of A over an infinite sequence
w0, w1, . . . is an infinite sequence of states q0, q1, . . . such that every finite prefix is a partial
run over the corresponding prefix of w0, w1, . . . . As before, a partial run is a run if it starts in
an initial state. An infinite run is accepting if there is a state q ∈ QF such that for infinitely
many j we have qj = q (Büchi condition).

In both cases, we say that the automaton accepts a sequence s if there is an accepting
run on it. The language of an automaton is the set of sequences it accepts. Two automata
are equivalent if their languages are the same.

▶ Example 2. Consider the 2-constraint automaton depicted at Figure 2 without the dashed
edges. This automaton, considered over finite sequences, accepts sequences (w1, v1) . . . (ws, vs)
such that ws = vs, for all i, j we have vi = vj , for all i < s we have wi <P vi, wi <P wi+1.
This can model a process that starts from some list of tasks to accomplish (in a specific
order) v and maintains the current list of finished tasks as w. The automaton accepts once
the list is completed.

The automaton depicted in Figure 2 with the dashed edges can be considered on infinite
sequences. In this case, the procedure described above is repeated infinitely often: once a
current list is completed, the process starts over with a new list; in this example, the new list
is the previous list possibly extended with new tasks at the beginning. The “new list” can
be empty or non-empty, as no constraints check whether a word is empty. Note also how we
have used nondeterminism to express the disjunction x2 = x′

2 or x2 <S x′
2 during the return.

2.3 Decision problems
The emptiness problem for constraint automata over finite (resp., infinite) sequences is the
question: given a n-constraint automaton, is there a finite (resp., an infinite) n-sequence
accepted by this automaton?

For finite sequences, we consider a (slightly) more general question, that of reachability:
given an n-constraint automaton A and its two states s, t, is there a finite n-sequence
and a partial run over that sequence starting in s and ending in t? Even though the
reachability problem and the emptiness problem over finite sequences are mutually reducible,
the reachability problem is often more convenient to apply.

We say that an infinite n-sequence σ is bounded if there is a bound B, such that in every
n-tuple σ[i], words have length bounded by B. Note that finite and ultimately periodic
sequences are bounded. The bounded emptiness problem is as follows: given a n-constraint
automaton A, is there an infinite bounded n-sequence accepted by A?

CONCUR 2023



3:6 Reachability and Bounded Emptiness Problems

3 Constraints and their Satisfaction

In this section, we study satisfiability of n-constraints. First, we give a characterization of
satisfiability of constraints based on the shape of constraints (Lemma 4), which gives insight
into the expressive power of constraints. While n-constraints are over finitely many variables,
the characterization of Lemma 4 holds for countable sets of variables and hence it can have
applications beyond this paper.

Next, we show a Craig-interpolation type lemma, which states that for two maximal
satisfiable constraints, if they are consistent on the common variables, then their union is
satisfiable (Lemma 6). We use Lemma 6 to derive a local-to-global principle, which states that
local consistency implies global consistency for constraints resulting from runs of constraint
automata (Theorem 10).

3.1 Satisfiability of maximal constraints
Let γ be a constraint over a set of variables V = {x1, x2, . . .}.

▶ Definition 3. We say that γ is maximal if for every pair of different variables x, y, either
x = y is in γ or for every ρ ∈ {P, S, I} we have one of the following x <ρ y, y <ρ x or
x ⊥ρ x′ belongs to γ.

Consider a maximal constraint γ. First, observe that we can eliminate equality constraints
easily. Let E be the least equivalence relation on V containing all pairs (x, x′) such that
x = x′ occurs in γ. For each equivalence class C of E we pick the least i such that xi ∈ C

and substitute all y ∈ C with xi. Let γ′ be the resulting constraint, which we call the
equality-reduced γ. If γ′ has a conflicting pair of constraints (e.g. y <P y′ and y ⊥P y′),
then γ′ is unsatisfiable as well as γ. Otherwise, if there is no such pair then γ′ is a maximal
constraint and it is satisfiable if and only if γ is.

Assume, without loss of generality, that γ is maximal and without equality constraints.
We study three graphs over V : (V, Pγ), (V, Sγ), and (V, Iγ), which are obtained from γ

by stating atomic constraints from γ as edges, i.e., we define Pγ , Sγ , Iγ over V 2 such that
for all x, x′ ∈ V we have xPγx′ (resp., xSγx′ or xIγx′ ) if and only if x <P x′ ∈ γ (resp.,
x <S x′ ∈ γ or x <I x′ ∈ γ).

Assume that γ is satisfiable, and it is satisfied by (possibly infinite) w⃗. Since γ is maximal
and has no equality constraints, words in w⃗ are pairwise distinct. First, observe that graphs
(V, Pγ) and (V, Sγ) are forests (union of disjoint trees). Indeed, a set of (pairwise distinct)
words ordered by the prefix relation ⊏P is a forest, and hence (V, Pγ) is a forest. Similarly,
(V, Sγ) is a forest as well. Second, observe that (V, Iγ) is an ordered set such that every
element has finitely many predecessors, i.e., for v ∈ V the set Av = {u ∈ V | uIγv} is finite.
Indeed, w ⊏I w′ implies that |w| < |w′| and hence there are no infinite descending chains.
Finally, Iγ contains Pγ and Sγ as every prefix (resp., suffix) is an infix as well.

Interestingly, these properties are in fact sufficient for γ to be satisfiable.

▶ Lemma 4. Let γ be a maximal constraint without equality over the set of variables V .
Then, γ is satisfiable if and only if (V, Pγ) and (V, Sγ) are forests, (V, Iγ) is a finitary ordered
set, and Iγ contains Pγ and Sγ .

We sketch the proof of the remaining implication, that the above conditions imply
satisfiability of γ. We construct an assignment satisfying γ as follows. We first consider a
possibly infinite set Γ = {av | v ∈ V } as the alphabet; we reduce the obtained assignment
later.
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For all minimal elements v in (V, Iγ), we assign the letter av to v. Then, inductively, for
an Iγ-minimal unassigned v, we proceed as follows. Our assumption is that for every pair of
different variables x, y such that xIγv and yIγv all the constraints in γ involving both x and
y are satisfied.

Since (V, Pγ) is a forest, either v has a unique Pγ-predecessor uP , to which a word
wP is assigned, or v is Pγ-minimal and we put wP = ϵ. Similarly, either v has a unique
Sγ-predecessor uS , to which a word wS is assigned, or v is Sγ-minimal and we put wS = ϵ.
Finally, let A be the set of all u such that uIγv. Since (V, Iγ) is a well partial order, the set
A is finite. Let u[1], . . . , u[k] be all words in A and w′ = wu[1] . . . wu[k] be the concatenation
of the words that have already been assigned to u[1], . . . , u[k]. Then, we assign with v the
word wv = wP avw′avwS . Note that this is the first time the letter av is used.

Observe that for every u ∈ V , if u <P v ∈ γ, then u has already been assigned with a word.
Indeed, uPγv and due to Pγ ⊆ Iγ we have uIγv, and hence u has already been considered.
It follows that all constraints u <P v ∈ γ are satisfied by the assignment. Similarly, all
constraints u <S v ∈ γ and u <I v ∈ γ are satisfied by the assignment.

Now, observe that exactly these positive constraints are satisfied. First, consider, for an
already assigned u that is different from v, the constraint u <I v /∈ γ. Recall that wv is
the word assigned to v and let wu be the word assigned to u. We show that wu⊥Iwv and
hence the constraint u ⊥I v, which has to belong to γ due to maximality, is satisfied. Indeed,
observe that Iγ contains Pγ and Sγ , and wP , w′ and wS contain only letters ax such that
xIγv. Since u <I v /∈ γ implies uIγv does not hold, we get that wv does not contain au.
Moreover, wu does not contain av and hence wu⊥Iwv.

Second, consider u <P v /∈ γ. We show wu⊥P wv. If uIγv does not hold, then wu⊥Iwv

and in particular wu⊥P wv. Therefore, uIγv holds. Assume towards contradiction wu ⊏P wv.
We know that wu does not contain av because u was assigned before v. Therefore, if
wu ⊏P wv then wu is either equal to or is a prefix of wv. In this case, wv has to be non-empty.
Recall also that it is the word wx assigned to x, the Pγ-predecessor of v. Note, however that
wu is not equal to wP = wx as all the words in the constructed substitution are different.
Moreover, if wu ⊏P wx then due to the induction hypothesis and because of Pγ ⊆ Iγ we have
u <P x ∈ γ. Therefore u <P v ∈ γ, a contradiction. Thus, wu⊥P wv and u ⊥P v is satisfied.

Similarly, if u <S v /∈ γ, then u ⊥S v is satisfied. As a consequence, the constructed
substitution over Γ = {av | v ∈ V } satisfies γ.

Finally, we can transform the variable assignment over the infinite alphabet Γ to a
satisfying assignment over any Σ with at least two letters. We take two distinct b, c ∈ Σ
and enumerate a1, a2, . . . the set Γ. Next, we apply to each ai ∈ Γ in the assignment the
transformation ai 7→ bcib. One can easily check, that this transformation preserves prefixes,
suffixes and infixes, and hence it is an assignment over Σ satisfying γ.

Observe that having a finite maximal constraint γ, we can eliminate equality in polynomial
time, and then check the conditions of Lemma 4 in polynomial time as well. As a consequence
we have:

▶ Lemma 5. The satisfiability problem for maximal constraints can be solved in polynomial
time.

3.2 Joining constraints
We now prove the second crucial lemma that says that whenever we have two maximal
satisfiable sets of constraints, if the sets agree on the constraints regarding the common
variables, then the union of these sets is satisfiable.

CONCUR 2023



3:8 Reachability and Bounded Emptiness Problems

▶ Lemma 6. Let γ1, γ2 be maximal satisfiable constraints over variables X1, X2 respectively.
If γ1 and γ2 restricted to X1 ∩ X2 coincide, then γ1 ∪ γ2 is satisfiable.

First, observe that it suffices to show the lemma in the special case of X1 = X ∪ {x} and
X2 = X ∪ {z}, i.e., X1 and X2 differ in two variables.
▶ Lemma 7. Let γ1, γ2 be maximal satisfiable constraints over variables X ∪ {x}, X ∪ {z}
respectively. If γ1 and γ2 restricted to X coincide, then γ1 ∪ γ2 is satisfiable.
Proof. The proof strategy is to define a maximal γ over V = X ∪{x, z} such that γ1 ∪γ2 ⊂ γ,
(V, Pγ) and (V, Sγ) are forests, (V, Iγ) is a finitary ordered set, and Iγ contains Pγ and Sγ .
Then, Lemma 4 delivers the satisfiability of γ, and therefore γ1 ∪ γ2. Since γ1 and γ2 are
maximal, we only need to define the relation between x and z in γ.

First, we check whether some of the relations follow from transitivity. More precisely, we
define γT as the least constraint that subsumes γ1 and γ2 and such that all the relations
among {<P , <S , <I} are transitively closed in γT .

We can show that the relations PγT , SγT and IγT in γT are partial orders. The reflexivity
holds trivially and transitivity follows from the definition. To see that the relations are
antisymmetric, observe that the transitive closure only defines relations between x and z, as
γ1 and γ2 are maximal and satisfiable and hence transitively closed. we discuss the case of
IγT here, the others are analogous. Assume towards contradiction that γT contains x <I z

and z <I x; then there are v, v′ ∈ X such that in γ1 ∪ γ2 we have x <I v, v <I z and
z <I v′, v′ <I x. However, since γ1 is maximal, <I is transitive and hence v′ <I v is in γ1.
Similarly, v <I v′ is in γ2. Since γ1 and γ2 restricted to X coincide, we have both v <I v′

and v′ <I v belong to γ1 and γ2 and hence they are not satisfiable.
It is possible that (X ∪ {x, z}, PγT ) is not a forest. This happens when both x and z are

prefixes of some variable y, but the prefix order between x and z is not set. We fix this order
as follows. If a constraint determines that x <I z or z <I x, then we set x <P z or z <P x

accordingly. Otherwise, we set the order in an arbitrary way. The same reasoning applies to
the suffix order.

More precisely, we construct the set γ as an extension of γT in the following way. For
each R ∈ {P, S}, if there is y ∈ X such that x ≤R y and z ≤R y, then we add to γ:

x ≤R z if x ≤I z ∈ γT

z ≤R x and z ≤I x otherwise.
If there is no y such that x ≤R y and z ≤R y, and the R-relation between x and z is not
defined, we set x and z to be R incomparable in γ. This concludes the construction of γ.

This construction guarantees that Iγ contains Pγ and Sγ , and Pγ , Sγ , Iγ are partial
orders. The last step ensures that (V, Pγ) and (V, Sγ) are forests. To see that (V, Iγ) is
finitary in γ, observe that (V, Iγ) was finitary is γ1 and γ2. Thus, every variable in X ∪ {x}
has in γ finitely many predecessors (at most one more than it has in γ2), and the same holds
for X ∪ {z}. ◀

Lemma 6 follows from the above lemma using inductive reasoning.
Lemma 6 shows that a finite union of finite satisfiable constraints is satisfiable. This does

not translate to the infinite union case; the following example shows a constraint that can be
repeated any number of times, but not infinitely many times.
▶ Example 8. Consider a single-state 1-constraint automaton A with the state q that is
both initial and accepting. The only transition is (q, {x′

1 <P x1}, q). This automaton can
accept sequences of arbitrary length; it also has an infinite path (q, q, q, . . . ), but it does not
accept any infinite sequence. This is because there is no infinite sequence of finite words such
that each consecutive word is a prefix of the previous one.
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3.3 Stratified constraints and their satisfaction
In this section, we connect general constraints with constraints that are derived from partial
runs of n-constraint automata. One of the key differences is a natural structure of constraints
resulting from partial runs; such constraints are local, which is captured by the following
definition.

Consider a (partial) run π of an n-constraint automaton over some finite sequence σ and
let γ1, . . . , γk be the sequence of constraints along transitions of this run. First, for each
j we relabel variables in γj in a way such that xi becomes xj−1

i and x′
i becomes xj

i . We
denote the resulting constraint by γ′

j . Second, the constraints γ′
1, . . . , γ′

k can be extended to
maximal satisfiable constraints γt

1, . . . , γt
k, which agree on the common variables; it suffices to

check the relations in the sequence σ. Consider γπ to be the union of constraints γt
1, . . . , γt

k.
The constraints in γπ are local, which is captured by the following definition of stratified
constraints; there are constraints only between variables corresponding to the successive
positions.
▶ Definition 9. Given a natural number n and k ∈ N, a stratified (n, k)-constraint γ is a
constraint over the set of variables of the form xj

i , where i ∈ {1, . . . , n} and 0 ≤ j < k, such
that all the atoms xj

i ⊕ xj′

i′ are such that j − j′ ∈ {−1, 0, 1}. The j-th layer of a stratified
(n, k)-constraint is the set of variables xj

1, . . . , xj
n.

The constraint γπ is a stratified (n, k)-constraint. As it results from a (partial) run (the
run π), it is satisfiable. However, satisfiability of γπ follows also from a general principle.

We show a local-to-global principle, which states that for stratified constraints local
consistency (subconstraints γt

j are satisfiable and agree on common variables) implies global
consistency (i.e., γπ is satisfiable.)
▶ Theorem 10. Let γ be a stratified (n, k)-constraint such that n, k ∈ N and for every
0 ≤ j < k − 1 the constraint γ restricted to layers j, j + 1 is maximal and satisfiable. Then,
the constraint γ is satisfiable.

The proof of Theorem 10 follows by induction from Lemma 6. Consider a stratified
(n, k + 1)-constraint γ and let γ̂1 be the constraint obtained from γ by dropping the last
layer. Since γ̂1 is a stratified (n, k)-constraint, assume that it is consistent. Let γ̂2 be the
(n, 2)-constraint consisting of the last two layers: k-th and (k+1)-th. Note that γ̂2 is maximal
and satisfiable and the intersection of γ̂1 and γ̂1 is the k-th layer. Therefore, by Lemma 6
the constraint γ is satisfiable.

4 Reachability via type-tracking automata

We introduce a special type of n-constraint automata, called type-tracking automata, which
keep track of the type (intuitively: what relations hold between the words of the tuple) of
the current tuple in the states. While in n-constraint automata a path in the automaton,
considered a labeled graph, may not correspond to a partial run, which involves satisfaction
of constraints along the path, in type-tracking automata every finite path corresponds to a
partial run over some sequence. This property is key in solving the reachability problem for
n-constraint automata.

The type of an n-tuple w⃗ is the set of all non-trivial atomic n-constraints over {x1, . . . , xn}
satisfied for w⃗. Observe that a constraint γ is a type if and only if it is maximal and satisfiable.

In the above, non-trivial atomic constraints are the constraints of the form x ⊕ y where x

and y are different variables. For example, the type of the first 3-tuple of Figure 1 is the set
containing the following atoms:
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x1 ⊥P x2, x2 ⊥P x1, x2 <S x1, x2 <I x1

x3 <P x1, x1 ⊥S x3, x3 ⊥S x1, x3 <I x1

x2 ⊥P x3, x3 ⊥P x2, x2 ⊥S x3, x3 ⊥S x2, x2 <I x3

Let T be the set of all types (of some n-tuples). The set T is exponentially bounded in n

and their members have size polynomial in n.
We now introduce a special version of n-constraint automata whose states carry informa-

tion regarding the type of current n-tuple.

▶ Definition 11. For an n-constraint automaton A = ⟨Q, Q0, QF , δ⟩, the type-tracking
n-constraint automaton AF T resulting from A is the n-constraint automaton ⟨Q′, Q′

0, Q′
F , δ′⟩

such that:
the states of AF T are the pairs of a state of A and a type: Q′ = Q × T, Q′

0 = Q0 × T
and Q′

F = QF × T,
δ′ is the set of tuples ⟨(q1, γ1), γ′, (q2, γ2)⟩, such that for some ⟨q1, γ, q2⟩ ∈ δ, the constraint
γ′ is a maximal consistent constraint that contains γ1, γ2 and γ.

We say that a partial run (q0, γ0), (q1, γ1), . . . (finite or infinite) of a type-tracking
n-constraint automaton AF T over a sequence σ = w0, w1, . . . is consistent if for every
0 ≤ i ≤ |σ| − 1 we have γi is the type of σ[i]. Observe that every partial run of an n-
constraint automaton has the corresponding consistent run in the type-tracking automaton.

The main advantage of type-tracking n-constraint automata is that every path in a type-
tracking automaton corresponds to some partial run, which is not the case for n-constraint
automata in general.

▶ Lemma 12. Let A be an n-constraint automaton and AF T be its the type-tracking n-
constraint automaton.
1. Every (finite or infinite) partial run in A over a sequence σ has a (unique) corresponding

consistent partial run of AF T over σ.
2. Every finite path in AF T corresponds to a partial run of AF T over some sequence σ.

Proof. Property 1 follows from augmenting states of the partial runs with the types of the
corresponding tuples of the given sequence. To see 2, observe that a path π of length k

in the type-tracking automaton AF T yields a stratified (n, k)-constraint such that any two
successive layers are maximal and satisfiable. Thus, by Theorem 10 it is satisfiable and
hence there is a sequence σ such that AF T over σ has a consistent partial run corresponding
to π. ◀

Type-tracking n-constraint automata are typically exponentially larger than their n-
constraint counterparts. For example, consider a single state n-constraint automaton accept-
ing all the sequences. Any corresponding type-tracking n-constraint automaton has to have
at least as many states as there are types, so exponentially many.

The type-tracking n-constraint automata need not be explicitly stored. We can compute
the states of type-tracking n-constraint automata on the fly. To do so, we employ the
following result:

▶ Lemma 13. For a given n-constraint automaton A, the following problems can be solved
in polynomial time.
1. Given (s, t), check whether (s, t) is a state of AF T .
2. Given (s1, t1), (s2, t2) and γ, check whether ((s1, t1), γ, (s2, t2)) is a transition of AF T .



J. Michaliszyn, J. Otop, and P. Wieczorek 3:11

Proof. To check (s, t) whether it is a state of AF T it suffices to check whether s is a state
of A and t is a type. The latter can be done in polynomial time as follows. Checking
maximality is straightforward and for maximal constraints checking satisfiability can be done
in polynomial time (Lemma 5).

Solving 2 amounts to checking maximality, satisfiability and containment, which can be
done in polynomial time. ◀

Lemma 13 implies that graph-reachability in AF T can be solved in polynomial space
in |A|.

▶ Lemma 14. The problem: given an n-constraint automaton, its states q1, q2 and two types
γ1, γ2, decide whether (q2, γ2) is path-reachable from (q1, γ1) in the type-tracking n-constraint
automaton resulting from A, is in PSpace.

We now show the upper bound for the reachability problem.

▶ Theorem 15. The reachability problem for n-constraint automata is in PSpace.

This theorem follows from Lemma 12 and Lemma 14. To check the reachability from q1
to q2, the algorithm non-deterministically picks (recall that Savitch’s Theorem proves that
PSpace=NPSpace ) two types γ1, γ2 and employs Lemma 14 to check if there is a path
in the type-tracking automaton. By Lemma 12, such γ1, γ2 and a path exist if and only if
there is a path from q1 to q2.

We show PSpace-hardness of reachability in n-constraint automata. For n > 0, we say
that a propositional formula ϕ over 2n variables represents a directed graph G = (V, E), if V

is the set of binary sequences of length n, and for all vertices x⃗, y⃗, we have E(x⃗, y⃗) if and
only if ϕ(x⃗, y⃗) is satisfied. The reachability problem in succinct graphs is defined as follows:
given n > 0, a formula ϕ over 2n variables and two binary sequences s⃗, t⃗ of length n, decide
whether t⃗ is reachable from s⃗ in the graph represented by φ. This problem is known to be
PSpace-complete [20].

We say that a propositional formula ϕ is in an extended-DNF if it is a disjunction of
conjunctions of literals of the following three forms: pi, ¬pi or pi ⇔ pj . Note that in the
standard DNF, the equivalence is not allowed. It turns out that extended-DNF formulas are
enough to make the reachability problem in succinct graphs PSpace-complete.

▶ Lemma 16. The reachability problem in graphs given by formulae in extended-DNF is
PSpace-complete.

The proof follows from the fact that extended-DNF are sufficient to express property of
being the successor configuration of polynomial-space Turing machine. The main idea is that
the two consecutive configurations of a Turing machine differ only on a head position, a state
of the Turing machine, and at most one tape cell; this can be expressed using a disjunction
of polynomially many formulas. The remaining part of the configuration is the same, and
this can be expressed in the conjunctions using ⇔.

We now prove the lower bound for the n-constraint automata.

▶ Theorem 17. The reachability problem for n-constraint automata is PSpace-hard.

Proof. Observe that formulae in extended-DNF can be encoded in an (n + 2)-constraint
automaton, and hence the reachability problem in succinct graphs reduces to the reachability
problem in constraint automata with three states: q0, q, qF . To do so, we designate the
last two elements wn+1, wn+2 in each tuple to be different words (e.g. stating in the
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constraints xn+1 ⊥I xn+2 ), which do not change along the run, and encode true and false
in the propositional sense. Then, literals pi, ¬pi and pi ⇔ pj are respectively translated
to constraints xi = xn+1, xi = xn+2, and xi = xj . The conjunction of literals can be
stated in the constraints, and the disjunction can be encoded with non-determinism of the
(n + 2)-constraint automaton, i.e., the disjunction d1 ∨ . . . ∨ dk is translated to k transitions
from q to itself each with the constraints resulting from di, which is a conjunction of literals.
Finally, we set the first transition from q0 to q to set the initial vertex in the reachability
problem in graphs given by a propositional formula and one outgoing transition from q to
qF , which is possible only with the valuation of variables corresponding to the final vertex in
the instance of the problem. ◀

As a direct consequence of Theorems 15 and 17 we have:

▶ Corollary 18. The reachability problem for n-constraint automata is PSpace-complete.

5 Checking emptiness over bounded words

In this section, we consider constraint automata over bounded sequences over finite alphabets.
We establish PSpace-completeness of the emptiness problem for constraint automata restric-
ted to bounded sequences. Notice that Example 8 shows that there is no straightforward
counterpart of Lemma 12 for infinite runs.

We show that we can focus on ultimately periodic runs over an ultimately periodic
sequences.

▶ Lemma 19. An n-constraint automaton has an accepting run over some bounded infinite
sequence if and only if it has an accepting ultimately periodic run over an ultimately periodic
sequence.

Proof. Observe that having a bound B, the set of B bounded words is finite and hence
an n-constraint automaton A over B-bounded sequences can be considered as a Büchi-
automaton. Therefore, if A accepts a B-bounded sequence, then it accepts an ultimately
periodic B-bounded sequence. Clearly, every ultimately periodic sequence is bounded from
some B. As a consequence, we can focus on ultimately periodic words. ◀

To decide whether there exists an ultimately periodic sequence σ0σω
1 it suffices to decide

the existence of an appropriate σ0 and σ1 almost independently. First, it is convenient to
work with the type-tracking n-constraint automaton AF T for A, as every finite path there
is realizable. Furthermore, there is a simple condition for a cycle, which can be iterated
indefinitely. We discuss it in the following section.

5.1 Finding a cycle
The cycle c of AF T defines a stratified (n, k)-constraint γ, which is satisfiable, i.e., it is a
partial run over some sequence σ1. We say that the cycle c is iterable if and only if it contains
an accepting state and γ extended with constraints x0

1 = xk
1 , . . . , x0

n = xk
n (equality between

corresponding variables in the first and the last layer) is still satisfiable. Observe, that if c is
an iterable cycle, then cω is a partial run over σ1, i.e., it is realizable.

▶ Lemma 20. Let A be an n-constraint automaton and AF T be its type-tracking n-constraint
automaton. The automaton A has an accepting ultimately periodic run over an ultimately
periodic sequence if and only if there exists a state s in AF T such that

(s, γ) is reachable from the initial state, and
there exists an iterable cycle c from (s, γ) to itself.
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Observe that having a state (s, γ) in AF T , which can be non-deterministically picked,
the first condition can be verified in PSpace due to Theorem 15. For the second condition,
we can employ the following non-deterministic procedure, which works in polynomial space
in |A|, as follows.

▶ Lemma 21. Given an n-constraint automaton A and a state s of its type-tracking n-
constraint automaton AF T , one can decide in PSpace whether there is an iterable cycle in
AF T from s to itself.

Proof. Our non-deterministic algorithm is similar to the standard on-the-fly reachability
checking, but it requires additional information regarding the traversed path to ensure that
the computed cycle is iterable. In particular, it ensures that an accepting state has been
visited and verifies the relations between the initial and the final configuration, that may
depend on the path.

The algorithm stores five objects: the initial state (s, γ1), the current state (t, γ2), number
of steps k, the maximal constraint γ containing γ1, γ2 over the variables from γ1 and γ2, and
a boolean value Acc stating whether an accepting state has been observed. We start with
the state (s, γ1) and initially (s, γ1) = (t, γ2), k = 0, γ being the constraint describing two
copies of γ1 and the equality constraints between the corresponding variables, and Acc being
true if s is accepting. Then, we compute the next value so that the following invariant holds:
inv (t, γ2) is reachable from (s, γ1) over some sequence of length k consistent with γ, i.e.,

there is a sequence σ of length k such that (a) there is a partial run (visiting an accepting
state if Acc it true) over σ from (s, γ1) to (s, γ2), and (b) the constraint γ is consistent
with the relations over σ[1] and σ[k].

We discuss how to maintain the invariant (inv). Assume that (s, γ1), (t, γ2), k, γ and
Acc are correct. Now, suppose that t′ is some successor of t in AF T and γ+ is any maximal
consistent constraint over variables from s, t, t′. The projection of γ+ on the variables of
s and t′ satisfies the invariant. To see this, we apply Lemma 6 to γ̂1 being the constraint
corresponding to the sequence σ and a partial run from s to t, and γ̂2 being γ+. Both sets
are consistent and they agree over the common variables, therefore their union is satisfiable
and the satisfying sequence has length k + 1.

As a consequence, it suffices to execute this non-deterministic procedure until it reaches
the state with (s, γ1), (s, γ1), k > 0, Acc = true and γ containing the equality constraint for
the corresponding variables, in which case it accepts, or it works indefinitely, but it can be
stopped after k exceeds the number of states of AF T times the number of possible transitions,
which is exponential in n. ◀

5.2 Solving the reachability problem
We can now conclude that solving reachability can be done in polynomial space.

▶ Theorem 22. Checking whether there is a bounded infinite sequence accepted by a given
constraint automaton A can be done in polynomial space in |A|.

The (non-deterministic) algorithm guesses a state s and a type γ such that (s, γ) is
reachable from the initial state, and there exists an iterable cycle c from (s, γ) to itself.
Verifying both properties was shown to be decidable in polynomial space. Since NPSpace=
PSpace, the same can be done deterministically in polynomial space.

The matching lower bound follows from a straightforward reduction from the reachability
problem.

▶ Theorem 23. Checking whether there is a bounded infinite sequence accepted by a given
constraint automaton is PSpace-complete.
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6 Conclusions

We have shown that the reachability problem and the non-emptiness over bounded sequences
problem are PSpace-complete for constraint automata. The proof works for constraint
automata with the prefix, the suffix, the infix and the equality relations. The presented
hardness proof requires only equality and negated equality, which can be expressed having
non-strict order (prefix, infix or suffix). We believe that it can be adapted to the case of
two relations: strict prefix and negated strict prefix (resp., suffix). This shows that the
complexity follows from the number of variables.

The remaining open question is whether the (unrestricted) emptiness problem for con-
straint automata over infinite words is decidable. Lemma 4 gives us some insight. An
important step towards this result would be to determine whether every non-empty con-
straint automaton has an accepting run (over some sequence) that is ultimately periodic. We
discuss here an example demonstrating that it is not as straightforward as it may initially
appear.

Consider a 3-constraint automaton A with a single state and a single transition. This
transition is a conjunction of the following atoms:

x1 = x′
1

x2 <I x′
2

x3 ⊥I x2
x3 <I x1
x3 <I x′

2

At first glance, it seems that the language of this automaton should be non-empty: x1 is
always the same, x2 always increases, and x3 is defined based on variables x1 and x2. To
illustrate the issue, consider the following sequence:

abcde
x
a


 abcde

ax

bc


 abcde

axbc

bcd


 abcde

axbcd

bcde




Observe that this sequence is accepted by A, but it cannot be extended in a way that
maintains the acceptance. This is because the next value of x2 must include all the infixes of
x1, which is contradictory with the conditions stating that x3 is an infix of x1 not contained
in x2. It can be easily checked that A does not accept any infinite sequence.

This example can be extended (by adding a lot of constraints to the only transition) in
such a way that the only transition is maximal. In this case, there exist arbitrarily long
sequences accepted by the automaton, where the types of all tuples and relations between
all pairs of tuples in the same order are the same. Moreover, it can be done in a way
that the lengths of x2 and x3 always increase (and x1 remains unchanged). Despite this,
there is no infinite sequence accepted by this automaton. This shows that formulating a
pumping-lemma-esque argument in this context is elusive.
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