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Abstract
We revisit the logical characterisations of various bisimilarity relations for the finite fragment of the
π-calculus. Our starting point is the early and the late bisimilarity, first defined in the seminal work
of Milner, Parrow and Walker, who also proved their characterisations in fragments of a modal logic
(which we refer to as the MPW logic). Two important refinements of early and late bisimilarity,
called open and quasi-open bisimilarity, respectively, were subsequently proposed by Sangiorgi and
Walker. Horne, et. al., showed that open and quasi-bisimilarity are characterised by intuitionistic
modal logics: OM (for open bisimilarity) and FM (for quasi-open bisimilarity). In this work, we
attempt to unify the logical characterisations of these bisimilarity relations, showing that they can be
characterised by different sublogics of a unifying logic. A key insight to this unification derives from a
reformulation of the four bisimilarity relations (early, late, open and quasi-open) that uses an explicit
name context, and an observation that these relations can be distinguished by the relative scoping
of names and their instantiations in the name context. This name context and name substitution
then give rise to an accessibility relation in the underlying Kripke semantics of our logic, that is
captured logically by an S4-like modal operator. We then show that the MPW, the OM and the FM
logics can be embedded into fragments of our unifying classical modal logic. In the case of OM and
FM, the embedding uses the fact that intuitionistic implication can be encoded in modal logic S4.
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1 Introduction

The π-calculus [14] is a process calculus originally developed by Milner, Parrow and Walker,
aimed at modelling a notion of process mobility (called link mobility). It can be seen as an
extension of the Calculus of Communicating Systems (CCS) [13], that allows the creation of
channel names, and exchanges of names between processes. Unlike CCS, where there is a
canonical notion of (strong/weak) bisimilarity defining process equivalence, there are several
notions of (strong/weak) bisimilarity for the π-calculus that arise from different ways in
which name quantification is scoped in the bisimulation game. We consider four important
notions of bisimilarity in this work: the early and the late bisimilarity, that were first defined
in [14], the open bisimilarity [20] and the quasi-open bisimilarity [22]. The latter two are
chosen for our study for two reasons: they are full congruence relations (closed under all
process constructs, something which is not true for early/late bisimilarity), and they are
more amenable for automation, especially open bisimilarity. Quasi-open bisimilarity implies
early bisimilarity and is implied by open bisimilarity, but is incomparable to late bisimilarity.
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34:2 Modal Logics for Mobile Processes Revisited

Our main interest is in the problem of characterising bisimilarity using (modal) logic.
For a modal logic to characterise a notion of bisimilarity, bisimilar processes should satisfy
precisely the same formulas (soundness), and conversely two processes satisfying the same
formulas should be bisimilar (completeness). This type of results was pioneered by Hennessy
and Milner, who characterised bisimilarity for CCS using a classical normal multi-modal
logic [9]. Modal logics characterising early and late bisimilarity for the π-calculus were
developed by Milner, Parrow and Walker [15]. The authors of that work show that early
and late bisimilarity are characterised by the modal logic EM and LM, respectively. Both
EM and LM are sublogics of a classical modal logic, which we refer to here as MPW logic.
Such a logical characterisation for open and quasi-open bisimilarity remained open until
recently. In 2017, a characterisation of open bisimilarity was given using an intuitionistic
modal logic OM [4, 5]. The intuitionistic nature of their logic, as opposed to MPW classical
modal logic, was motivated by the fact that closure under certain name substitutions acts
like intuitionistic persistence. Not long after, quasi-open bisimilarity was characterised using
yet another intuitionistic modal logic called FM [10].

Early and late bisimilarity are distinguished in one important case involving an input
transition. In a bisimulation game between a process P and another process Q, if P makes an
input transition, e.g., P a(x)−−−→ P ′(x), then the move that Q plays can depend, or not depend,
on the choice of the name x. In early bisimulation, the choice that Q makes is dependent
on x, whereas in late bisimulation, it is independent of x. In open bisimulation, which
refines late bisimulation, the choice of x is further delayed indefinitely – technically this is
formalised by allowing input names to be instantiated at any point in the bisimulation game.
In quasi-open bisimulation, the choice that Q makes is dependent on the name x, just like in
early bisimulation. However, like open bisimulation, input names can be further instantiated
at any point in the bisimulation game. Both open and quasi-open bisimulation impose a
restriction on name substitutions, permitting only substitutions that do not identify certain
pairs of names (typically those arising from names generated from bound-output transitions);
they differ only in the extent on how certain names must remain distinct throughout the
bisimulation game. The open nature of name instantiations is essentially what gives both
open and quasi-open bisimiliarty their intuitionistic character: in the bisimulation game,
equality between two (input) names cannot generally be decided, i.e. the classical tautology
(x = y) ∨ (x ̸= y) does not necessarily hold at every point in the bisimulation game [5, 10].

While the difference between early and late bisimilarity is reflected in MPW logic by
the use of two modalities that capture precisely the difference in the scope of the name
quantification arising from input transitions, the same cannot be said about OM and FM,
at least in their current formulations in [5, 10]. An obvious reason is that OM and FM
are entirely separate logics, so not sublogics of a unifying logic like MPW logic. Another
is a more fundamental one: the notions of name distinctions used in open and quasi-open
bisimilarity are quite different, at least superficially, with open bisimulation adopting a more
relax notion (that allows more names to be identified). This fundamental difference gives rise
to seemingly incompatible logics and it is not obvious how they can be viewed as sublogics of
a unifying logic. In this work, we show that these differences can be reconciled if the context
in which these names are instantiated is taken into account. A (name) context here refers to
information about how a name is created (as part of an input or a bound output), and the
relative order in which names are created in a trace of a process. We refer to such a context as
a history. By reformulating all four bisimilarity relations by explicitly accounting for histories
of names, we are able to obtain a unifying (classical) modal logic, whose sublogics characterise
all four bisimilarity relations. This reconciliation needs to account for the difference between
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intuitionistic and classical modal logics. We achieve this by viewing name substitutions
as giving rise to an accessibility relation in a Kripke model, with a corresponding modal
operator that behaves like a modal operator in the modal logic S4 (i.e., normal modal
logics with reflexive and transitive frames). We can then encode intuitionistic implication
(or negation) using this modal operator and classical implication. In particular, the notion
of inequality x ̸= y in the intuitionistic logic FM becomes the modal formula ¬(x = y)
in our logic. One notable consequence of our unifying logic, in the context of quasi-open
bisimilarity, is that we obtain a much simpler construction of the distinguishing formulas for
processes that are not quasi-bisimilar, in comparison to [10].

Our contributions can be summarised as follows:
We give a uniform reformulation of four bisimilarity relations (early, late, open and
quasi-open) using explicit name contexts.
We give a unifying logic, whose sublogics characterise all four bisimilarity relations
mentioned above.
We provide a new construction of distinguishing formulae for quasi-open bisimilarity,
simplifying a similar construction in [10], by making essential use of classical negation.

Outline of the paper. We set the stage in Section 2, where we recall the π-calculus, its
late operational semantics with respect to a history, and the definitions of late, early, open
and quasi-open bisimilarity. In Section 3 we introduce the logic that lies at the heart of this
paper, together with its semantics. We showcase the distinguishing power by examples, and
we state the main theorem of the paper, giving four fragments of the logic each of which
characterises a notion of bisimilarity. Section 4 is devoted to proving the completeness part
of the main theorem. Our results currently are established for the finite π-calculus with the
match operator, but without the mismatch operator. In Section 5 discuss some key ideas
on how to extend our results to handle the mismatch operator, leaving the details to future
work. In Section 6 we discuss related work and we conclude in Section 7. Some detailed
proofs are omitted but will be made available in a forthcoming technical report.

2 π-calculus and four notions of bisimulations

We give a brief overview of the operational semantics of the finite fragment of the π-
calculus [14], and reformulate four notions of bisimulation: early [14], late [14], open [20] and
quasi-open [22] bisimulation.

We assume a countably infinite set of channel names N , elements of which are ranged
over by lower-case letters such as x, y and z. Each name x has its dual co-names, denoted by
x̄. Informally, a name represents a communication channel where input can be received, and
a co-name represents a channel where output can be sent. Processes can synchronise along
channels with complementary names, i.e., a process inputting on channel x can synchronise
with another process outputting on channel x̄.

▶ Definition 1. Processes are defined by the grammar

P ::= 0 | τ.P | x̄y.P | x(z).P | νx.P | (P | P ) | P + P | [x = y]P.

A process of the form x̄y.P is an output-prefixed process, representing a process capable
of outputting a free name y along channel x. We adopt here a syntactic sugar of the form
x̄(z).P as an abbreviation of νx.x̄z.P. Semantically, this represents a process capable of
outputting a bound name z along channel x. A process of the form x(z) is an input-prefixed
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34:4 Modal Logics for Mobile Processes Revisited

process, with z acting as a placeholder for the received name. The prefix τ is a silent prefix,
meaning that the transition can act without interaction with the environment, and νx.P

turns x into a bound name in P . The processes P | Q, P +Q and [x = y]P represent parallel
processes, choice, and match, respectively.

▶ Definition 2. We recall some basic definitions.
A name z in a prefix π is binding if π is of the form x̄(z) or x(z). We write bn(π) for the
binding names and fn(π) for all other names in π.
An occurrence of a name z in a process P is bound if it lies in the scope of a prefix of
the form x̄(z), x(z), or of νz. Occurrences of names that are not bound are called free.
We write bn(P ) and fn(P ) for the sets of bound and free names of a process, and we
abbreviate fn(P,Q) = fn(P ) ∪ fn(Q).
A substitution σ is a map that sends names to names such that the support supp(σ) :=
{x | σ(x) ̸= x} of σ is finite. We sometimes write {z1,...,zn/x1,...,xn} for the substitution
σ with supp(σ) = {x1, . . . , xn} and xiσ = zi for all i ∈ {1, . . . , n}. The application of a
substitution to a variable x, prefix π or process P is defined as expected and denoted by xσ,
πσ and Pσ. The composition σ · θ of two substitutions is defined by (σ · θ)(x) = θ(σ(x)).

2.1 History and operational semantics
Before defining our operational semantics of the π-calculus, we introduce the notion of a
history and a respectful substitution, adapting the same notion from [20].

▶ Definition 3 (Histories). A history h is a list of names annotated with either i (denoting
an input name) or o (denoting an output name). If x is any name then we write x ∈ h if xi

or xo appears in h, and if X is a set of names then we write X ⊆ h if x ∈ h for all x ∈ X.

When enumerating the list of annotated names in a history, we separate each name in the
list with dots, e.g., xi · yo · zi.

Intuitively, a history h represents the list of names that a process sends and receives
during its transitions. The o-annotated names (denoted by zo) correspond to output names
extruded by a process in its bound output transitions. The names marked as input (denoted
by zi) represent symbolic inputs (i.e., variables) received by a process. The difference between
these annotations is captured in the following definition of respectful substitutions.

▶ Definition 4 (Respectful substitutions). A substitution σ respects h if, for all h′, h′′ and x

such that h = h′ · xo · h′′, we have xσ = x and yσ ̸= x for all y ∈ h′. If h = xp1
1 · · ·xpn

n is a
history, where p1, . . . , pn ∈ {i, o}, then we let hσ := (x1σ)p1 · · · (xnσ)pn be the application of
a respectful substitution σ to h.

▶ Example 5. Let h = ai · bo · co ·xi · yi. Then σ1 = {b/x, y/a} is a substitution that respects
h, and applying σ1 to h results in hσ1 = ai · bo · co · bi · ai. (Notice that we allow names to be
repeated in a history). On the other hand, σ2 = {a/b} is not an h-respectful substitution, as
it violates the condition that o-annotated names cannot be substituted, i.e., that bσ1 = b fails
to hold. The substitution σ3 = {c/a} also does not respect h, as it substitutes an i-annotated
name a with an o-annotated name that appears later in the history.

As the above example illustrates, the o-annotated names act like constants, while i-
annotated names act like scoped variables, with their scoping determined by their relative
positions in the history. Intuitively, when we consider a history as a trace of names inputted
and outputted by a process, this scoping enforces the fact that a name received earlier in the
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h : π.P π−→ P
(Act) h · zo : P π−→ Q z ̸∈ h ∪ bn(π) ∪ fn(π)

h : νz.P π−→ νz.Q
(Res)

h · zo : P x̄z−→ Q z /∈ {x} ∪ h

h : νz.P x̄(z)−−−→ Q
(Open) h : P x̄(z)−−−→ P ′ h : Q x(z)−−−→ Q′

h : P |Q τ−→ νz.(P ′|Q′)
(Close)

h : P π−→ R

h : P +Q
π−→ R

(Sum) h : P π−→ Q bn(π) ∩ fn(R) = ∅
h : P |R π−→ Q|R

(Par)

h : P π−→ R

h : [x = y]P π−→ R
(Match) h : P x̄y−→ P ′ h : Q x(z)−−−→ Q′

h : P |Q τ−→ P ′|Q′{y/z}
(L-Com)

Figure 1 The late transition semantics of the π-calculus with histories. Their symmetric variants
are omitted. We require that fn(P ) ⊆ h whenever h : P

π−→ Q.

trace cannot be identified with a fresh name outputted later. The meaning of the annotations
of names in a history and respectful substitutions will become clearer later when we define
various notions of bisimilarity (Section 2.2).

We next define two orderings that will be useful later in the definitions of bisimulation.
These orderings intend to constrain the possible identification of names in a history as a
result of applying a respectful substitution.

▶ Definition 6 (Orderings on histories). We write h ⊆o h
′ if h′ can be obtained from h by

adding o-annotated names to the end. Similarly, we write h ⊆i h
′ if h′ can be obtained from

h by adding i-annotated names in front of h.

The ordering h ⊆i h
′ is intended to capture the fact that the new i-annotated names in h′

cannot be identified with any o-annotated names in h (but may be identified with i-annotated
names) after applying an h′-respectful substitution. This fact will be important later when
defining quasi-open bisimulation. In the ordering h ⊆o h

′ the new o-annotated names cannot
be identified with any names appearing in h. This will be used later in the definition of early-
and late-bisimulation.

The operational semantics of the π-calculus is given in Figure 1. Note that we use the late
variant of the semantics [14], where bound input is not instantiated directly in the transition
relation; its instantiation is defined in the definitions of bisimulation (see Section 2.2). Our
semantics differs slightly from the standard late transition semantics, as each transition is
indexed by a history. The history is strictly speaking not needed for the semantics in Figure 1.
However, it will be important later when we discuss the handling of the mismatch operator
(see Section 5). Note that in the Open and Res, the ν-binder in the process expression is
interpreted as an o-annotated name in the history, reflecting the fact that this name is not
affected by respectful substitutions.

We now state several lemmas for future reference.

▶ Lemma 7. Let h be a history and suppose σ, θ are substitutions such that σ respects h.
Then θ respects hσ if and only if σ · θ respects h.

▶ Lemma 8. Suppose h : P π−→ Q. If π is of the form τ or x̄y then fn(Q) ⊆ fn(P ). If π is
of the form x(z) or x̄(z) then fn(Q) ⊆ fn(P ) ∪ {z}.

The following lemma helps prove that (quasi-)open bisimulations are closed under re-
spectful substitutions. In a given transition h : P π−→ Q, without loss of generality, we may
assume that bn(π) are chosen to be sufficiently fresh.
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34:6 Modal Logics for Mobile Processes Revisited

▶ Lemma 9 (monotonicity). Suppose h : P π−→ Q. Then hσ : Pσ πσ−−→ Qσ for all σ that
respect h and satisfy for all x ∈ bn(π), yσ = x iff x = y.

2.2 Four notions of bisimilarity
We augment early, late, open and quasi-open bisimilarity with histories. In each case, we
first define a notion of bisimulation as a collection of relations indexed by the collection of
histories. We write H for the collection of all histories, Ho for those consisting entirely of
o-annotated names, and we similarly define Hi. We let Hi-o denote the collection of histories
in which every i-annotated name comes before all o-annotated names.

▶ Definition 10 (Early bisimilarity). An early bisimulation is a family of symmetric relation
{Bh

e | h ∈ Ho} such that whenever PBh
eQ we have:

If h : P α−→ P ′ then ∃Q′ s.t. h : Q α−→ Q′ and P ′Bh
eQ

′, where α is of the form τ or x̄y.
If h : P x̄(z)−−−→ P ′ and z is fresh then ∃Q′ s.t. h : Q x̄(z)−−−→ Q′ and P ′Bh·zo

e Q′.
If h : P x(z)−−−→ P ′ and z is fresh then for all h′ ⊇o h and y ∈ h′ there exists some Q′ such
that h : Q x(z)−−−→ Q′ and P ′{y/z}Bh′

e Q
′{y/z}.

We write {∼h
e | h ∈ H} for the pointwise union of all early bisimulations and refer to ∼h

e

as early h-bisimilarity. Two processes P and Q are called early bisimilar if they are early
h-bisimilar for some h ∈ Ho.

The third clause allows us to substitute z for any name y, including a name that does
not appear in h (hence the need for the extension h′ ⊇o h). The fact that we use only
o-annotated histories in early (and late) bisimulation reflects the fact that names in these
bisimulations cannot be instantiated, i.e., they are essentially constants. The definition of
late bisimulation is similarly adapted from its original definition as follows.

▶ Definition 11 (Late bisimilarity). A late bisimulation is a family {Bh
ℓ | h ∈ Ho} of symmetric

relations indexed by a history consisting only of o-annotated names such that whenever
PBh

ℓ Q, we have:
If h : P α−→ P ′ then ∃Q′ s.t. h : Q α−→ Q′ and P ′Bh

ℓ Q
′, where α is of the form τ or x̄y;

If h : P x̄(z)−−−→ P ′ and z is fresh then ∃Q′ s.t. h : Q x̄(z)−−−→ Q′ and P ′Bh·zo

ℓ Q′;

If h : P x(z)−−−→ P ′ and z is fresh then ∃Q′ s.t. h : Q x(z)−−−→ Q′ and for all y ∈ h′ with h′ ⊇o h

we have P ′{y/z}Bh′

ℓ Q
′{y/z}.

We write {∼h
ℓ | h ∈ H} for the pointwise union of all late bisimulations and refer to ∼h

ℓ as
late h-bisimilarity. Two processes P and Q are called late bisimilar if they are late h-bisimlar
for some h ∈ Ho.

The notions of a late and early bisimilarity were originally defined in [14] without reference
to a history. The original definition can be obtained from the above ones simply by omitting
reference to the history, and in the third items letting y be an arbitrary name. We refer
to this as MPW late/early bisimulation, and to the induced notion of bisimilarity as MPW
late/early bisimilarity. The next proposition explains the connection between late/early
bisimulations and MPW late/early bisimulations.

▶ Proposition 12. Two processes are MPW late (resp. early) bisimilar if and only if they
are late (resp. early) bisimilar.

We now define analogues of open and quasi-open bisimulations [20, 22].



T. Liu, A. Tiu, and J. de Groot 34:7

▶ Definition 13 (Open bisimilarity). An open bisimulation is a history-indexed collection
{Bh

o | h ∈ H} of symmetric relations on processes such that whenever PBh
eQ:

For all substitutions σ respecting h, we have PσBhσ
o Qσ.

If h : P α−→ P ′ then ∃Q′ s.t. h : Q α−→ Q′ and P ′Bh
oQ

′, where α is of the form τ or x̄y;
If h : P x̄(z)−−−→ P ′ and z is fresh, then ∃Q′ s.t. h : Q x̄(z)−−−→ Q′ and P ′Bh·zo

o Q′;
If h : P x(z)−−−→ P ′ and z is fresh, then ∃Q′ s.t. h : Q x(z)−−−→ Q′ and P ′Bh·zi

o Q′.
The pointwise union of all open bisimulations is denoted by {∼h

o | h ∈ H}. We refer to ∼h
o as

open h-bisimilarity. We write P ∼h′

o Q if there exists an open bisimulation {Bh
o | h ∈ H} and

a history h′ with only i-annotated names such that PBh′

o Q and fn(P,Q) ⊆ h′. We call P
and Q open bisimilar.

Augmenting open bisimulations to account for a history does not affect the resulting
notion of bisimilarity compared to the original definition, as was shown in [26, Corollary 22].

Quasi-open bisimilarity was originally defined in [22] using the early transition semantics.
We adapt the original definition into late transition semantics indexed by history.

▶ Definition 14 (Quasi-open bisimilarity). A quasi-open bisimulation is a history-indexed
family {Bh

q | h ∈ Hi-o} of symmetric relations on processes such that whenever PBh
qQ:

For all substitutions σ respecting h, we have PσBhσ
q Qσ;

If h : P α−→ P ′ then ∃Q′ s.t. h : Q α−→ Q′ and P ′Bh
qQ

′, where α = τ, x̄y;

If h : P x̄(z)−−−→ P ′ and z is fresh, then ∃Q′ s.t. h : Q x̄(z)−−−→ Q′ and P ′Bh·zo

q Q′;

If h : P x(z)−−−→ P ′ and z is fresh, then for all h′ ⊇i h and all y ∈ h′, ∃Q′ s.t. h : Q x(z)−−−→ Q′

and P ′{y/z}Bh′

q Q
′{y/z}.

We write {∼h
q | h ∈ H} for the pointwise union of all quasi-open bisimulations and refer to

∼h
q as quasi-open h-bisimilarity. Two processes P and Q are called quasi-open bisimilar if

there exists a history h with only i-annotated names such that P ∼h
q Q and fn(P,Q) ⊆ h.

The first three conditions of an open and quasi-open bisimulation coincide. The last con-
dition captures a subtle but important difference between open and quasi-open bisimulations:
in quasi-open bisimulation, a bound output name must remain distinct from all other names
produced during the bisimulation game, whereas in open bisimulation, the same bound
output name only needs to be kept distinct from existing names in the history and future
output names. This difference is captured technically by restricting the class of histories in
quasi-open bisimulation to those where input names are always added to the front of output
names, thereby preventing respectful substitutions from ever identifying output names with
other (input/output) names.

Our definition relates to the original one in [22] as follows:

▶ Proposition 15. Two processes are quasi-open bisimilar if and only if they are quasi-open
bisimilar in the sense of [22].

We use an example from [22] that distinguishes open and quasi-open bisimilarity to
illustrate how to use histories.

▶ Example 16. Consider the processes

P = νux̄u.(x(z) + x(z).τ + x(z).[z = u]τ) Q = νux̄u.(x(z) + x(z).τ)

We claim that P and Q are quasi-open bisimilar but not open bisimilar under the history
h = xi. After taking the transitions x̄(u)−−−→ x(z)−−−→ through the definition of open bisimilarity,
we end up with the history xi · uo · zi, while quasi-open bisimilarity yields history yi · xi · uo

(if y /∈ {x, u}) or xi · uo (if y ∈ {x, u}).
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P |=h tt P |=h x = x P |=h ¬φ iff P ̸|=h φ.

P |=h φ1 ∧ φ2 iff P |=h φ1 and P |=h φ2

P |=h φ iff ∃σ respecting h, Pσ |=hσ φσ

P |=h ⟨α⟩φ iff ∃Q s.t. h : P α−→ Q and Q |=h φ, where α = τ, x̄y

P |=h ⟨x̄(z)⟩φ iff ∃Q s.t. h : P x̄(z)−−−→ Q and Q |=h·zo

φ

P |=h ⟨x(z)⟩φ iff ∃Q s.t. h : P x(z)−−−→ Q and ∃y ∈ h′(h′ ⊇o h), Q{y/z} |=h′
φ{y/z}

P |=h ⟨x(z)⟩ℓφ iff ∃Q s.t. h : P x(z)−−−→ Q and ∀y ∈ h′(h′ ⊇o h), Q{y/z} |=h′
φ{y/z}

P |=h ⟨x(z)⟩eφ iff ∀y ∈ h′(h′ ⊇o h), ∃Q s.t. h : P x(z)−−−→ Q and Q{y/z} |=h′
φ{y/z}

P |=h ⟨x(z)⟩oφ iff ∃Q, h : P x(z)−−−→ Q and Q |=h·zi

φ

P |=h ⟨x(z)⟩qφ iff ∀y ∈ h′(h′ ⊇i h), ∃Q s.t. h : P x(z)−−−→ Q and Q{y/z} |=h′
φ{y/z}

Figure 2 The semantics of logic U. In each clause we require z to be fresh for h and σ, and that
fn(P ) ∪ fn(φ) ⊆ h.

History h = xi · uo · zi indicates xσ ̸= u for all σ respecting it, while the substitution
{u/z} is allowed. After the transitions x̄(u)−−−→ x(z)−−−→, P can reach the state [z = u]τ and Q can
reach either 0 or τ . Applying the substitution {u/z} yields [z = u]τ ̸∼h

o 0, and applying {z/z}
gives [z = u]τ ̸∼h

o τ . Therefore P ̸∼h
o Q.

When considering quasi-open bisimilarity, if after the transitions x̄(u)−−−→ x(z)−−−→, P ′ = 0 or
τ , then it is straightforward to show that P ′, Q′ are quasi-open bisimilar. If P ′ = [z = u]τ ,
we need to show that for all h′ ⊇i h and for all y ∈ h′, there exists a Q′ such that P ′{y/z}
is bisimilar to Q′{y/z}. Suppose h′ = h and y ∈ {x, u}. Then if y = x, we have that P ′ is
bisimilar to Q′ = 0, and if y = u then P ′ is bisimilar to Q′ = τ . If h′ = yi · h and y /∈ {x, u}
then P ′ is bisimilar to Q′ = 0 because y ̸= u. Therefore P ∼h

q Q.

3 A universal logic

We define a universal logic U that characterises the four bisimilarities mentioned above.

▶ Definition 17. Let U be the language generated by the following grammar:

φ ::= tt | x = y | φ ∧ φ | ¬φ | φ | ⟨α⟩φ | ⟨x̄(z)⟩φ
| ⟨x(z)⟩φ | ⟨x(z)⟩ℓφ | ⟨x(z)⟩eφ | ⟨x(z)⟩oφ | ⟨x(z)⟩qφ

▶ Definition 18. Given a process P , a U-formula φ and a history h, the satisfaction relation
P |=h φ is defined in Figure 2.

▶ Remark. The modalities ⟨x(z)⟩φ, ⟨x(z)⟩ℓφ and ⟨x(z)⟩eφ correspond to the operators in
MPW logic defined in [15]. The former is not used for our characterisations.

The dual logical propositional and modal connectives are defined as usual, via negation.

▶ Definition 19 (Logical equivalence). Two processes P and Q are logically equivalent with
respect to some S ⊆ U and history h, notation: P ≡h

S Q, if fn(P ) ∪ fn(Q) ⊆ h and for all
φ ∈ S with fn(φ) ⊆ h we have P |=h φ iff Q |=h φ.
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We say that S characterises a history-indexed family {Rh | h ∈ H} of relations if: P ≡h
U Q

iff PRhQ. We define sublogics E, L, Q and O of U to characterise the late, early, open and
quasi-open bisimilarity.

▶ Definition 20 (Sublogics of U). The logics E, L, Q and O are the sublogics of U generated
by the grammars with tt,¬,∧ and the modalities specified in Table 1.

Table 1 The modalities defining the logics E,L,Q and O.

Logic Modalities Characterises

E ⟨α⟩, ⟨x̄(z)⟩, ⟨x(z)⟩e early bisimilarity
L ⟨α⟩, ⟨x̄(z)⟩, ⟨x(z)⟩ℓ late bisimilarity
Q , ⟨α⟩, ⟨x̄(z)⟩, ⟨x(z)⟩q quasi-open bisimilarity
O , ⟨α⟩, ⟨x̄(z)⟩, ⟨x(z)⟩o open bisimilarity

▶ Theorem 21. The various notions of bisimilarity can be characterised as follows:

1. P ≡h
E Q iff P ∼h

e Q

2. P ≡h
L Q iff P ∼h

ℓ Q

3. P ≡h
Q Q iff P ∼h

q Q

4. P ≡h
O Q iff P ∼h

o Q

Proof. We postpone the completeness proofs (i.e. P ≡h Q implies P ∼h Q) to Section 4. The
soundness proofs are straightforward. As an example, we demonstrate part of the soundness
proof for open bisimilarity.

Suppose P ∼h
o Q. Then by definition fn(P,Q) ⊆ h. Let φ be an O-formula such that

fn(φ) ⊆ h and assume P |=h φ. We prove that Q |=h φ by induction on the structure
of φ. The propositional cases are routine. We showcase the modal cases for φ = ψ

and φ = ⟨x̄(z)⟩ψ. If φ = ψ then there exists a substitution σ respecting h such that
Pσ |=hσ ψσ. By definition of open bisimulation we have Pσ ∼hσ

o Qσ. Besides, fn( ψ) ⊆ h

implies fn(ψ) ⊆ h, so the induction hypothesis gives Qσ |=hσ ψσ and hence Q |=h ψ.
If φ = ⟨x̄(z)⟩ψ then there exists a P ′ such that h : P x̄(z)−−−→ P ′ and P ′ |=h·zo

ψ. By
definition of |= the name z is fresh for h. Therefore we can invoke the definition of open
bisimulations to find a process Q′ such that h : Q x̄(z)−−−→ Q′ and P ′ ∼h·zo

o Q′. Since
fn(⟨x̄(z)⟩ψ) ⊆ h we have fn(ψ) ⊆ h · zo, so we can use the induction hypothesis to derive
Q′ |=h·zo

ψ. Therefore Q |=h ⟨x̄(z)⟩ψ, as desired. ◀

We say a logic is sound and complete for a bisimilarity when: if two processes are bisimilar,
then they satisfy the same set of formulas in the logic; and if two processes are not bisimilar,
there exist some formulae in the logic that separate them, which we call the distinguishing
formulae. A distinguishing formula holds for one process but not for the other, thus revealing
a difference in their behavior. The distinguishing formulae can be used as efficiently checkable
evidences to explain why two processes are not bisimilar.

The next examples illustrate how the modalities ⟨−⟩e, ⟨−⟩ℓ, ⟨−⟩q and ⟨−⟩o can be used
to recognise non-bisimilar processes.

▶ Example 22 (Distinguishing processes that are not late bisimilar). Consider the processes

P = x(z) + x(z).τ + x(z).[z = u]τ Q = x(z) + x(z).τ
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P and Q are early bisimilar but not late bisimilar (see e.g. [15, Section 2.3]). An induction
on the structure of φ shows that we have P |=h φ iff Q |=h φ for all h ∈ Ho containing xo

and uo and for all φ ∈ E. However, if we bring ⟨x(z)⟩ℓ into the picture then we can construct
a formula which only holds at one of P and Q. For example, the formula

φ := ⟨x(z)⟩ℓ

(
[τ ](z = u) ∧ ((z = u) → ⟨τ⟩tt)

)
is true at P but not at Q.

To show that P |=xo·uo

φ we need to find a process P ′ such that xo · uo : P x(z)−−−→ P ′ and
for all h′ ⊇o x

o · uo and all y ∈ h′ we have P ′ |=h′ ([τ ](z = u) ∧ ((z = u) → ⟨τ⟩tt)
)
{y/z}. To

this end, take P ′ = [z = u]τ . Then we have P ′{y/z} |=h′ [τ ](z = u){y/z}, because if there
is a τ -transition then we must have (z = u){y/z}, and P ′{y/z} |=h′ ((z = u) → ⟨τ⟩tt){y/z}
because if (z = u){y/z} is true then there must exists a τ -transition from P ′.

To see that Q ̸|=xo·uo

φ, note that there are only two processes that Q can x(z)-transition
to, namely Q′ = 0 and Q′ = τ . In the first case we have 0{u/z} ̸|=xo·uo [τ ](z = u) ∧

(
(z =

u) → ⟨τ⟩tt
)

because the second conjoint is false, while in the second case we can take any
y ̸= u to find τ ̸|=xo·uo·yo [τ ](z = u) ∧

(
(z = u) → ⟨τ⟩tt

)
because the first conjoint is false.

▶ Example 23. Recall from Example 16 that the processes

P = νux̄u.(x(z) + x(z).τ + x(z).[z = u]τ), Q = νux̄u.(x(z) + x(z).τ)

are quasi-open bisimilar but not open bisimilar. We construct a distinguishing formula using
the modality ⟨x(z)⟩o. First observe the difference between [z = u]τ and τ . The latter can
always make a τ -transition while the former cannot do that without a suitable substitution.
Therefore [z = u]τ ̸|=xi·uo·zi ⟨τ⟩tt while τ |=xi·uo·zi ⟨τ⟩tt. Similarly, the processes 0 and
[z = u]τ can be distinguished by [z = u]τ |=xi·uo·zi ⟨τ⟩tt while 0 ̸|=xi·uo·zi ⟨τ⟩tt. Observe
that both P and Q both can perform the transitions x̄(u)−−−→ x(z)−−−→ to arrive at states that are
distinguishable by a formula. Thus, if we define φ := ⟨x̄(u)⟩⟨x(z)⟩o(¬⟨τ⟩tt ∧ ⟨τ⟩tt) then
we have P |=xi

φ while Q ̸|=xi φ.

4 Completeness for quasi-open and open bisimilarity

We now detail completeness for quasi-open bisimilarity. We first list here some useful lemmas
that will be used in the main completeness proof. Most of these are straightforward to prove,
except for Lemma 26, for which we outline a proof.

▶ Definition 24. Let h be a history and σ a substitution. Then we define

e(h, σ) :=
∧

{(x = y) | x, y ∈ h distinct, σ(x) = σ(y)}∧
∧

{(x ̸= y) | x, y ∈ h, σ(x) ̸= σ(y)}

This is a finite conjunction because h is finite.

▶ Lemma 25. Let P be a process, h a history such that fn(P ) ⊆ h and θ a renaming that
respects h. Then for all formulas φ such that fn(φ) ⊆ h we have P |=h φ iff Pθ |=hθ φθ.

▶ Lemma 26. Let P be a process, h a history and σ a substitution that respects h. Then
Pσ |=hσ φσ if and only if P |=h (e(h, σ) ∧ φ).

Proof. Suppose Pσ |=hσ φσ. Since σ respects h, by definition of e(h, σ) we have Pσ |=hσ

e(h, σ)σ. Therefore Pσ |=hσ (e(h, σ) ∧ φ)σ, hence P |=h (e(h, σ) ∧ φ).
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For the conversely, suppose P |=h (e(h, σ) ∧ φ). Then by definition of , there exists
substitution θ respecting h such that Pθ |=hθ e(h, σ)θ ∧ φθ. Then we have Pθ |=hθ e(h, σ)θ
and Pθ |=hθ φθ. By Pθ |=hθ e(h, σ)θ we have xσ = yσ iff xθ = yθ for all x, y ∈ h, and hence
we can find a renaming θ′ such that σ coincides with θ · θ′ on h (i.e. zσ = (zθ)θ′ for all
z ∈ h). Moreover we may assume that θ′ respects h. Then we can use Lemma 25 and the
assumption Pθ |=hθ φθ to find that Pσ |=hσ φσ. ◀

▶ Lemma 27.
1. If hσ : Pσ π−→ P ′, then there exists an action π′ such that π = π′σ.
2. If Pσ |=hσ φ then there exists a formula φ′ using the same connectives as φ s.t. φ′σ = φ.

▶ Lemma 28 (image finiteness). For any process P and action π there are finitely many Pi,
up to renaming of bn(π), such that P π−→ Pi.

To prove the completeness is equivalent to prove that if two processes are not bisimilar
then there must be some distinguishing formulae that can be satisfied by one of the processes
but by not the other. The proof will provide a strategy on constructing distinguishing
formulae for any processes that are not quasi-open bisimilar. On the basis of the image
finiteness, we are able to define distinguishability, which is a negation of bisimilarity. Note
that the subscript of ∼0 below is the number zero instead of the letter o for open bisimilarity.

▶ Definition 29 (distinguishability). Let ̸∼h
0 be the smallest symmetric relation satisfying

P ̸∼h
0 Q whenever there exists a substitution σ respecting h and an action π such that

There exists a P ′ such that hσ : Pσ π−→ P ′ but no Q′ satisfying hσ : Qσ π−→ Q′.
If π is of the shape x̄(z) or x(z) then we assume that z is fresh for h and σ.

We inductively define ̸∼h
n+1 as the smallest symmetric relation containing ̸∼h

n such that
P ̸∼h

n+1 Q holds if there exists a σ respecting h and a process P ′ such that either
hσ : Pσ α−→ P ′ and for all Q′ such that hσ : Qσ α−→ Q′ we have P ′ ̸∼hσ

n Q′, where α is of
the form τ or x̄y; or
hσ : Pσ x̄(z)−−−→ P ′ for some z /∈ h and for all Q′ such that hσ : Qσ x̄(z)−−−→ Q′ we have
P ′ ̸∼hσ·zo

n Q′; or
hσ : Pσ x(z)−−−→ P ′ for some z /∈ h and there exists some h′ ⊇i h and y ∈ h′ such that for
all Q′ with hσ : Qσ x(z)−−−→ Q′ we have P ′{y/z} ̸∼h′σ

n Q′{y/z}.
Again, if π is of the shape x̄(z) or x(z) then we assume that z is fresh for h and σ.

▶ Lemma 30. Let P and Q be processes and h ∈ Hi-o a history such that fn(P,Q) ⊆ h.
Then P ̸∼h

q Q if and only if there exists some n such that P ̸∼h
n Q.

Theorem 21(3), that is, completeness of quasi-open bisimilarity with respect to Q, follows
immediately from the next lemma.

▶ Lemma 31. If P ̸∼h
q Q, then there exists φ ∈ Q such that P |=h

Q φ and Q ̸|=h
Q φ.

Proof. If P ̸∼h
q Q then there exists some n such that P ̸∼h

n Q by Lemma 30. We now
construct a distinguishing formula using induction on n. The base case is straightforward.
We show here a non-trivial inductive case.

Suppose P ̸∼h
n+1 Q. Without loss of generality assume that there exists a substitution σ

respecting h and a process P such that on of the three cases from Definition 29 holds.
Case 1: Pσ α−→ P ′ and for all Q′ that satisfy hσ : Qσ α−→ Q′ we have P ′ ̸∼hσ

n Q′, where α
is of the form τ or x̄y. The case is similar to case 2 below.
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Case 2: Pσ x̄(z)−−−→ P ′ for some z /∈ h and for all Q′ that satisfy hσ : Qσ x̄(z)−−−→ Q′ we have
P ′ ̸∼hσ·zo

n Q′. By Lemma 28 there are finitely many such Q′ (up to renaming of bound names
in π) such that Qσ x̄(z)−−−→ Q′, so we can enumerate them Q′

1, . . . , Q
′
m. Since P ′ ̸∼hσ·zo

n Q′
i, the

induction hypothesis yields a formula φi such that P ′ |=hσ·zo

φi while Q′
i ̸|=hσ·zo

φi, for all
i ∈ {1, . . . ,m}. We claim that

P |=h (e(h, σ) ∧ ⟨x̄(z)⟩
∧

i

φ′
i) and Q ̸|=h (e(h, σ) ∧ ⟨x̄(z)⟩

∧
i

φ′
i)

where φ′
iσ = φi. By Lemma 27, we have Pσ xσ(z)−−−→ P ′, and P ′ |=hσ·zo

φ′
iσ, where φ′

iσ = φi.
Then Pσ |=hσ ⟨xσ(z)⟩φ′

iσ. Since the above holds for all i, Pσ |=hσ ⟨xσ(z)⟩
∧

i φ
′
iσ. Lemma 26

then gives we have P |=h (e(h, σ) ∧ ⟨x̄(z)⟩
∧

i φ
′
i).

For the latter, assume otherwise that Q |=h (e(h, σ) ∧ ⟨x̄(z)⟩
∧

i φ
′
i), then by Lemma 26,

Qσ |=hσ ⟨xσ(z)⟩
∧

i φ
′
iσ), then there exists Q′

i such that Qσ xσ(z)−−−→ Q′
i and Q′

i |=hσ·zo ∧
i φi,

contradicting the condition that no such Q′
i exists.

Case 3: hσ : Pσ x(z)−−−→ P ′ for some z /∈ hσ and there exists a h′ ⊇i hσ and a y0 ∈ h′

such that for all Q′ that satisfy hσ : Qσ x(z)−−−→ Q′ we have P ′{y0/z} ̸∼h′

n Q′{y0/z}. We may
assume that h′ = hσ if y0 ∈ hσ and h′ = yi

0 · hσ otherwise. By Lemma 28 there are finitely
many such Q′ (up to renaming of bound names in π), so we can enumerate them Q′

1, . . . , Q
′
m.

Since P ′{y0/z} ̸∼h′σ
n Q′

i{y0/z} by the induction hypothesis we can find a formula φi such that

P ′{y0/z} |=h′
φi while Q′

i{y0/z} ̸|=h′
φi,

for all i ∈ {1, . . . ,m}. Let φ′
i = φi{z/y0} (so obviously φi = φ′

i{y0/z}).
Setting φ := φ′

1 ∧ · · · ∧ φ′
m, we have

P ′{y0/z} |=h′
φ{y0/z} while Q′

i{y0/z} ̸|=h′
φ{y0/z}, (1)

for all i ∈ {1, . . . ,m}. We now consider two subcases:
Case 3A: y0 ∈ hσ. We now claim that

Pσ |=hσ ⟨x(z)⟩q((z = y0) → φ) but Qσ ̸|=hσ ⟨x(z)⟩q((z = y0) → φ). (2)

For the former, let h′′ be any history such that h′′ ⊇i hσ and let y ∈ h′′. We need to find
some P ′′ such that hσ : P x(z)−−−→ P ′′ and P ′′ |=h′′ ((z = y0) → φ){y/z}. Again, we may
assume that h′′ = h if y ∈ h and h′′ = yi · h otherwise. Take P ′′ = P ′. Then we know
that hσ : Pσ x(z)−−−→ P ′, so we only need to show that P ′ |=h′′ (z = y0){y/z} → φ{y/z}. If
y ̸= y0 then (z = y0){y/z} is false so the implication is true. If y = y0 then h′′ = h′ and
φ{y/z} = φ{y0/z} so that (1) implies P ′{y/z} |=h′′

φ{y/z}, as desired.
Now for the latter, consider history h′ and y0 ∈ h′. Then (clearly) for all Q′

i we have
Q′

i |=h′ (z = y0){y0/z}. But Q′
i ̸|=h′

φ{y0/z} by (1), so Q′
i ̸|=h′ ((z = y0) → φ){y0/z}. Since

the Q′
i range over the x(z)-successors of Q (up to renaming of bound names in π), this

implies Q ̸|=hσ ⟨x(z)⟩q((y0 = z) → φ).
Now by Lemma 27 we can find a ψ such that ψσ = ⟨x(z)⟩q((x = y0) → φ), so Pσ |=hσ ψσ

and Qσ ̸|=hσ ψσ. Lemma 26 then a distinguishing formula which is true at P but false at Q.
Case 3B: y0 /∈ hσ. Let φ′ be φ{z/y0}. We now claim that

Pσ |=hσ ⟨x(z)⟩q(z ̸∈ hσ → φ) but Qσ ̸|=hσ ⟨x(z)⟩q(z ̸∈ hσ → φ). (3)

where z ̸∈ hσ refers to
∧

{z ̸= w | w ∈ hσ}. This case follows a similar reasoning as in 3A,
with the inequality guard (z ̸∈ hσ) replacing the role of (z = y0) in 3A.

The symmetric cases, with the role of P and Q reversed, can be obtained by taking the
negated distinguishing formula constructed above. ◀
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The proofs for early and late bisimilarity resemble the one above. For open bisimilarity,
the definition for P ̸∼h

n+1 Q (Definition 29) differs in the third clause, which is changed to

∃P ′, hσ : Pσ xσ(z)−−−→ P ′ and ∀Qi such that hσ : Qσ xσ(z)−−−→ Qi, P
′ ̸∼hσ·zi

n Qi

as the name zi is added at a different location in history compared to quasi-open bisimilarity.
The remainder of the proof proceeds along the line of the completeness proof for quasi-open
bisimulation, but with all three inductive steps resembling cases 1 and 2. In fact, the proof
can also be derived from the connection with [5] outlined in Section 6 below.

5 Handling mismatch

So far our language does not include the mismatch prefix [x ̸= y], with the interpretation that
[x ̸= y]P can proceed as P only if x and y are not equal. Adding mismatch is problematic
because doing so naively may invalidate Lemma 9 (monotonicity), which requires that “any
name-substitution to a process does not diminish its capabilities for action” [23, Chapter
1.1]. In the context of open and quasi-open bisimulation, since names in a process may be
subjected to instantiations, the operational semantics for mismatch need to account for all
possible instantiations. This is easy to accommodate when the semantics is augmented with
histories. The following rule for mismatch is an adaptation of a similar rule in [10]:

h : P π−→ Q h |= x ̸= y

h : [x ̸= y]P π−→ Q
(Mismatch)

where h |= x ̸= y iff xσ ̸= yσ for all substitutions σ respecting h.
The monotonicity lemma (Lemma 9) still holds even in the presence of the Mismatch

rule. We sketch here a proof for the inductive step. Let σ be any substitution which is
respectful with respect to h. First observe that Lemma 7 implies that hσ |= xσ ̸= yσ. (Indeed,
if hσ ̸|= xσ ̸= yσ then there exists a respectful substitution θ such that (xσ)θ = (yσ)θ, but
then σθ respects h and identifies x and y, a contradiction.) By induction hypothesis we have
hσ : Pσ πσ−−→ Qσ. Thus we can use the mismatch rule to find hσ : ([x ̸= y]P )σ πσ−−→ Qσ.

Monotonicity aside, there is still a problem with mismatch: closure of (quasi-)open
bisimilarity under restriction no longer holds. For example, under current definitions, the
process [x ̸= y]τ under the history h = xi · yi is open and quasi-open bisimilar with 0,
since there is a respectful substitution that could invalidate x ̸= y (i.e., {x/y}) so that the
τ -transition is not possible from [x ̸= y]τ . But neither open-bisimilarity nor quasi-open
bisimilarity holds for νy.[x ̸= y]τ and 0 under the history h′ = xi, since [x ̸= y] is always true
when y is restricted. To solve this problem, we need to close the (quasi-)open bisimilarity
with rigidisation of names, i.e., turning an i-annotated name into o-annotated. We extend
our logic U with another accessibility relation that is induced by rigidisation, in addition to
the accessibility relation induced by respectful substitution.

We first define the rigidisation relations.

▶ Definition 32 (Rigidisation relations). The relations ⊆ro and ⊆rq are the smallest relations
on histories such that:

h ⊆ro h
′ iff h = h1 · xi · h2 and h′ = h1 · xo · h2.

h ⊆rq h
′ iff h = h1 · xi · h2 and h′ = h1 · h2 · xo.

h ⊆ro h ⊆rq h.

Both ⊆ro and ⊆rq are transitively closed.
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We extend our logic U with new modal operators ro and rq for rigidisation of names
in open and quasi-open bisimilarities respectively. The semantics are defined as follows.

P |=h
roφ iff ∃h′ ⊇ro h, P |=h′

φ

P |=h
rqφ iff ∃h′ ⊇rq h, P |=h′

φ

Accordingly, the definitions of open and quasi-open bisimilarity also need to be extended.
For open bisimilarity, we add an additional clause to Definition 13:

For any h′ ⊇ro h, we have PBh′

o Q.

For quasi-open bisimilarity, we add an additional clause to Definition 14:

For any h′ ⊇rq h, we have PBh′

q Q.

We conjecture that the extensions of bisimilarities we defined here are the same as the
definitions given by [10], and that they are characterised by our extended logic U.

6 Related work

The idea of accounting of history of names in process transitions has been considered in other
settings, notably in the automata theoretic model called history-dependent automata [16, 17].
In the case of bisimilarity relations, indexing the relations with a context more general
than distinctions has also been considered in work on environmental bisimulation [21], and
bisimulations for cryptographic calculi,e.g., [3, 6, 24]. In particular, our notion of histories is
a special instance of that used in [24]. None of these works consider specifically the problem
of characterising bisimulations via logic. We discuss next two other closest related works.

Relations between sublogic O and the intuitionistic modal logic OM

In [5], open bisimilarity is characterised OM, which extends intuitionistic logic with modalities
of the form ⟨π⟩φ and [π]φ where π is of the form τ , x̄y, x̄(z) or x(z). The diamonds are
interpreted with respect to a process and a history as in Definition 18 above, with ⟨x(z)⟩
being interpreted as ⟨x(z)⟩o. The box operators are interpreted as the duals of the diamonds,
with the additional condition that they be closed under respectful substitutions. For example,

P |=h
OM [x̄(z)]φ iff ∀σ respecting h,∀Q, Pσ xσz−−→ Q implies Q |=hσ

OM φσ.

The logic OM can faithfully be embedded in O via a variation of the Gödel-McKinsey-Tarski
translation of intuitionistic logic into the modal logic S4 (see e.g. [7, §3.9]).

▶ Definition 33. Define the translation t : OM → O on propositional connectives as the
Gödel-McKinsey-Tarski translation:

t(tt) = tt t(φ1 ∧ φ2) = t(φ1) ∧ t(φ2) t(x = y) = (x = y)
t(ff) = ff t(φ1 ∨ φ2) = t(φ1) ∨ t(φ2) t(φ1 ⊃ φ2) = (t(φ1) → t(φ2))

This is extended to modalities as follows:

t(⟨π⟩φ) = ⟨π⟩t(φ) t([π]φ) = ([π]t(φ)) for π = τ, x̄y, x̄(z)
t(⟨π⟩φ) = ⟨π⟩ot(φ) t([π]φ) = ([π]ot(φ)) for π = x(z)
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The correctness of the translation relies of the following lemma.

▶ Lemma 34. For all P and all φ ∈ OM we have P |=h
OM φ iff P |=h t(φ).

Completeness for open bisimilarity now follows from [5, Theorem 3.3]: If P ̸∼h
o Q then there

exists a formula φ ∈ OM such that P |=h
OM φ while Q ̸|=h

OM φ or vice versa. Lemma 34
implies that t(φ) ∈ O satisfies P |=h t(φ) while Q ̸|=h t(φ) (or vice versa), so that P ̸≡h

o Q.

Modal logics for nominal transition systems

In [18], Parrow et. al., defines a general framework for defining transition systems, called
nominal transition systems, that subsumes most of name-passing calculi, including the
π-calculus. They then define a general modal logic that characterises bisimilarity relations
defined on nominal transition systems. They show several examples of how their framework
can be instantiated to provide logical characterisations of bisimilarity relations; these include
the π-calculus (without mismatch) and early, late and open bisimilarity. Of particular
interests in the context of the current paper is the way in which they capture the notion of
respectful substitutions, which is formalised as a notion of effects. In the modal logic for
open bisimilarity, their logic considers an operator @ that applies an effect to the state (i.e., a
process) of their semantic judgment, e.g., P |= f@φ iff f(P ) |= φ. This resembles our operator

, however there are a couple of crucial differences: we apply the substitution (effect f in
this example) to both the state and the modal formula, and our logic contains the equality
predicate whereas their logic (for this particular example involving the π-calculus) does not
allow equality (or any state predicates). The equality predicate becomes quite crucial when
mismatch is present and at this stage, it is not clear whether quasi-open bisimilarity with
mismatch can be similarly defined in the framework of nominal transition systems.

7 Conclusion

In this paper we considered early, late, open and quasi-open bisimilarity for the finite fragment
of the π-calculus extended with the mismatch operator. We provided a unified presentation of
each of these notions in the late transition semantics, using the notion of a history to capture
the name context of a process. We then defined a unifying modal logic, and identified four
fragments charaterising the four notions of bisimilarity. That is, for each type of bisimilarity
we gave a sublogic of the unifying logic such that two processes are bisimilar if and only if
they satisfy precisely the same formulas in the fragment.

As a consequence of the fact that our unifying logic is classical, we obtain a simple
construction of distinguishing formulas for non-bisimilar processes in the context of open
and quasi-open bisimilarity, compared to [5, 10].

An interesting direction for further research is to investigate to what extend our unifying
logic can be used for extensions of our fragment of the π-calculus to include e.g. replication or
recursion, or to cryptographic calculi such as the spi-calculus [2] or the applied π-calculus [1].
Some work in this direction can be found in [8, 12, 19, 25, 11].
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