
Deciding What Is Good-For-MDPs
Sven Schewe #

University of Liverpool, UK

Qiyi Tang #

University of Liverpool, UK

Tansholpan Zhanabekova #

University of Liverpool, UK

Abstract
Nondeterministic good-for-MDPs (GFM) automata are for MDP model checking and reinforcement
learning what good-for-games automata are for reactive synthesis: a more compact alternative to
deterministic automata that displays nondeterminism, but only so much that it can be resolved
locally, such that a syntactic product can be analysed. GFM has recently been introduced as a
property for reinforcement learning, where the simpler Büchi acceptance conditions it allows to
use is key. However, while there are classic and novel techniques to obtain automata that are
GFM, there has not been a decision procedure for checking whether or not an automaton is GFM.
We show that GFM-ness is decidable and provide an EXPTIME decision procedure as well as a
PSPACE-hardness proof.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects; Math-
ematics of computing → Markov processes

Keywords and phrases Büchi automata, Markov Decision Processes, Omega-regular objectives,
Reinforcement learning

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2023.35

Related Version Full Version: https://arxiv.org/abs/2202.07629 [16]

Funding This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement 956123 (FOCETA).

Acknowledgements We thank the anonymous reviewers of this paper for their constructive feedback.
We thank an anonymous reviewer for raising the excellent question (to the original version) of
whether or not QGFM and GFM are different. They proved not to be. Without their clever question,
we would not have considered this question, and thus not strengthened this paper accordingly.

1 Introduction

Omega-automata [20, 12] are formal acceptors of ω-regular properties, which often result
from translating a formula from temporal logics like LTL [14], as a specification for desired
model properties in quantitative model checking and strategy synthesis [3], and reinforcement
learning [19].

Especially for reinforcement learning, having a simple Büchi acceptance mechanism
has proven to be a breakthrough [8], which led to the definition of the “good-for-MDPs”
property in [9]. Just like for good-for-games automata in strategy synthesis for strategic
games [10], there is a certain degree of nondeterminism allowed when using a nondeterministic
automaton on the syntactic product with an MDP to learn how to control it, or to apply
quantitative model checking. Moreover, the degree of freedom available to control MDPs is
higher than the degree of freedom for controlling games. In particular, this always allows
for using nondeterministic automata with a Büchi acceptance condition, both when using
the classically used suitable limit deterministic automata [21, 6, 7, 17, 8] and for alternative
GFM automata like the slim automata from [9].

© Sven Schewe, Qiyi Tang, and Tansholpan Zhanabekova;
licensed under Creative Commons License CC-BY 4.0

34th International Conference on Concurrency Theory (CONCUR 2023).
Editors: Guillermo A. Pérez and Jean-François Raskin; Article No. 35; pp. 35:1–35:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sven.schewe@liverpool.ac.uk
https://orcid.org/0000-0002-9093-9518
mailto:qiyi.tang@liverpool.ac.uk
https://orcid.org/0000-0002-9265-3011
mailto:t.zhanabekova@liverpool.ac.uk
https://orcid.org/0000-0002-4941-2554
https://doi.org/10.4230/LIPIcs.CONCUR.2023.35
https://arxiv.org/abs/2202.07629
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Deciding What Is Good-For-MDPs

This raises the question of whether or not an automaton is good-for-MDPs. While [9]
has introduced the concept, there is not yet a decision procedure for checking the GFM-ness
of an automaton, let alone for the complexity of this test.

We will start by showing that the problem of deciding GFM-ness is PSPACE-hard by a
reduction from the NFA universality problem [18]. We then define the auxiliary concept of
qualitative GFM, QGFM, which relaxes the requirements for GFM to qualitative properties,
and develop an automata based EXPTIME decision procedure for QGFM. This decision
procedure is constructive in that it can provide a counter-example for QGFM-ness when
such a counter-example exists. We then use it to provide a decision procedure for GFM-ness
that uses QGFM queries for all states of the candidate automaton. Finally, we show that the
resulting criterion for GFM-ness is also a necessary criterion for QGFM-ness, which leads
to a collapse of the two concepts. This entails that the EXPTIME decision procedure we
developed to test QGFM-ness can be used to decide GFM-ness, while our PSPACE-hardness
proofs extend to QGFM-ness.

2 Preliminaries

We write N for the set of nonnegative integers. Let S be a finite set. We denote by
Distr(S) the set of probability distributions on S. For a distribution µ ∈ Distr(S) we write
support(µ) = {s ∈ S | µ(s) > 0} for its support. The cardinal of S is denoted |S|. We use Σ
to denote a finite alphabet. We denote by Σ∗ the set of finite words over Σ and Σω the set of
ω-words over Σ. We use the standard notions of prefix and suffix of a word. By wα we denote
the concatenation of a finite word w and an ω-word α. If L ⊆ Σω and w ∈ Σ∗, the residual
language (left quotient of L by w), denoted by w−1L is defined as {α ∈ Σω | wα ∈ L}.

2.1 Automata
A nondeterministic Büchi word automaton (NBW) is a tuple A = (Σ, Q, q0, δ, F), where Σ
is a finite alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, δ : Q× Σ → 2Q is the
transition function, and F ⊆ Q is the set of final (or accepting) states. An NBW is complete
if δ(q, σ) ̸= ∅ for all q ∈ Q and σ ∈ Σ. Unless otherwise mentioned, we consider complete
NBWs in this paper. A run r of A on w ∈ Σω is an ω-word q0, w0, q1, w1, . . . ∈ (Q × Σ)ω

such that qi ∈ δ(qi−1, wi−1) for all i > 0. An NBW A accepts exactly those runs, in which
at least one of the infinitely often occurring states is in F . A word in Σω is accepted by the
automaton if it has an accepting run, and the language of an automaton, denoted L(A), is
the set of accepted words in Σω. An example of an NBW is given in Figure 1.

Let C ⊂ N be a finite set of colours. A nondeterministic parity word automaton (NPW)
is a tuple P = (Σ, Q, q0, δ, π), where Σ, Q, q0 and δ have the same definitions as for NBW,
and π : Q → C is the priority (colouring) function that maps each state to a priority (colour).
A run is accepting if and only if the highest priority (colour) occurring infinitely often in
the infinite sequence is even. Similar to NBW, a word in Σω is accepted by an NPW if it
has an accepting run, and the language of the NPW P , denoted L(P), is the set of accepted
words in Σω. An NBW is a special case of an NPW where π(q) = 2 for q ∈ F and π(q) = 1
otherwise with C = {1, 2}.

A nondeterministic word automaton is deterministic if the transition function δ maps
each state and letter pair to a singleton set, a set consisting of a single state.

A nondeterministic automaton is called good-for-games (GFG) if it only relies on a limited
form of nondeterminism: GFG automata can make their decision of how to resolve their
nondeterministic choices on the history at any point of a run rather than using the knowledge

S. Schewe, Q. Tang, and T. Zhanabekova 35:3

q0q1 q2

q3

a a

b
b a

a b

a, b

Figure 1 A nondeterministic Büchi word automaton over {a, b}. This NBW is complete and
accepts the language {aω, abω}.

s0

m

s1 s2m
1 m

1

1
3

2
3

(a)

s0

s1 s2

s1 s2

...
...

(b)

Figure 2 (a) An MDP with initial state s0. The set of labels is {a, b} and the labelling function
for the MDP is as follows: ℓ(s0) = ℓ(s1) = a, ℓ(s2) = b. The labels are indicated by different
colours. Since each state has only one available action m, the MDP is actually an MC. There are
two end-components in this MDP labelled with the two dashed boxes. (b) The tree that stems from
unravelling of the MC with initial state s0 on the left, while disregarding probabilities.

of the complete word as a nondeterministic automaton normally would without changing
their language. They can be characterised in many ways, including as automata that simulate
deterministic automata. The NBW in Figure 1 is neither GFG nor good-for-MDPs (GFM)
as shown later.

2.2 Markov Decision Processes (MDPs)
A (finite, state-labelled) Markov decision process (MDP) is a tuple ⟨S, Act, P, Σ, ℓ⟩ consisting
of a finite set S of states, a finite set Act of actions, a partial function P : S × Act 7→ Distr(S)
denoting the probabilistic transition and a labelling function ℓ : S → Σ. The set of available
actions in a state s is Act(s) = {m ∈ Act | P(s, m) is defined}. An MDP is a (labelled)
Markov chain (MC) if |Act(s)| = 1 for all s ∈ S.

An infinite run (path) of an MDP M is a sequence s0m1 . . . ∈ (S × Act)ω such that
P(si, mi+1) is defined and P(si, mi+1)(si+1) > 0 for all i ≥ 0. A finite run is a finite
such sequence. Let Ω(M) (Paths(M)) denote the set of (finite) runs in M and Ω(M)s

(Paths(M)s) denote the set of (finite) runs in M starting from s. Abusing the notation
slightly, for an infinite run r = s0m1s1m2 . . . we write ℓ(r) = ℓ(s0)ℓ(s1) . . . ∈ Σω.

A strategy for an MDP is a function µ : Paths(M) → Distr(Act) that, given a finite
run r, returns a probability distribution on all the available actions at the last state of r. A
memoryless (positional) strategy for an MDP is a function µ : S → Distr(Act) that, given a

CONCUR 2023

35:4 Deciding What Is Good-For-MDPs

s0, q0
(m, q1) (m, q2)

s1, q1
(m, q1)

1

s2, q1
(m, q3)

s2, q3
(m, q3)

1

s1, q2
(m, q3)

s1, q3
(m, q3)

1

s2, q2
(m, q2)

1

1
3

2
31

1
3

2
3

1

Figure 3 An example of a product MDP M × N with initial state (s0, q0) and F × =
{(s1, q1), (s2, q1), (s1, q2), (s2, q2)} where M is the MDP (MC) in Figure 2(a) and N is the NBW
in Figure 1. The states (s0, q0), (s1, q1), (s1, q2) and (s1, q3) are labelled with a while all the other
states are labelled with b. Again, the four end-components of the MDP are labelled with dashed
boxes; the upper left and lower right end-components are accepting (highlighted in thick dashed
boxes).

state s, returns a probability distribution on all the available actions at that state. The set
of runs Ω(M)µ

s is a subset of Ω(M)s that correspond to strategy µ and initial state s. Given
a memoryless/finite-memory strategy µ for M, an MC (M)µ is induced [3, Section 10.6].

A sub-MDP of M is an MDP M′ = ⟨S′, Act′, P′, Σ, ℓ′⟩, where S′ ⊆ S, Act′ ⊆ Act is such
that Act′(s) ⊆ Act(s) for every s ∈ S′, and P′ and ℓ′ are analogous to P and ℓ when restricted
to S′ and Act′. In particular, M′ is closed under probabilistic transitions, i.e. for all s ∈ S′

and m ∈ Act′ we have that P′(s, m)(s′) > 0 implies that s′ ∈ S′. An end-component [1, 3] of
an MDP M is a sub-MDP M′ of M such that its underlying graph is strongly connected
and it has no outgoing transitions. An example MDP is presented in Figure 2(a).

A strategy µ and an initial state s ∈ S induce a standard probability measure on sets of
infinite runs, see, e.g., [3]. Such measurable sets of infinite runs are called events or objectives.
We write Prµ

s for the probability of an event E ⊆ sSω of runs starting from s.

▶ Theorem 1 (End-Component Properties [1, 3]). Once an end-component E of an MDP is
entered, there is a strategy that visits every state-action combination in E with probability
1 and stays in E forever. Moreover, for every strategy the union of the end-components is
visited with probability 1.

2.3 The Product of MDPs and Automata
Given an MDP M = ⟨S, Act, P, Σ, ℓ⟩ with initial state s0 ∈ S and an NBW N =
⟨Σ, Q, δ, q0, F ⟩, we want to compute an optimal strategy satisfying the objective that the
run of M is in the language of N . We define the semantic satisfaction probability for
N and a strategy µ from state s ∈ S as: PSemM

N (s, µ) = Prµ
s {r ∈ Ωµ

s : ℓ(r) ∈ L(N)}
and PSemM

N (s) = supµ

(
PSemM

N (s, µ)
)
. In the case that M is an MC, we simply have

PSemM
N (s) = Prs{r ∈ Ωs : ℓ(r) ∈ L(N)}.

The product of M and N is an MDP M×N = ⟨S×Q, Act×Q, P×, Σ, ℓ×⟩ augmented with
the initial state (s0, q0) and the Büchi acceptance condition F × = {(s, q) ∈ S × Q | q ∈ F}.
The labelling function ℓ× maps each state (s, q) ∈ S × Q to ℓ(s).

We define the partial function P× : (S × Q) × (Act × Q) 7→ Distr(S × Q) as follows: for all
(s, m) ∈ support(P), s′ ∈ S and q, q′ ∈ Q, we have P×(

(s, q), (m, q′)
)(

(s′, q′)
)

= P(s, m)(s′)
for all q′ ∈ δ(q, ℓ(s))1.

1 When N is complete, there always exists a state q′ such that q′ ∈ δ(q, ℓ(s)).

S. Schewe, Q. Tang, and T. Zhanabekova 35:5

We define the syntactic satisfaction probability for the product MDP and a strategy
µ× from a state (s, q) as: PSynM

N
(
(s, q), µ×)

= Prµ×

s,q {r ∈ Ωµ×

s,q : ℓ×(r) ∈ L(N)}2 and
PSynM

N (s) = supµ×(PSynM
N

(
(s, q0), µ×)

)
. The set of actions is Act in the MDP M while it

is Act × Q in the product MDP. This makes PSem and PSyn potentially different. In general,
PSynM

N (s) ≤ PSemM
N (s) for all s ∈ S, because accepting runs can only occur on accepted

words. If N is deterministic, PSynM
N (s) = PSemM

N (s) holds for all s ∈ S.
End-components and runs are defined for products just like for MDPs. A run of M × N

is accepting if it satisfies the product’s acceptance condition. An accepting end-component
of M × N is an end-component which contains some states in F ×.

An example of a product MDP is presented in Figure 3. It is the product of the MDP in
Figure 2(a) and the NBW in Figure 1. Since ℓ(r) is in the language of the NBW for every
run r of the MDP, we have PSemM

N (s0) = 1. However, the syntactic satisfaction probability
PSynM

N (s0) = 2
3 is witnessed by the memoryless strategy which chooses the action (m, q2) at

the initial state. We do not need to specify the strategy for the other states since there is
only one available action for any remaining state. According to the following definition, the
NBW in Figure 1 is not GFM as witnessed by the MDP in Figure 2(a).

▶ Definition 2 ([9]). An NBW N is good-for-MDPs (GFM) if, for all finite MDPs M with
initial state s0, PSynM

N (s0) = PSemM
N (s0) holds.

3 PSPACE-Hardness

We show that the problem of checking whether or not a given NBW is GFM is PSPACE-
hard. The reduction is from the NFA universality problem, which is known to be PSPACE-
complete [18]. Given an NFA A, the NFA universality problem asks whether A accepts every
string, that is, whether L(A) = Σ∗.

We first give an overview of how this reduction works. Given a complete NFA A, we first
construct an NBW Af (Definition 4) which can be shown to be GFM (Lemma 6). Using
this NBW Af , we then construct another NBW fork(Af) (Definition 7). We complete the
argument by showing in Lemma 8 that the NBW fork(Af) is GFM if, and only if, A accepts
the universal language.

We start with the small observation that “for all finite MDPs” in Definition 2 can be
replaced by “for all finite MCs”.

▶ Theorem 3. An NBW N is GFM iff, for all finite MCs M with initial state s0,
PSynM

N (s0) = PSemM
N (s0) holds.

Proof.
“if”: This is the case because there is an optimal finite memory control for an MDP M,

e.g. by using a language equivalent DPW P [13] and using its memory structure as finite
memory. That is, we obtain an MC M′ by applying an optimal memoryless strategy for
M × P [4]. Naturally, if N satisfies the condition for M′, then it also satisfies it for M.

“only if”: MCs are just special cases of MDPs. ◀

Given a complete NFA A, we construct an NBW Af by introducing a new letter $ and a
new state. As an example, given an NFA (DFA) B in Figure 4(a), we obtain an NBW Bf in
Figure 4(b). It is easy to see that L(B) = Σ∗ where Σ = {a, b}.

2 Let inf(r) be the set of states that appears infinite often in a run r. We also have PSynM
N ((s, q), µ×) =

Prµ×

s,q{r ∈ Ωµ×

s,q : inf(r) ∩ F × ̸= ∅}.

CONCUR 2023

35:6 Deciding What Is Good-For-MDPs

q0 a, b

(a) A universal NFA B

q′
0 f ′

a, b $

$

a, b

(b) An NBW Bf

Figure 4 (a) B is a complete universal NFA. Let Σ = {a, b}. We have L(A) = Σ∗. (b) On the
right is the corresponding complete NBW Bf . The new final state f and the added transitions are
highlighted in red. We have L(Bf) = {w1$w2$w3$. . .} where wi ∈ Σ∗.

▶ Definition 4. Given a complete NFA A = (Σ, Q, q0, δ, F), we define the NBW Af =
(Σ$, Qf , q0, δf , {f}) with Σ$ = Σ ∪ {$} and Qf = Q ∪ {f} for a fresh letter $ /∈ Σ and a
fresh state f /∈ Q, and with δf (q, σ) = δ(q, σ) for all q ∈ Q and σ ∈ Σ, δf (q, $) = {f} for all
q ∈ F , δf (q, $) = {q0} for all q ∈ Q \ F , and δf (f, σ) = δf (q0, σ) for all σ ∈ Σ$.

The language of Af consists of all words of the form w1$w′
1$w2$w′

2$w3$w′
3$. . . such that,

for all i ∈ N, wi ∈ Σ$
∗ and w′

i ∈ L(A). This provides the following lemma.

▶ Lemma 5. Given two NFAs A and B, L(B) ⊆ L(A) if, and only if, L(Bf) ⊆ L(Af).

The following lemma simply states that the automaton Af from the above construction
is GFM. This lemma is technical and is key to prove Lemma 8, the main lemma, of this
section.

▶ Lemma 6. For every complete NFA A, Af is GFM.

Proof. Consider an arbitrary MC M with initial state s0. We show that Af is good for M,
that is, PSemM

Af
(s0) = PSynM

Af
(s0). It suffices to show PSynM

Af
(s0) ≥ PSemM

Af
(s0) since by

definition the converse PSemM
Af

(s0) ≥ PSynM
Af

(s0) always holds.
First, we construct a language equivalent deterministic Büchi automaton (DBW) Df

by first determinising the NFA A to a DFA D by a standard subset construction and then
obtain Df by Definition 4. Since L(Af) = L(Df), we have that PSemM

Af
(s0) = PSemM

Df
(s0).

In addition, since Df is deterministic, we have PSemM
Df

(s0) = PSynM
Df

(s0).
It remains to show PSynM

Af
(s0) ≥ PSynM

Df
(s0). For that, it suffices to show that for

an arbitrary accepting run r of M × Df , there is a strategy for M × Af such that r′ (the
corresponding run in the product) is accepting in M × Af where the projections of r and r′

on M are the same.
Consider an accepting run of M × Df . Before entering an accepting end-component of

M × Df , any strategy to resolve the nondeterminism in M × Af (thus Af) can be used.
This will not block Af , as it is a complete automaton, and Af is essentially re-set whenever
it reads a $. Once an accepting end-component of M × Df is entered, there must exist a
word of the form w, where w ∈ L(D) (and thus w ∈ L(A)), which is a possible initial
sequence of letters produced from some state m of M × Df in this end-component. We fix
such a word w; such a state m of the end-component in M × Df from which this word
w can be produced; and strategy of the NBW Af to follow the word w$ from q0 (and f)
to the accepting state f . (Note that the first $ always leads to q0 or f .)

In an accepting end-component we can be in two modes: tracking, or not tracking. If
we are not tracking and reach m, we start to track w: we use Af to reach an accepting
state after reading w (ignoring what happens in any other case) with the strategy we have

S. Schewe, Q. Tang, and T. Zhanabekova 35:7

qF

qA qB

q0 q′
0 f ′

a, b $

$

a, b

Af Bf

a, b, $ a, b, $

a, b, $ $

Figure 5 Given a complete NFA A, an NBW
Af and an NBW fork(Af) are constructed. In
this example, Σ = {a, b} and Σ$ = {a, b, $}.
From the state qA (resp. qB), the NBW fork(Af)
transitions to the initial state of Af (resp. Bf).

s0

s1 s2

generate wa·$
repeatedly with
probability one

generate wb·$
repeatedly with
probability one

1
2

1
2

1
2 1

2

1
21

2

Figure 6 An example MC in the proof of
Lemma 8. Assume Σ$ = {a, b, $}. The labelling
of the MC is as follows: ℓ(s0) = ℓ(s1) = a and
ℓ(s2) = $.

fixed. Note that, after reading the first $, we are in either q0 or f , such that, when starting
from m, it is always possible, with a fixed probability p > 0, to read w, and thus to accept.
If we read an unexpected letter (where the “expected” letter is always the next letter from
w) or the end of the word w is reached, we move to not tracking.

The automata choices when not tracking can be resolved arbitrarily.
Once in an accepting end-component of M × Df , tracking is almost surely started

infinitely often, and it is thus almost surely successful infinitely often. Thus, we have
PSynM

Af
(s0) ≥ PSynM

Df
(s0). ◀

Let B be an universal NFA in Figure 4(a) and Bf = (Σ$, Q′
f , q′

0, δ′
f , {f ′}) be the NBW

in Figure 4(b). Assume without loss of generality that the state space of Af , Bf , and
{qF , qA, qB} are pairwise disjoint. We now define the fork operation. An example of how to
construct an NBW fork(Af) is shown in Figure 5.

▶ Definition 7. Given an NBW Af = (Σ$, Qf , q0, δf , {f}), we define the NBW fork(Af) =
(Σ$, QF , qF , δF , {f, f ′}) with

QF = Qf ∪ Q′
f ′ ∪ {qF , qA, qB};

δF (q, σ) = δf (q, σ) for all q ∈ Qf and σ ∈ Σ$;
δF (q, σ) = δf ′(q, σ) for all q ∈ Q′

f ′ and σ ∈ Σ$;
δF (qF , σ) = {qA, qB} for all σ ∈ Σ$;
δF (qA, σ) = {q0} for all σ ∈ Σ$;
δF (qB, $) = {q′

0}, and δF (qB, σ) = ∅ for all σ ∈ Σ.

Following from Lemma 5 and Lemma 6, we have:

▶ Lemma 8. The NBW fork(Af) is GFM if, and only if, L(A) = Σ∗.

Proof. We first observe that L
(
fork(Af)

)
= {σσ′w | σ, σ′ ∈ Σ$, w ∈ L(Af)} ∪ {σ$w | σ ∈

Σ$, w ∈ L(Bf)}.

CONCUR 2023

35:8 Deciding What Is Good-For-MDPs

“if”: When L(A) = Σ∗ = L(B) holds, Lemma 5 provides {σσ′w | σ, σ′ ∈ Σ$, w ∈ L(Af)} ⊃
{σ$w | σ ∈ Σ$, w ∈ L(Bf)}, and therefore L(fork(Af)) = {σσ′w | σ, σ′ ∈ Σ$, w ∈
L(Af)}.
As Af is GFM by Lemma 6, this provides the GFM strategy “move first to qA, then to
q0, and henceforth follow the GFM strategy of Af for fork(Af)”. Thus, fork(Af) is GFM
in this case.

“only if”: Assume L(A) ̸= Σ∗ = L(B), that is, L(A) ⊂ L(B). There must exist words
wa ∈ L(A) and wb ∈ L(B) \ L(A). We now construct an MC which witnesses that
fork(Af) is not GFM.

The MC emits an a at the first step and then either an a or a $ with a chance of 1
2 at the

second step. An example is provided in Figure 6.
After these two letters, it then moves to one of two cycles (independent of the first two

chosen letters) with equal chance of 1
2 ; one of these cycles repeats a word wa·$ infinitely

often, while the other repeats a word wb·$ infinitely often, where wa ∈ L(A).
It is easy to see that the semantic chance of acceptance is 3

4 – failing if, and only if, the
second letter is a and the word wb$ is subsequently repeated infinitely often – whereas the
syntactic chance of satisfaction is 1

2 : when the automaton first moves to qA, it accepts if,
and only if, the word wa$ is later repeated infinitely often, which happens with a chance
of 1

2 ; when the automaton first moves to qB, it will reject when $ is not the second letter,
which happens with a chance of 1

2 . ◀

It follows from Lemma 8 that the NFA universality problem is polynomial-time reducible
to the problem of whether or not a given NBW is GFM.

▶ Theorem 9. The problem of whether or not a given NBW is GFM is PSPACE-hard.

Using the same construction of Definition 4, we can show that the problem of minimising
a GFM NBW is PSPACE-hard. The reduction is from a problem which is similar to the NFA
universality problem.

▶ Theorem 10. Given a GFM NBW and a bound k, the problem whether there is a language
equivalent GFM NBW with at most k states is PSPACE-hard. It is PSPACE-hard even for
(fixed) k = 2.

Proof. Using the construction of Definition 4, PSPACE-hardness follows from a reduction
from the problem whether a nonempty complete NFA accepts all nonempty words. The
latter problem is PSPACE-complete, following the PSPACE-completeness of the universality
problem of (general) NFAs [18].

The reduction works because, for a nonempty complete NFA A the following hold:
(a) A GFM NBW equivalent to Af must have at least 2 states, one final and one nonfinal.

This is because it needs a final state (as some word is accepted) as well as a nonfinal one
(words that contain finitely many $s are rejected).

(b) For a 2-state minimal GFM NBW equivalent to Af , there cannot be a word w ∈ Σ+

that goes from the final state back to it as this would produce an accepting run with
finitely many $s (as there is some accepting run). Therefore, when starting from the
final state, any finite word can only go to the nonfinal state and stay there or block. But
blocking is no option, as there is an accepted continuation to an infinite word. Thus, all
letters in Σ lead from either state to the nonfinal state (only).

In order for a word starting with a letter in Σ to be accepted, there must therefore be a $
transition from the nonfinal to the final state.

These two points imply that for a nonempty complete NFA A such that there is a 2-state
GFM NBW equivalent to Af iff A accepts all nonempty words. ◀

S. Schewe, Q. Tang, and T. Zhanabekova 35:9

C TC T̃C UC Uw
C Up

C U ′
C DC

dualise &
complement

strategy
explicit

widen prune Υ
free

determinise

G TG DG Dw
G Dp

G D′
G

strategy
explicit

widen prune

L(C) = L(G),
G GFM

Υ
free

would be 2-EXPTIME
L(T̃C) ∩ L(TG) ?= ∅ L(DC) ∩ L(D′

G) ?= ∅
overall EXPTIME

Figure 7 Flowchart of the algorithms. The first algorithm is in 2-EXPTIME, which is to check
the nonemptiness of the intersection of T̃C and TG . The second algorithm is in EXPTIME, which
is to check the nonemptiness of the intersection of DC and D′

G . The steps that have exponential
blow-up are highlighted in red.

4 Decision Procedure for Qualitative GFM

In this section, we first define the notion of qualitative GFM (QGFM) and then provide an
EXPTIME procedure that decides QGFM-ness.

The definition of QGFM is similar to GFM but we only need to consider MCs with which
the semantic chance of success is one:

▶ Definition 11. An NBW N is qualitative good-for-MDPs (QGFM) if, for all finite MDPs
M with initial state s0 and PSemM

N (s0) = 1, PSynM
N (s0) = 1 holds.

Similar to Theorem 3, we can also replace “MDPs” by “MCs” in the definiton of QGFM:

▶ Theorem 12. An NBW N is QGFM iff, for all finite MCs M with initial state s0 and
PSemM

N (s0) = 1, PSynM
N (s0) = 1 holds.

To decide QGFM-ness, we make use of the well known fact that qualitative acceptance,
such as PSemM

N (s0) = 1, does not depend on the probabilities for an MC M. This can, for
example, be seen by considering the syntactic product PSynM

D (s0) = 1 with a deterministic
parity automaton D (for a deterministic automaton, PSemM

D (s0) = PSynM
D (s0) trivially

holds), where changing the probabilities does not change the end-components of the product
MC M × D, and the acceptance of these end-components is solely determined by the
highest colour of the states (or transitions) occurring in it, and thus also independent of the
probabilities: the probability is 1 if, and only if, an accepting end-component can be reached
almost surely, which is also independent of the probabilities. As a result, we can search for
the (regular) tree that stems from the unravelling of an MC, while disregarding probabilities.
See Figure 2(b) for an example of such a tree.

This observation has been used in the synthesis of probabilistic systems before [15]. The
set of directions (of a tree) Υ could then, for example, be chosen to be the set of states of
the unravelled finite MC; this would not normally be a full tree.

In the following, we show an exponential-time algorithm to decide whether a given NBW
is QGFM or not. This procedure involves transformations of tree automata with different
acceptance conditions. Because this is quite technical, we only provide an outline in the
main paper. More notations (Section A.1) and details of the constructions (Section A.2) are
provided in the full version [16].

For a given candidate NBW C, we first construct a language equivalent NBW G that
we know to be GFM, such as the slim automaton from [9] or a suitable limit deterministic
automaton [21, 6, 7, 17, 8]. For all known constructions, G can be exponentially larger than
C. We use the slim automata from [9]; they have O(3|Q|) states and transitions.

CONCUR 2023

35:10 Deciding What Is Good-For-MDPs

We then construct a number of tree automata as outlined in Figure 7. In a first
construction, we discuss in the full version [16] how to build, for an NBW N , a (symmetric)
alternating Büchi tree automaton (ABS) TN that accepts (the unravelling of) an MC (without
probabilities, as discussed above) M if, and only if, the syntactic product of N and M
almost surely accepts. This construction is used twice: once to produce TG for the GFM
automaton G we have constructed, and once to produce TC for our candidate automaton
C. Since G is QGFM, TG accepts all the MCs M that almost surely produce a run in L(G)
(which is the same as L(C)), that is, PSemM

G (s0) = PSemM
C (s0) = 1.

Therefore, to check whether or not our candidate NBW C is QGFM, we can test language
equivalence of TC and TG , e.g. by first complementing TC to T̃C and then checking whether or
not L(T̃C) ∩ L(TG) = ∅ holds: the MCs in the intersection of the languages witness that C
is not QGFM. Thus, C is QGFM if, and only if, these languages do not intersect, that is,
L(T̃C) ∩ L(TG) = ∅. This construction leads to a 2-EXPTIME procedure for deciding QGFM:
we get the size of the larger automaton (G) and the complexity of the smaller automaton
C. The purpose of the following delicate construction is to contain the exponential cost
to the syntactic material of the smaller automaton, while still obtaining the required level
of entanglement between the structures and retaining the size advantage from the GFM
property of G.

Starting from T̃C, we make a few transformations by mainly controlling the number of
directions the alternating tree automaton needs to consider and the set of decisions player
accept 3 has to make. This restricts the scope in such a way that the resulting intersection
might shrink, but cannot become empty4.

We rein in the number of directions in two steps: in a first step, we increase the number
of directions by widening the run tree with one more direction than the size of the state space
of the candidate automaton C. The larger amount of directions allows us to concurrently
untangle the decisions of player accept within and between T̃C and TG , which intuitively
creates one distinguished direction for each state q of T̃C used by player accept, and one
(different) distinguished direction for TG . In a second step, we only keep these directions,
resulting in an automaton with a fixed branching degree (just one bigger than the size of the
state space of C), which is easy to analyse with standard techniques.

The standard techniques mean to first make the remaining choices of player accept in T̃C
explicit, which turns it into a universal co-Büchi automaton (UC). The automaton is then
simplified to the universal co-Büchi automaton U ′

C which can easily be determinised to a
deterministic parity automaton DC .

For TG , a sequence of similar transformations are made; however, as we do not need to
complement here, the automaton obtained from making the decisions explicit is already
deterministic, which saves the exponential blow-up obtained in the determinisation of a
universal automaton (determinising U ′

C to DC).
Therefore, DC and D′

G can both be constructed from C in time exponential in C, and
checking their intersection for emptiness can be done in time exponential in C, too. With
that, we obtain the membership in EXPTIME for QGFM-ness:

▶ Theorem 13. The problem of whether or not a given NBW is QGFM is in EXPTIME.

3 The acceptance of a tree by a tree automaton can be viewed as the outcome of a game played by player
accept and player reject. We refer to the full version [16] for details.

4 It can be empty to start with, of course, and will stay empty in that case. But if the intersection is not
empty, then these operations will leave something in the language.

S. Schewe, Q. Tang, and T. Zhanabekova 35:11

5 Membership in EXPTIME for GFM

In this section, we start out with showing a sufficient (Lemma 14) and necessary (Lemma 15)
criterion for a candidate NBW to be GFM in Section 5.1.

We show in Section 5.2 that this criterion is also sufficient and necessary for QGFM-ness.
This implies that GFM-ness and QGFM-ness collapse, so that the EXPTIME decision
procedure from Section 4 can be used to decide GFM-ness, and the PSPACE hardness from
Section 3 extends to QGFM.

5.1 Key Criterion for GFM-ness

In order to establish a necessary and sufficient criterion for GFM-ness, we construct two
safety automata5 S and T .

Given a candidate NBW C, we define some notions for the states and transitions. We
say a state q of C is productive if L(Cq) ̸= ∅ where Cq is the automaton obtained from C by
making q the initial state. A state q of the NBW C is called QGFM if the automaton Cq

is QGFM. A transition (q, σ, r) is called residual if L(Cr) = σ−1L(Cq) [11, 2]. In general,
L(Cr) ⊆ σ−1L(Cq) holds. See Figure 1 for an example of non-residual transitions. Selecting
either of the two transitions from q0 will lose language: when selecting the transition to the
left, the word a · bω is no longer accepted. Likewise, when selecting the transition to the right,
the word aω is no longer accepted. Thus, this automaton cannot make the decision to choose
the left or the right transition, and neither (q0, a, q1) nor (q0, a, q2) is a residual transition.

Now we are ready to define S and T . In the NBW S, we include the states from the
candidate NBW C that are productive and QGFM at the same time. We only include
the residual transitions (in C) between those states. In the NBW T , we include only the
productive states of C and the transitions between them. We then make both S and T safety
automata by marking all states final. We first show that the criterion, L(S) = L(T) and S
is GFG6, is sufficient for C to be GFM. Similar to the proof of Lemma 6, to show the NBW
C is GFM, we show there exists a strategy for C such that the syntactic and semantic chance
of winning are the same for any MC.

▶ Lemma 14. If L(S) = L(T) and S is GFG, then the candidate NBW C is GFM.

Proof. As T contains all states and transitions from S, L(S) ⊆ L(T) always holds. We
assume that L(S) ⊇ L(T) holds and S is GFG.

By Theorem 3, to show C is GFM, it suffices to show that C is good for an arbitrary MC
M with initial state s0. We first determinise C to a DPW D [13]. Since D is deterministic
and L(D) = L(C), we have PSynM

D (s0) = PSemM
D (s0) = PSemM

C (s0). Since PSemM
C (s0) ≥

PSynM
C (s0) always holds, we establish the equivalence of syntactic and semantic chance of

winning for M × C by proving PSynM
C (s0) ≥ PSynM

D (s0) = PSemM
C (s0).

For that, we show for an arbitrary accepting run r of M × D, there is a strategy for
M × C such that r′ (the corresponding run in the product) is accepting in M × C where the
projections of r and r′ on M are the same.

5 A safety automaton is one where all states are final. These automata can be viewed as NFAs where
convenient.

6 GFG as a general property is tricky, but S is a safety automaton, and GFG safety automata are, for
example, determinisable by pruning, and the property whether or not a safety automaton is GFG can
be checked in polynomial time [5].

CONCUR 2023

35:12 Deciding What Is Good-For-MDPs

MΣ

sa sb

sq
0 st

0

Mq Mt

1
4

1
4

1
4 1

4

1
4

1
4

1
4

1
4

Figure 8 An example MC in the proof of Lemma 15. In this example, Σ = {a, b}. Also, the state
q of the candidate NBW C is the only state that is not QGFM and the transition t of the NBW C is
the only non-residual transition. We have ℓ(sa) = a and ℓ(sb) = b. The states sa and sb and the
transitions between them form MΣ.

We define the strategy for M × C depending on whether an accepting end-component of
M × D has been entered. Since r is accepting, it must enter an accepting end-component
of M × D eventually. Let the run r be (s0, qD

0)(s1, qD
1) · · · and it enters the accepting

end-component on reaching the state (sn, qD
n). Before r enters an accepting end-component

of M × D, C follows the GFG strategy for S to stay within the states that are productive
and QGFM. Upon reaching an accepting end-component of M × D, the run r is in state
(sn, qD

n), assume the run for M × C is in state (sn, qC
n) at this point. We then use the QGFM

strategy of CqC
n

from here since qC
n is QGFM.

We briefly explain why this strategy for M × C would lead to PSynM
C (s0) ≥ PSynM

D (s0).
Since (sn, qD

n) is in the accepting end-component of M × D, we have PSemM
D

qD
n

(sn) =

PSynM
D

qD
n

(sn) = 1 by Theorem 1. We show PSemM
C

qC
n

(sn) = 1 so that PSynM
C

qC
n

(sn) =

PSemM
C

qC
n

(sn) = 1 as qC
n is QGFM. For that, it suffices to show L(CqC

n
) = L(DqD

n
) = w−1L(C)

where w = ℓ(s0s1 · · · sn−1). This can be proved by induction in [16] over the length of the
prefix of words from L(S). ◀

In order to show that this requirement is also necessary, we build an MC witnessing that
C is not GFM in case the criterion is not satisfied. An example MC is given in Figure 8. We
produce the MC by parts. It has a central part denoted by MΣ. The state space of MΣ
is SΣ where SΣ = {sσ | σ ∈ Σ}. Each state sσ is labelled with σ and there is a transition
between every state pair.

For every state q that is not QGFM, we construct an MC Mq = ⟨Sq, Pq, Σ, ℓq⟩ from
Section 4 witnessing that Cq is not QGFM, that is, from a designated initial state sq

0,
PSynMq

Cq
(sq

0) ̸= PSemMq

Cq
(sq

0) = 1, and for every non-residual transition t = (q, σ, r) that
is not in S due to L(Cr) ̸= σ−1L(Cq), we construct an MC Mt = ⟨St, Pt, Σ, ℓt⟩ such that,
from an initial state st

0, there is only one ultimately periodic word wt produced, such that
wt ∈ σ−1L(Cq) \ L(Cr).

Finally, we produce an MC M, whose states are the disjoint union of the MCs MΣ, Mq

and Mt from above. The labelling and transitions within the MCs Mq and Mt are preserved
while, from the states in SΣ, M also transitions to all initial states of the individual Mq

and Mt from above. It remains to specify the probabilities for the transitions from SΣ: any
state in SΣ transitions to its successors uniformly at random.

▶ Lemma 15. If L(S) ̸= L(T) or S is not GFG, the candidate NBW C is not GFM.

S. Schewe, Q. Tang, and T. Zhanabekova 35:13

M′
Σ

sa, p sb, p

Mp,a Mp,b

· · ·

sq
0 st

0

Mq

· · ·
Mt

· · ·

Figure 9 An illustration of the MC in the proof of Lemma 16. In this example, we have Σ = {a, b}.
The new central part M′

Σ is obtained by removing the states that have no outgoing transitions in
the cross product of MΣ and D′. For the states (sa, p) and (sb, p) of M′

Σ, we have ℓ
(
(sa, p)

)
= a

and ℓ
(
(sb, p)

)
= b. For each state (sσ, p) of the central part, we construct an MC Mp,σ using D′.

There is a transition from each state (sσ, p) of M′
Σ to the initial state of Mp,σ. The MCs Mq and

Mt are as before. Whether there is a transition from a state from M′
Σ to the MCs Mq and Mt is

determined by the overestimation provided by D′.

Proof. Assume L(S) ̸= L(T). There must exist a word w = σ0, σ1, . . . ∈ L(T) \ L(S).
Let us use M with initial state sσ0 as the MC which witnesses that C is not GFM. We first

build the product MDP M×C. There is a non-zero chance that, no matter how the choices of C
(thus, the product MDP M×C) are resolved, a state sequence (sσ0 , q0), (sσ1 , q1), . . . , (sσk

, qk)
with k ≥ 0 is seen, and C selects a successor q such that (qk, σk, q) is not a transition in S.

For the case that this is because Cq is not QGFM, we observe that there is a non-zero
chance that the product MDP moves to (sq

0, q), such that PSynM
C (sσ0) < PSemM

C (sσ0)
follows.

For the other case that this is because the transition t = (qk, σk, q) is non-residual, that
is, L(Cq) ̸= σk

−1L(Cqk
), we observe that there is a non-zero chance that the product MDP

moves to (st
0, q), such that PSynM

C (sσ0) < PSemM
C (sσ0) follows.

For the case that S is not GFG, no matter how the nondeterminism of C is resolved, there
must be a shortest word w = σ0, . . . , σk (k ≥ 0) such that w is a prefix of a word in L(S),
but the selected control leaves S. For this word, we can argue in the same way as above. ◀

Lemma 14 and Lemma 15 suggest that GFM-ness of a NBW can be decided in EXPTIME
by checking whether the criterion holds or not. However, as shown in the next section that
QGFM = GFM, we can apply the EXPTIME procedure from Section 5 to check QGFM-ness,
and thus, GFM-ness.

5.2 QGFM = GFM
To show that QGFM = GFM, we show that the same criterion from the previous section
is also sufficient and necessary for QGFM. By definition, if an NBW is GFM then it is
QGFM. Thus, the sufficiency of the criterion follows from Lemma 14. We are left to show the
necessity of the criterion. To do that, we build an MC M′ witnessing that C is not QGFM
in case the criterion of Lemma 15 is not satisfied. We sketch in Figure 9 the construction of
M′.

The principle difference between the MC M′ constructed in this section and M from
the previous section is that the new MC M′ needs to satisfy that PSemM′

C (s0) = 1 (s0 is
the initial state of M′), while still forcing the candidate NBW C to make decisions that lose
probability of success, leading to PSynM′

C (s0) < 1. This makes the construction of M′ more
complex, but establishes that qualitative and full GFM are equivalent properties.

CONCUR 2023

35:14 Deciding What Is Good-For-MDPs

The MC will also be constructed by parts and it has a central part. It will also have the
MCs Mq for each non QGFM state q and Mt for each non-residual transition t from the
previous section. We now describe the three potential problems of M of the previous section
and the possible remedies.

The first potential problem is in the central part as it might contain prefixes that cannot
be extended to words in L(C). Such prefixes should be excluded. This can be addressed
by building a cross product with a deterministic safety automaton that recognises all the
prefixes of L(C) (the safety hull of the language of C) and removing the states that have no
outgoing transitions in the product.

The second problem is caused by the transitions to all MCs Mq and Mt from every state
in the central part. This can, however, be avoided by including another safety automaton in
the product that tracks, which of these transitions could be used by our candidate NBW C at
the moment, and only using those transitions. Note that this retains all transitions used in
the proof to establish a difference between PSemM′

C (s0) and PSynM′

C (s0) while guaranteeing
that the semantic probability of winning after progressing to Mq or Mt is 1.

Removing the transitions to some of the Mq and Mt can potentially create a third
problem, namely that no transitions to Mq and Mt are left so that there is no way leaving
the central part of the MC. To address this problem, we can create a new MC for each state
in the central part so that a word starting from the initial state of the MC can always be
extended to an accepting word in L(C) by transitioning to this new MC. How such MCs can
be constructed is detailed later.

Zooming in on the construction, the MC M should satisfy that all the finite runs that
start from an initial state s0, before transitioning to Mq or Mt, can be extended to a word
in the language of C are retained. The language of all such initial sequences is a safety
language, and it is easy to construct an automaton that (1) recognises this safety language
and (2) retains the knowledge of how to complete each word in the language of C. To create
this automaton, we first determinise C to a deterministic parity word automaton D [13]. We
then remove all non-productive states from D and mark all states final, yielding the safety
automaton7 D′.

The two automata D′ and D can be used to address all the problems we have identified.
To address the first problem, we build a cross product MC of MΣ (the central part of M in
last section) and D′. We then remove all the states in the product MC without any outgoing
transitions and make the resulting MC the new central part denoted by M′

Σ. Every state in
M′

Σ is of the form (sσ, p) where sσ ∈ SΣ is from MΣ and p ∈ D′.
The states of the deterministic automaton D (and thus those of D′) also provide informa-

tion about the possible states of C that could be after the prefix we have seen so far. To
address the second problem, we use this information to overestimate whether C could be in
some state q, or use a transition t, which in turn is good enough for deciding whether or not
to transition to the initial states of Mq resp. Mt from every state of the new central part.

To address the third problem, we build, for every state p of D′ and every letter σ ∈ Σ
such that σ can be extended to an accepted word from state p, an MC Mp,σ that produces
a single ω-regular word (sometimes referred to as lasso word) wp,σ with probability 1. The
word σ·wp,σ will be accepted from state p (or: by Dp). From every state (sσ, p) of the central
part, there is a transition to the initial state of Mp,σ.

7 From every state p in D′, we can construct an extension to an accepted word by picking an accepted
lasso path through D that starts from p. Note that D′ is not complete, but every state has some
successor.

S. Schewe, Q. Tang, and T. Zhanabekova 35:15

The final MC transitions uniformly at random, from a state (sσ, p) in M′
Σ, to one of its

successor states, which comprise the initial state of Mp,σ and the initial states of some of
the individual MCs Mq and Mt.

▶ Lemma 16. If L(S) ̸= L(T) or S is not GFG, the candidate NBW C is not QGFM.

Proof. The proof of the difference in the probability of winning in case L(S) ̸= L(T) or in
case S is not GFG are the same as in Lemma 15.

We additionally have to show that PSemM′

C (s0) = 1. But this is easily provided by the
construction: when we move on to some Mp,σ, Mq, or Mt, we have sure, almost sure, and
sure satisfaction, respectively, of the property by construction, while staying for ever in the
central part of the new MC happens with probability 0. ◀

By definition, if a candidate NBW C is GFM, it is QGFM. Together with Lemma 14 and
Lemma 16, we have that L(S) = L(T) and S is GFG iff the candidate NBW C is QGFM.
Thus, we have

▶ Theorem 17. The candidate NBW C is GFM if, and only if, C is QGFM.

By Theorem 13 and Theorem 17, we have:

▶ Corollary 18. The problem of whether or not a given NBW is GFM is in EXPTIME.

Likewise, by Theorem 9, Theorem 10, and Theorem 17, we have:

▶ Corollary 19. The problem of whether or not a given NBW is QGFM is PSPACE-hard.
Given a QGFM NBW and a bound k, the problem whether there is a language equivalent
QGFM NBW with at most k states is PSPACE-hard. It is PSPACE-hard even for (fixed)
k = 2.

6 Discussion

We have started out with introducing the prima facie simpler auxiliary concept of qualitative
GFM-ness.

We have then established that deciding GFM-ness is PSPACE-hard by a reduction from
the NFA universality problem and developed an algorithm for checking qualitative GFM-ness
in EXPTIME.

We then closed with first characterising GFM-ness with a heavy use of QGFM-ness
tests, only to find that this characterisation also proves to be a necessary requirement for
QGFM-ness, which led to a collapse of the qualitative and full GFM-ness. The hardness
results for GFM-ness therefore carry over to QGFM-ness, while the decision procedure for
QGFM-ness proves to be a decision procedure for GFM-ness by itself.

References
1 Luca Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford University,

Stanford, CA, USA, 1998.
2 Marc Bagnol and Denis Kuperberg. Büchi good-for-games automata are efficiently recognizable.

In FSTTCS, 2018.
3 Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press, 2008.
4 Andrea Bianco and Luca de Alfaro. Model checking of probabalistic and nondeterministic

systems. In P. S. Thiagarajan, editor, Foundations of Software Technology and Theoretical
Computer Science, 15th Conference, Bangalore, India, December 18-20, 1995, Proceedings,
volume 1026 of Lecture Notes in Computer Science, pages 499–513. Springer, 1995.

CONCUR 2023

35:16 Deciding What Is Good-For-MDPs

5 Thomas Colcombet. Forms of determinism for automata (invited talk). In Christoph Dürr and
Thomas Wilke, editors, 29th International Symposium on Theoretical Aspects of Computer
Science, STACS 2012, February 29th – March 3rd, 2012, Paris, France, volume 14 of LIPIcs,
pages 1–23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2012.

6 Costas Courcoubetis and Mihalis Yannakakis. The complexity of probabilistic verification. J.
ACM, 42(4):857–907, July 1995.

7 Ernst Moritz Hahn, Guangyuan Li, Sven Schewe, Andrea Turrini, and Lijun Zhang. Lazy
probabilistic model checking without determinisation. In Concurrency Theory, pages 354–367,
2015.

8 Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi, and Dominik
Wojtczak. Omega-regular objectives in model-free reinforcement learning. In Tomáš Vojnar
and Lijun Zhang, editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 395–412, Cham, 2019. Springer International Publishing.

9 Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi, and Dominik
Wojtczak. Good-for-MDPs automata for probabilistic analysis and reinforcement learning.
In Armin Biere and David Parker, editors, Tools and Algorithms for the Construction and
Analysis of Systems, pages 306–323, Cham, 2020. Springer International Publishing.

10 Thomas A. Henzinger and Nir Piterman. Solving games without determinization. In Computer
Science Logic, pages 394–409, September 2006. LNCS 4207.

11 Denis Kuperberg and Michał Skrzypczak. On determinisation of good-for-games automata.
In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors,
Automata, Languages, and Programming, pages 299–310, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg.

12 Dominique Perrin and Jean-Éric Pin. Infinite Words: Automata, Semigroups, Logic and
Games. Elsevier, 2004.

13 Nir Piterman. From Nondeterministic Büchi and Streett Automata to Deterministic Parity
Automata. Log. Methods Comput. Sci., 3(3), 2007.

14 Amir Pnueli. The temporal logic of programs. In IEEE Symposium on Foundations of
Computer Science, pages 46–57, 1977.

15 Sven Schewe. Synthesis for probabilistic environments. In 4th International Symposium on
Automated Technology for Verification and Analysis (ATVA 2006), pages 245–259. Springer
Verlag, 2006.

16 Sven Schewe, Qiyi Tang, and Tansholpan Zhanabekova. Deciding what is good-for-mdps, 2023.
arXiv:2202.07629.

17 Salomon Sickert, Javier Esparza, Stefan Jaax, and Jan Křetínský. Limit-deterministic Büchi
automata for linear temporal logic. In Computer Aided Verification, pages 312–332, 2016.
LNCS 9780.

18 Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time:
Preliminary report. In Alfred V. Aho, Allan Borodin, Robert L. Constable, Robert W. Floyd,
Michael A. Harrison, Richard M. Karp, and H. Raymond Strong, editors, Proceedings of the
5th Annual ACM Symposium on Theory of Computing, April 30 – May 2, 1973, Austin, Texas,
USA, pages 1–9. ACM, 1973.

19 Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT
Press, second edition, 2018.

20 Wolfgang Thomas. Handbook of Theoretical Computer Science, chapter Automata on Infinite
Objects, pages 133–191. The MIT Press/Elsevier, 1990.

21 Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite state programs. In
Foundations of Computer Science, pages 327–338, 1985.

https://arxiv.org/abs/2202.07629

	1 Introduction
	2 Preliminaries
	2.1 Automata
	2.2 Markov Decision Processes (MDPs)
	2.3 The Product of MDPs and Automata

	3 PSPACE-Hardness
	4 Decision Procedure for Qualitative GFM
	5 Membership in EXPTIME for GFM
	5.1 Key Criterion for GFM-ness
	5.2 QGFM = GFM

	6 Discussion

