
Priority Downward Closures
Ashwani Anand #

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Georg Zetzsche #

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Abstract
When a system sends messages through a lossy channel, then the language encoding all sequences of
messages can be abstracted by its downward closure, i.e. the set of all (not necessarily contiguous)
subwords. This is useful because even if the system has infinitely many states, its downward closure
is a regular language. However, if the channel has congestion control based on priorities assigned
to the messages, then we need a finer abstraction: The downward closure with respect to the
priority embedding. As for subword-based downward closures, one can also show that these priority
downward closures are always regular.

While computing finite automata for the subword-based downward closure is well understood,
nothing is known in the case of priorities. We initiate the study of this problem and provide
algorithms to compute priority downward closures for regular languages, one-counter languages, and
context-free languages.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases downward closure, priority order, pushdown automata, non-deterministic
finite automata, abstraction, computability

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2023.39

Related Version Some formal proofs and details can be found in the full version of the paper.
Full Version: https://arxiv.org/abs/2307.07460 [2]

Funding Funded by the European Union (ERC, FINABIS, 101077902). Views and opinions expressed
are however those of the author(s) only and do not necessarily reflect those of the European Union
or the European Research Council Executive Agency. Neither the European Union nor the granting
authority can be held responsible for them.

Acknowledgements The authors are grateful to Yousef Shakiba for discussions on the block downward
closure of regular languages.

1 Introduction

When analyzing infinite-state systems, it is often possible to replace individual components by
an overapproximation based on (subword) downward closures. Here, the (subword) downward
closure of a language L ⊆ Σ∗ is the set of all words that appear as (not necessarily contiguous)
subwords of members of L. This overapproximation is usually possible because the verified
properties are not changed when we allow additional behaviors resulting from subwords.
Furthermore, this overapproximation simplifies the system because a well-known result by
Haines is that for every language L ⊆ Σ∗, its subword downward closure is regular.

This idea has been successfully applied to many verification tasks, such as the verification of
restricted lossy channel systems [1], concurrent programs with dynamic thread spawning and
bounded context-switching [3, 7], asynchronous programs (safety, termination, liveness [22],
but also context-free refinement verification [8]), the analysis of thread pools [9], and safety
of parameterized asynchronous shared-memory systems [25]. For these reasons, there has
been a substantial amount of interest in algorithms to compute finite automata for subword
downward closures of given infinite-state sytems [4–6,12–14,17,18,26–30].

© Ashwani Anand and Georg Zetzsche;
licensed under Creative Commons License CC-BY 4.0

34th International Conference on Concurrency Theory (CONCUR 2023).
Editors: Guillermo A. Pérez and Jean-François Raskin; Article No. 39; pp. 39:1–39:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ashwani@mpi-sws.org
mailto:georg@mpi-sws.org
https://orcid.org/0000-0002-6421-4388
https://doi.org/10.4230/LIPIcs.CONCUR.2023.39
https://arxiv.org/abs/2307.07460
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Priority Downward Closures

One situation where downward closures are useful is that of systems that send messages
through a lossy channel, meaning that every message can be lost on the way. Then clearly,
the downward closure of the set of sequences of messages is exactly the set of sequences
observed by the receiver. This works as long as all messages can be dropped arbitrarily.

Priorities. However, if the messages are not dropped arbitrarily but as part of congestion
control, then taking the set of all subwords would be too coarse an abstraction: Suppose we
want to prioritize critical messages that can only be dropped if there are no lower-priority
messages in the channel. For example, RFC 2475 describes an architecture that allows
specifying relative priority among the IP packets from a finite set of priorities and allows the
network links to drop lower priority packets to accommodate higher priority ones when the
congestion in the network reaches a critical point [11]. As another example, in networks with
an Asynchronous Transfer Mode layer, cells carry a priority in order to give preferences to
audio or video packages over less time-critical packages [21]. In these situations, the subword
downward closure would introduce behaviors that are not actually possible in the system.

To formally capture the effect of dropping messages by priorities, Haase, Schmitz and
Schnoebelen [16] introduced Priority Channel Systems (PCS). These feature an ordering on
words (i.e. channel contents), called the Prioritised Superseding Order (PSO), which allows
the messages to have an assigned priority, such that higher priority messages can supersede
lower priority ones. This order indeed allows the messages to be treated discriminatively, but
the superseding is asymmetric. A message can be superseded only if there is a higher priority
letter coming in the channel later. This means, PSO are the “priority counterpart” of the
subword order for channels with priorities. In particular, in these systems, components can
be abstracted by their priority downward closure, the downward closure with respect to the
PSO. Fortunately, just as for subwords, priority downward closures are also always regular.

This raises the question of whether it is possible to compute finite automata for the
priority downward closure for given infinite-state systems. For example, consider a recursive
program that sends messages into a lossy channel with congestion control. Then, the set
of possible message sequences that can arrive is exactly the priority downward closure S↓P
of the language S of sent messages. Since S is context-free in this case, we would like to
compute a finite automaton for S↓P. While this problem is well-understood for subwords,
nothing is known for priority downward closures.

Contribution. We initiate the study of computing priority downward closures. We show two
main results. On the one hand, we study the setting above – computing priority downward
closures of context-free languages. Here, we show that one can compute a doubly-exponential-
sized automaton for its priority downward closure. On the other hand, we consider a natural
restriction of context-free languages: We show that for one-counter automata, there is a
polynomial-time algorithm to compute the priority downward closure.

Key technical ingredients. The first step is to consider a related order on words, which we
call block order, which also has priorities assigned to letters, but imposes them more sym-
metrically. Moreover, we show that under mild assumptions, computing priority downward
closures reduces to computing block downward closures.

Both our constructions – for one-counter automata and context-free languages – require
new ideas. For one-counter automata, we modify the subword-based downward closures
construction from [4] in a non-obvious way to block downward closures. Crucially, our
modification relies on the insight that, in some word, repeating existing factors will always

A. Anand and G. Zetzsche 39:3

yield a word that is larger in the block order. For context-free languages, we present a novel
inductive approach: We decompose the input language into finitely many languages with
fewer priority levels and apply the construction recursively.

Outline of the paper. We fix notation in Section 2 and introduce the block order and show
its relationship to the priority order in Section 3. In Sections 4–6, we then present methods
for computing block and priority downward closures for regular languages, one-counter
languages, and context-free languages, respectively.

2 Preliminaries

We will use the convention that [i, j] denotes the set {i, i + 1, . . . , j}. By Σ, we represent
a finite alphabet. Σ∗ (Σ+) denotes the set of (non-empty) words over Σ. When defining
the priority order, we will equip Σ with a set of priorities with total order (P,⋖), i.e. there
exists a fixed priority mapping from Σ to P. The set of priority will be the set of integers
[0, d], with the canonical total order. By sets Σ=p (p ∈ P), we denote the set of letters in Σ
with priority p. For priority p ∈ P, Σ≤p = Σ=0 ∪ · · · ∪ Σ=p, i.e. the set of letters smaller
than or equal to p. For a word w = a0a1 · · · ak, where ai ∈ Σ, by w[i, j], we denote the infix
aiai+1 · · · aj−1aj , and by w[i], we denote ai.

Finite automata and regular languages. A non-deterministic finite state automaton (NFA)
is a tuple A = (Q,Σ, δ, q0, F), where Q is a finite set of states, Σ is its input alphabet, δ is its
set of edges i.e. a finite subset of Q× Σ ∪ {ϵ} ×Q, q0 ∈ Q is its initial state, and F ⊆ Q is
its set of final states. A word is accepted by A if it has a run from the initial state ending
in a final state. The language recognized by an NFA A is called a regular language, and is
denoted by L(A). The size of a NFA, denoted by |A|, is the number of states in the NFA.

(Well-)quasi-orders. A quasi-order, denoted as (X,≤), is a set X with a reflexive and
transitive relation ≤ on X. If x ≤ y (or equivalently, y ≥ x), we say that x is smaller than
y, or y is greater than x. If ≤ is also anti-symmetric, then it is called a partial order. If
every pair of elements in X is comparable by ≤, then it is called a total or linear order.
Let (X,≤1) and (Y,≤2) be two quasi orders, and h : X → Y be a function. We call h a
monomorphism if it is one-to-one and x1 ≤1 x2 ⇐⇒ h(x1) ≤2 h(x2).

A quasi order (X,≤) is called a well-quasi order (WQO), if any infinite sequence of
elements x0, x1, x2, . . . from X contains an increasing pair xi ≤ xj with i < j. If X is the set
of words over some alphabet, then a WQO (X,≤) is called multiplicative if ∀u, u′, v, v′ ∈ X,
u ≤ u′ and v ≤ v′ imply that uv ≤ u′v′.

Subwords. For u, v ∈ Σ∗, we say u ≼ v, which we refer to as subword order, if u is a subword
(not necessarily, contiguous) of v, i.e. if

u = u1u2 · · ·uk

and, v = v0u1v1u2v2 · · · vk−1ukvk

where ui ∈ Σ and vi ∈ Σ∗. In simpler words, u ≼ v if some letters of v can be dropped to
obtain u. For example, let Σ = [0, 1]. Then, 0 ≼ 00 ≼ 010 ̸≼ 110; 0 and 00 can be obtained
by dropping letters from 00 and 010, respectively. But 010 cannot be obtained from 110,
as the latter does not have sufficiently many 0s. If u ≼ v, we say that u is subword smaller
than v, or simply that u is a subword of v. And we call a mapping from the positions in u to
positions in v that witnesses u ≼ v as the witness position mapping.

CONCUR 2023

39:4 Priority Downward Closures

Since Σ is a WQO with the equality order, by Higman’s lemma, Σ∗ is a WQO with the
subword order. It is in fact a multiplicative WQO: if u ≼ u′ and v ≼ v′, then dropping the
same letters from u′v′ gives us uv.

Priority order. We take an alphabet Σ with priorities totally ordered by ⋖. We say u ≼P v,
which we refer to as priority order, if u = ϵ or,

u = u1u2 · · ·uk

and, v = v1u1v2u2 · · · vkuk,

such that ∀i ∈ [1, k], ui ∈ Σ and vi ∈ Σ∗
≤ui

. It is easy to observe that the priority order is
multiplicative, and is finer than the subword order, i.e. ∀u, v ∈ Σ∗, u ≼P v =⇒ u ≼ v. As
shown in [16, Theorem 3.6], the priority order on words over a finite alphabet with priorities
is a well-quasi ordering:

▶ Lemma 2.1. (Σ∗,≼P) is a WQO.

Downward closure. We define the subword downward closure and priority downward closure
for a language L ⊆ Σ∗ as follows:

L↓ := {u ∈ Σ∗ | ∃ v ∈ L : u ≼ v}, L↓P := {u ∈ Σ∗ | ∃ v ∈ L : u ≼P v}.

The following is the starting point for our investigation: It shows that for every language
L, there exist finite automata for its downward closures w.r.t. ≼ and ≼P.

▶ Lemma 2.2. Every subword downward closed sets and every priority downward closed set
is regular.

For the subword order, this was shown by Haines [19]. The same idea applies to the priority
ordering: A downward closed set is the complement of an upward closed set. Therefore, and
since every upward closed set in a well-quasi ordering has finitely many minimal elements, it
suffices to show that the set of all words above a single word is a regular language. This,
in turn, is shown using a simple automaton construction. In the full version, we prove an
analogue of this for the block ordering (Lemma 3.5).

We stress that Lemma 2.2 is not effective: It does not guarantee that finite automata
for downward closures can be computed for any given language. In fact, there are language
classes for which they are not computable, such as reachability sets of lossy channel systems
and Church-Rosser languages [15, 23]. Therefore, our focus will be on the question of how to
effectively compute automata for priority downward closures.

3 The Block Order

We first define the block order formally and then give the intuition behind the definition.
Let Σ be a finite alphabet, and P = [0, d] be a set of priorities with a total order ⋖. Then
for u, v ∈ Σ∗, where maximum priority occurring among u and v is p, we say u ≼B v, if

i. if u, v ∈ Σ∗
=p, and u ≼ v, or

ii. if
u = u0x0u1x1 · · ·xn−1un

and, v = v0y0v1y1 · · · ym−1vm

where x0, . . . xn−1, y0, . . . , ym−1 ∈ Σ=p, and for all i ∈ [0, n], we have ui, vi ∈ Σ∗
≤p−1 (the

ui and vi are called sub-p blocks), and there exists a strictly monotonically increasing
map ϕ : [0, n]→ [0,m], which we call the witness block map, such that

A. Anand and G. Zetzsche 39:5

a. ui ≼B vϕ(i), ∀i,
b. ϕ(0) = 0,
c. ϕ(n) = m, and
d. xi ≼ vϕ(i)yϕ(i)vϕ(i)+1 · · · vϕ(i+1), ∀i ∈ [0, n− 1].

Intuitively, we say that u is block smaller than v, if either
both words have letters of same priority, and u is a subword of v, or,
the largest priority occurring in both words is p. Then we split both words along the
priority p letters, to obtain sequences of sub-p blocks of words, which have words of
strictly less priority. Then by item iia, we embed the sub-p blocks of u to those of v, such
that they are recursively block smaller. Then with items iib and iic, we ensure that the
first (and last) sub-p block of u is embedded in the first (resp., last) sub-p block of v. We
will see later that this constraint allows the order to be multiplicative. Finally, by item
iid, we ensure that the letters of priority p in u are preserved in v, i.e. every xi indeed
occurs between the embeddings of the sub-p block ui and ui+1.

▶ Example 3.1. Consider the alphabet Σ = {0a, 0b, 1a, 1b, 2a, 2b} with priority set P = [0, 2]
and Σ=i = {ia, ib}. In the following examples, the color helps to identify the largest priority
occurring in the words. First, notice that ϵ ≼B 0a ≼B 0a0b, and hence

1b0a ≼B 0a1b0a0a1a0a0b, but 1b0a ̸≼B 0a1b0a0a1a0b0b.

This is because 0a ̸≼B 0b0b, i.e. the last sub-1 block of the former word cannot be mapped to
the last sub-1 block of the latter word. As another example, we have

2a1b0a ≼B 0a2a0a1b0a0a1a0a0b, but 2a1b0a ̸≼B 0a2b0a1b0a0a1a0a0b.

This is because 2a does not exist in the latter word, violating item iid. Finally, notice that

1a1b ̸≼B 1a2a1b, (1)

because the sub-2 block 1a1b would have to be mapped to a single sub-2 block in the
right-hand word; but none of them can accomodate 1a1b.

Note that by items iid and iia, we have that u ≼B v =⇒ u ≼ v, for all u, v ∈ Σ∗. Then
there exists a position mapping ρ from [0, |u|] to [0, |v|] such that u[i] = v[ρ(i)], for all i. We
say that a position mapping respects block order if for all i, v[ρ(i), ρ(i+ 1)] contains letters of
priorities smaller than u[i] and u[i+ 1]. It is easy to observe that if u ≼B v, then there exists
a position mapping from u to v respecting the block order. The following is a straightforward
repeated application of Higman’s Lemma [20] (see the full version).

▶ Theorem 3.2. (Σ∗,≼B) is a WQO.

In fact, the block order is multiplicative, i.e. for all u, v, u′, v′ ∈ Σ∗ such that u ≼B u′

and v ≼B v
′, it holds that uv ≼B u

′v′.

▶ Lemma 3.3. (Σ∗,≼B) is a multiplicative WQO.

Proof. For singleton P , the result trivially holds because it coincides with the subword order.
Let (Σ∗

≤p−1,≼B) be multiplicative. Now we show that (Σ∗
≤p,≼B) is multiplicative. To this

end, let u ≼B u
′, v ≼B v

′, and ϕ, ψ be the witnessing block maps respectively. We assume

u = u0x0u1x1u2x2 · · ·xk−1uk

v = v0y0v1y1v2y2 · · · yl−1vl

u′ = u′
0x

′
0u

′
1x

′
1u

′
2x

′
2 · · ·x′

k−1u
′
k′

v′ = v′
0y

′
0v

′
1y

′
1v

′
2y

′
2 · · · y′

l−1v
′
l′

CONCUR 2023

39:6 Priority Downward Closures

where xi, yi, x
′
i, y

′
i ∈ Σ=p. Consider the function δ : [0, k + l − 1]→ [0, k′ + l′ − 1] with

i 7→

{
ϕ(i), if 1 ≤ i ≤ k
ψ(i− k + 1), if k < i ≤ k + l − 1

Since the kth sub-p block of u and the 1st sub-p block of v combines in uv to form one sub-p
block, we have k + l− 1 sub-p blocks. Similarly, u′v′ has k′ + l′ − 1 sub-p blocks. And hence
ukv1 ≼B u

′
k′v′

1, by induction hypothesis. The recursive embedding is obvious for other sub-p
blocks. We also have that δ(0) = 0 and δ(k + l − 1) = k′ + l′ − 1. By monotonicity of ϕ and
ψ, δ is also strictly monotonically increasing. Hence, δ witnesses uv ≼B u

′v′. ◀

Pumping. In the subword ordering, an often applied property is that for any words u, v, w,
we have uw ≼ uvw, i.e. inserting any word leads to a superword. This is not true for the
block ordering, as we saw in Example 3.1, (1). However, one of our key observations about
the block order is the following property: If the word we insert is just a repetition of an
existing factor, then this yields a larger word in the block ordering. This will be crucial for
our downward closure construction for one-counter automata in Section 5.

▶ Lemma 3.4 (Pumping Lemma). For any u, v, w ∈ Σ∗, we have uvw ≼B uvvw.

Before we prove Lemma 3.4, let us note that by applying Lemma 3.4 multiple times, this
implies that we can also repeat multiple factors. For instance, if w = w1w2w3w4w5, then
w ≼B w1w

2
2w3w

3
4w5. Figure 1 shows an example on how to choose the witness block map.

Proof. We proceed by induction on the number of priorities. If there is just a single priority
(i.e. P = {0}), then ≼B coincides with ≼ and the statement is trivial. Let us assume the
lemma is established for words with up to n priorities. We distinguish two cases.

Suppose v contains only letters of priorities [0, n]. Then repeating v means repeating a
factor inside a sub-(n + 1) block, which is a word with priorities in [0, n]. Hence, the
statement follows by induction: Formally, this means we can use the embedding mapping
that sends block i of uvw to block i of uvvw.
Suppose v contains a letter of priority n+1. write v = v0x1v1 · · ·xmvm, where x1, . . . , xm

are the letters of priority n+ 1 in v and v0, . . . , vm are the sub-(n+ 1) blocks of v. Then:

uvw = uv0x1v1 · · ·xmvmw, uvvw = uv0x1v1 · · ·xm vmv0x1v1 · · ·xm︸ ︷︷ ︸
skipped

vmw

The idea is simple: Our witness block map just skips the m sub-(n + 1) blocks inside
of vmv0x1 · · · vm−1xm. Thus, the sub-(n+ 1) blocks in uv0x1 · · · vm−1xm are mapped to
the same blocks in uv0x1 · · · vm−1xm, and the sub-(n+ 1) blocks in vmw are mapped to
the same blocks in vmw. This is clearly a valid witness block map, since the first (resp.
last) sub-(n+ 1) block is mapped to the first (resp. last), and each sub-(n+ 1) block is
mapped to an identical sub-(n+ 1) block. ◀

Regular downward closures. As for ≼ and ≼P, we define L↓B = {u ∈ Σ∗ | ∃v ∈ L : u ≼B v}
for any L ⊆ Σ∗.

▶ Lemma 3.5. For every L ⊆ Σ∗, L↓B is a regular language.

For the proof of Lemma 3.5, one can argue as mentioned above: The complement Σ∗\(L↓B)
of L↓B is upward closed. And since ≼B is a WQO, Σ∗ \ (L↓B) has finitely many minimal
elements. It thus remains to show that for each word w ∈ Σ∗, the set of words ≼B-larger
than w is regular, which is a simple exercise. Details can be found in the full version.

A. Anand and G. Zetzsche 39:7

w′ = 1 2 0 1 0 1 2 1 1 2 1 1 2 1 1 2 1 0

w = 1 2 0 1 2 1 1 2 1 0

Figure 1 Here Σ = [0, 2], P = [0, 2], and Ai = {i}, w = 12(01)21(121)0 and w′ = 12(01)221(121)30.
The repeated segments are marked in red, and the arrows denote the witness block map.

Block order vs. priority order. We will later see (Theorem 4.4) that under mild conditions,
computing priority downward closures reduces to computing block downward closures. The
following lemma is the main technical ingredient in this: It shows that the block order refines
the priority order on words that end in the same letter, assuming the alphabet has a certain
shape. A priority alphabet (Σ,P) with P = [1, d] is called flat if |Σ=i| = 1 for each i ∈ [1, d].

▶ Lemma 3.6. If Σ is flat and u, v ∈ Σ∗a for some a ∈ Σ, then u ≼B v implies u ≼P v.

Proof. Since u ≼B v, there exists a witness position mapping ρ that maps the positions
of the letters in u to that of v, such that it respects the block order, and it maps the last
position of u to the last of v.

Let u = u0u1 · · ·uk. We say that a position mapping violates the priority order at position
i (for i ∈ [0, k − 1]), if v[ρ(i) + 1, ρ(i+ 1)] has a letter of priority higher than that of u[i+ 1].
Note that if ρ does not violate the priority order at any position, then u ≼P v.

Let i be the largest position at which ρ violates the priority order, i.e. v[ρ(i) + 1, ρ(i+ 1)]
has a letter of priority higher than that of u[i + 1]. We show that if ρ respects the block
order till position i, there exists another witness position mapping ρ′ that respects the block
order till position i− 1, and has one few position of violation (i.e. no violation at position i).

We first observe that u[i] > u[i + 1], which holds since ρ respects the block order till
position i, implying that v[ρ(i) + 1, ρ(i+ 1)] does not have a letter of priority higher than
min{u[i], u[i+ 1]}, and if u[i] ≤ u[i+ 1], ρ does not violate the priority order at i.

Then observe that v[ρ(i) + 1, ρ(i + 1)] does not have a letter with priority p, where
u[i] > p > u[i + 1], otherwise the sub-u[i] block of u immediately after u[i], can not be
embedded to that of v immediately after v[ρ(i)], since it would have to be split along p, and
the first sub-p block in v will not be mapped to any in u. Then v[ρ(i) + 1, ρ(i+ 1)] has letter
of priority u[i] (for a violation at i). Then consider the mapping ρ′ that maps i to the last
u[i] letter in v[ρ(i) + 1, ρ(i+ 1)] (say at v[j] for some j, ρ(i) + 1 ≤ j ≤ ρ(i+ 1)).

This mapping respects the block order till position i− 1, trivially, as we do not change
the mapping before i. We show that there is no priority order violation at position i. This
holds because the only larger priority letter occurring in v[ρ(i) + 1, ρ(i+ 1)] was u[i], and
due to the definition of ρ′, v[ρ′(i) + 1, ρ′(i+ 1)] has no letter of priority higher than u[i+ 1].
Since we do not change the mapping after position i, ρ′ does not introduce a violation at
any position after i. Hence we have a new position mapping that has one few position of
priority order violation. ◀

▶ Remark 3.7. We want to stress that the flatness assumption in Lemma 3.6 is crucial:
Consider the alphabet Σ from the Example 3.1. Then 1a0a ≼B 1a1b0a, but 1a0a ̸≼P 1a1b0a.
Here only one position mapping exists, and it is not possible to remap 1a to 1b since they
are two distinct letters of same priority. Hence, we need to assume that each priority greater
than zero has at most one letter.

CONCUR 2023

39:8 Priority Downward Closures

4 Regular Languages

In this section, we show how to construct an NFA for the block downward closure of a regular
language. To this end, we show that both orders are rational transductions.

Rational transductions. A finite state transducer is a tuple A = (Q,X, Y,E, q0, F), where
Q is a finite set of states, X and Y are input and output alphabets, respectively, E is the
set of edges i.e. finite subset of Q×X∗ × Y ∗ ×Q, q0 ∈ Q is the initial state, and F ⊆ Q is
the set of final states. A configuration of A is a triple (q, u, v) ∈ Q ×X∗ × Y ∗. We write
(q, u, v)→A (q′, u′, v′), if there is an edge (q, x, y, q′) with u′ = ux and v′ = vy. If there is an
edge (q, x, y, q′), we sometimes denote this fact by q (x,y)−−−→A q′, and say “read x at q, output
y, and goto q′”. The size of a transducer, denoted by |A|, is the number of its states.

A transduction is a subset of X∗ × Y ∗ for some finite alphabets X,Y . The transduction
defined by A is T (A) = {(u, v) ∈ X∗ × Y ∗ | (q0, ϵ, ϵ) →∗

A (f, u, v) for some f ∈ F}. A
transduction is called rational if it is defined by some finite-state transducer. Sometimes we
abuse the notation and output a regular language R ⊆ Y ∗ on an edge, instead of a letter. It
should be noted that this abuse is equivalent to original definition of finite state transducers.

We say that a language class C is closed under rational transductions if for each language
L ∈ C, and each rational transduction R ⊆ X∗ × Y ∗, the language obtained by applying the
transduction R to L, RL def= {v ∈ Y ∗ | (u, v) ∈ R for some u ∈ L} also belongs to C. We
call such language classes full trio. Regular languages, context-free languages, recursively
enumerable languages are some examples of full trios [10].

Transducers for orders. It is well-known that the subword order is a rational transduction,
i.e. the relation T = {(u, v) ∈ X∗ ×X∗ | v ≼ u} is defined by a finite-state transducer. For
example, it can be defined by a one-state transducer that can non-deterministically decide to
output or drop each letter. Note that on applying the transduction to any language, it gives
the subword downward closure of the language. This means, for every L ⊆ X∗, we have
TL = L↓. We will now describe analogous transducers for the priority and block order.

▶ Theorem 4.1. Given a priority alphabet with priorities [0, k], one can construct in
polynomial time a transducer for ≼B and a transducer for ≼P, each of size O(k).

Proof. The transducers for the block and priority order are similar. Intuitively, both
remember the maximum of the priorities dropped or to be dropped, and keep or drop the
coming letters accordingly. We show the transducer for the priority order here since it is
applied in Theorem 4.4. The transducer for the block order is detailed in the full version.

Let Σ be a finite alphabet, with priorities P = [0, k]. Consider the transducer that has
one state for every priority, a non-final sink state, and a distinguished final state. If the
transducer is in the state for priority r and reads a letter a of priority s, then

if s < r, then it outputs nothing and stays in state r,
if s ≥ r, then it can output nothing, and go to state s,
if s ≥ r, it can also output a, and go to state 0, or the accepting state non-deterministically,
for any other scenario, goes to the sink state.

The priority 0 state is the initial state. Intuitively, the transducer remembers the largest
priority letter that has been dropped, and keeps only a letter of higher priority later. To be
accepting, it has to read the last letter to go to the accepting final state. ◀

The following theorem states that the class of regular languages form a full trio.

A. Anand and G. Zetzsche 39:9

▶ Theorem 4.2 ([24, Corollary 3.5.5]). Given an NFA A and a transducer B, we can construct
in polynomial time an NFA of size |A| · |B| for T (B)(L(A)).

Theorems 4.1 and 4.2 give us a polynomial size NFA recognizing the priority and block
downward closure of a regular language, which is computable in polynomial time as well.

▶ Theorem 4.3. Priority and block downward closures for regular languages are effectively
computable in time polynomial in the number of states in the NFA recognizing the language.

Theorem 4.3 and Lemma 3.6 now allow us to reduce the priority downward closure
computability to computability for block order.

▶ Theorem 4.4. If C is a full trio and we can effectively compute block downward closures
for C, then we can effectively compute priority downward closures.

Proof. The key idea is to reduce priority downward closure computation to the setting where
(i) all words end in the same letter and (ii) the alphabet is flat. Since by Lemma 3.6, on
those languages, the block order is finer than the priority order, computing the block order
will essentially be sufficient.

Let us first establish (i). Let L ∈ C. Then for each a ∈ Σ, the language La = L ∩ Σ∗a

belongs to C. Since L =
⋃

a∈Σ La ∪E and thus L↓P =
⋃

a∈Σ La↓P ∪E, it suffices to compute
priority downward closures for each La, where E = {ϵ} if ϵ ∈ L, else ∅. This means, it suffices
to compute priority downward closures for languages where all words end in the same letter.

To achieve (ii), we make the alphabet flat. We say that (Σ,P ′) is the flattening of
(Σ,P = [0, d]), if P ′ is obtained by choosing a total order to Σ such that if a has smaller
priority than b in (Σ,P), then a has smaller priority than b in (Σ,P ′). (In other words, we
pick an arbitrary linearization of the quasi-order on Σ that expresses “has smaller priority
than”). Then, we assign priorities based on this total ordering. Let ≼flat

B and ≼flat
P denote the

block order and priority order, resp., based on the flat priority assignment. It is a simple
observation that for u, v ∈ Σ∗, we have that u ≼flat

P v implies u ≼P v.
Now observe that for u, v ∈ La, Lemma 3.6 tells us that u ≼flat

B v implies u ≼flat
P v and

therefore also u ≼P v. This implies that (La↓flat
B)↓P = La↓P. By assumption, we can compute

a finite automaton A with L(A) = La↓flat
B . Since then L(A)↓P = (La↓flat

B)↓P = La↓P, we can
compute La↓P by applying Theorem 4.3 to A to compute L(A)↓P = La↓P. ◀

5 One-counter Languages

In this section, we show that for the class of languages accepted by one-counter automata,
which form a full-trio [10, Theorem 4.4], the block and priority downward closures can be
computed in polynomial time. We prove the following theorem.

▶ Theorem 5.1. Given an OCA A, L(A)↓B and L(A)↓P are computable in polynomial time.

Here, the difficulty is that existing downward closure constructions exploit that inserting any
letters in a word yields a super-word. However, for the block order, this might not be true:
Introducing high-priority letters might split a block unintentionally. However, we observe
that the subword closure construction from [4] can be modified so that when constructing
larger runs (to show that our NFA only accepts words in the downward closure), we only
repeat existing factors. Lemma 3.4 then yields that the resulting word is block-larger.

According to Theorem 4.4, it suffices to show that block downward closures are computable
in polynomial time (an inspection of the proof of Theorem 4.4 shows that computing the
priority downward closure only incurs a polynomial overhead).

CONCUR 2023

39:10 Priority Downward Closures

One-counter automata. One-counter automata are finite state automata with a counter
that can be incremented, decremented, or tested for zero. Formally, a one-counter automaton
(OCA) A is a 5-tuple (Q,Σ, δ, q0, F) where Q is a finite set of states, q0 ∈ Q is an initial state,
F ⊆ Q is a set of final states, Σ is a finite alphabet and δ ⊆ Q× (Σ∪{ϵ})×{−1, 0,+1, z}×Q
is a set of transitions. Transitions (p1, a, s, p2) ∈ δ are classified as incrementing (s = +1),
decrementing (s = −1), internal (s = 0), or test for zero(s = z).

A configuration of an OCA is a pair that consists of a state and a (non-negative) counter
value, i.e., (q, n) ∈ Q × N. A sequence π = (p0, c0), t1, (p1, c1), t2, · · · , tm, (pm, cm) where
(pi, ci) ∈ Q× Z, ti ∈ δ and (pi−1, ci−1) ti−→ (pi, ci) is called:

a quasi-run, denoted π = (p0, c0) w=⇒
A

(pm, cm), if none of ti is a test for zero;

a run, denoted π = (p0, c0) w−→A (pm, cm), if all (pi, ci) ∈ Q× N.
For any quasi-run π as above, the sequence of transitions t1, · · · , tm is called a walk from the
state p0 to the state pm. A run (p0, c0) w−→ (pm, cm) is called accepting in A if (p0, c0) = (q0, 0)
where q0 is the initial state of A and pm is a final state of A, i.e. pm ∈ F . In such a case,
the word w is accepted by A.

Simple one-counter automata. As we will show later, computing block downward closures
of OCA easily reduces to the case of simple OCA. A simple OCA (SOCA) is defined
analogously to OCA, with the differences that (i) there are no zero tests, (ii) there is only
one final state, (iii) for acceptance, the final counter value must be zero.

We first show that the block downward closures can be effectively computed for the
simple one-counter automata languages.

▶ Proposition 5.2. Given a simple OCA A, we can compute L(A)↓B in polynomial time.

We present a rough sketch of the construction, full details can be found in the full version.
The starting point of the construction is the one for subwords in [4], but the latter needs to
be modified in a non-obvious way using Lemma 3.4.

Let A = (Q,Σ, δ, q0, qf) be a simple OCA, with |Q| = K. We construct an NFA B that
can simulate A in three different modes. In the first mode, it simulates A until the counter
value reaches K, and when the value reaches K + 1, it switches to the second mode. The
second mode simulates A while the counter value stays below K2 +K + 1. Moreover, and
this is where our construction differs from [4]: if B is in the second mode simulating A in
some state q, then B can spontaneously execute a loop from q to q of A while ignoring
its counter updates. When the counter value in the second mode drops to K again, B
non-deterministically switches to the third mode to simulate A while the counter value stays
below K. Thus, B only needs to track counter values in [0,K2 +K + 1], meaning they can
be stored in its state. We claim that then L(A) ⊆ L(B) ⊆ L(A)↓B.

▶ Lemma 5.3. L(A) ⊆ L(B).

If a word in L(A) has a run with counters bounded by K2 + K + 1, then it trivially
belongs to L(B). If the counters go beyond K2 +K + 1, then with the classical “unpumping”
argument, one can extract two loops, one increasing the counter, one decreasing it. These
loops can then be simulated by the spontaneous loops in the second mode of B.

The more interesting inclusion is the following:

▶ Lemma 5.4. L(B) ⊆ L(A)↓B.

We have to show that each spontaneous loop in B can be justified by padding the run
with further loop executions so as to obtain a run of A. This is possible because to execute
such a spontaneous loop, we must have gone beyond K and later go to zero again. Thus,

A. Anand and G. Zetzsche 39:11

there exists a “pumping up” loop adding, say k ≥ 0 to the counter, and a “pumping down”
loop, subtracting, say ℓ ≥ 0 from the counter. We can therefore repeat all spontaneous loops
so often that their effect – when seen as transitions in A – is a (positive or negative) multiple
M of k · ℓ. Then, we execute the k- and the ℓ-loop so often so as to get the counter values so
high that (i) our repeated spontaneous loops never cross zero and (ii) the effect difference
of the new loops is exactly M . Since in our construction (in contrast to [4]), the padding
only repeated words that already exist in the run of B, Lemma 3.4 implies that the word of B
embeds via the block order.

General OCA. Let us now show how to construct the block downward closure of general
OCAs. Suppose we are given an OCA A. For any two states p, q, consider the simple OCA
Ap,q obtained from A by removing all zero tests, making p initial, and q final. Then L(A)
is the set of words read from (p, 0) to (q, 0) without using zero tests. We now compute for
each p, q a finite automaton Bp,q for the block downward closure of Ap,q. Clearly, we may
assume that Bp,q has exactly one initial state and one final state. Finally, we obtain the
finite automaton B from A as follows: We remove all transitions except the zero tests. Each
zero test from p to q is replaced with an edge p ε−→ q. Moreover, for any states p and q

coming from A, we glue in the automaton Bp,q (by connecting p with Bp,q’s initial state and
connecting Bp,q’s final state with q). Then, since the block order is multiplicative, we have
that L(B) accepts exactly the block downward closure of A.

Futhermore, note that since our construction for simple OCA is polynomial, the general
case is as well: The latter employs the former to |Q|2 simple OCAs.

6 Context-free Languages

The key trick in our construction for OCA was that we could modify the subword construction
so that the overapproximating NFA B has the property that in any word from L(B), we can
repeat factors to obtain a word from A. This was possible because in an OCA, essentially
any pair of loops – one incrementing, one decrementing – could be repeated to pad a run.

However, in context-free languages, the situation is more complicated. With a stack, any
pumping must always ensure that stack contents match: It is not possible to compensate
stack effects with just two loops. In terms of grammars, the core idea for subword closures of
context-free languages L is usually to overapproximate “pump-like” derivations X ∗=⇒ uXv

by observing that – up to subwords – they can generate any u′Xv′ where the letters of u′ can
occur on the left and the letters of v′ can occur on the right in derivations X ∗=⇒ ·X·. Showing

that all such words belong to the downward closure leads to derivations X ∗=⇒ u′′v̄Xv′′ū,

where u′′, v′′ are super-words of u′, v′ such that X ∗=⇒ u′′Xū and X
∗=⇒ v̄Xv′′ can be

derived. The additional infixes could introduce high priority letters and thus split blocks
unintentionally.

Therefore, we provide a novel recursive approach to compute the block downward closure
by decomposing derivations at high-priority letters. This is non-trivial as this decomposition
might not match the decomposition given by derivation trees. Formally, we show:

▶ Theorem 6.1. Given a context-free language L ⊆ Σ∗
≤n, one can construct a doubly-

exponential-sized automaton for L↓B, and thus also for L↓P.

We do not know if this doubly exponential upper bound is optimal. A singly-exponential
lower bound follows from the subword case: It is known that subword downward closures of
context-free languages can require exponentially many states [6]. However, it is not clear
whether for priority or block downward closures, there is a singly-exponential construction.

CONCUR 2023

39:12 Priority Downward Closures

We again note that Theorem 4.4 (and its proof) imply that for Theorem 6.1, it suffices to
compute a finite automaton for the block downward closure of the context-free language:
Computing the priority downward closure then only increases the size polynomially.

Grammars. We present the construction using context-free grammars, which are tuples
G = (N,T, P, S), where N is a finite set of non-terminal letters, T is a finite set of terminal
letters, P is a finite set of productions of the form X → w with X ∈ N and w ∈ (N ∪ T)∗,
and S is the start symbol. For u, v ∈ (N ∪T)∗, we have u⇒ v if there is a production X → w

in P and x, y ∈ (N ∪ T)∗ with u = xXy and v = xwy. The language generated by G, is then
L(G) := {w ∈ T ∗ | S ∗=⇒ w}, where ∗=⇒ is the reflexive, transitive closure of ⇒.

Assumption on the alphabet. In order to compute block downward closures, it suffices
to do this for flat alphabets (see Section 3). The argument is essentially the same as in
Theorem 4.4: By flattening the alphabet as in the proof of Theorem 4.4, we obtain a finer
block order, so that first computing an automaton for the flat alphabet and then applying
Theorem 4.3 to the resulting finite automaton will yield a finite automaton for the original
(non-flat) alphabet. In the following, we will assume that the input grammar G is in Chomsky
normal form, meaning every production is of the form X → Y Z for non-terminals X,Y, Z,
or of the form X → a for a non-terminal X and a terminal a.

Kleene grammars. Suppose we are given a context-free grammar G = (N,Σ, P, S). Roughly
speaking, the idea is to construct another grammar G′ whose language has the same block
downward closure as L(G), but with the additional property that every word can be generated
using a derivation tree that is acyclic, meaning that each path contains every non-terminal at
most once. Of course, if this were literally true, G′ would generate a finite language. Therefore,
we allow a slightly expanded syntax: We allow Kleene stars in context-free productions.

This means, we allow right-hand sides to contain occurrences of B∗, where B is a non-
terminal. The semantics is the obvious one: When applying such a rule, then instead of
inserting B∗, we can generate any Bk with k ≥ 0. We call grammars with such productions
Kleene grammar. A derivation tree in a Kleene grammar is defined as for context-free
grammars, aside from the expected modification: If some B∗ occurs on a right-hand side,
then we allow any (finite) number of B-labeled children in the respective place. Then indeed,
a Kleene grammar can generate infinite sets using acyclic derivation trees. Given a Kleene
grammar H, let acyclic(H) be the set of words generated by H using acyclic derivation trees.

▶ Lemma 6.2. Given a Kleene grammar H, one can construct an exponential-sized finite
automaton accepting acyclic(H).

Proof sketch. The automaton simulates a (say, preorder) traversal of an acyclic derivation
tree of H. This means, its state holds the path to the currently visited node in the derivation
tree. Since every path has length at most |N |, where N is the set of non-terminals of H, the
automaton has at most exponentially many states. ◀

Given Lemma 6.2, for Theorem 6.1, it suffices to construct a Kleene grammar G′ of
exponential size such that acyclic(G′)↓B = L(G)↓B.

A. Anand and G. Zetzsche 39:13

Normal form and grammar size. We will ensure that in the constructed grammars, the
productions are of the form (i) X → w, where w is a word of length ≤ 3 and consisting of
non-terminals Y or Kleene stars Y ∗ or (ii) X → a where a is a terminal. This means, the
total size of the grammar is always polynomial in the number of non-terminals. Therefore,
to analyze the complexity, it will suffice to measure the number of non-terminals.

Highest occurring priorities. Similar to classical downward closure constructions for context-
free languages, we want to overapproximate the set of words generated by “pump derivations”
of the form X

∗=⇒ uXv. Since we are dealing with priorities, we first partition the set of such
derivations according to the highest occurring priorities, on the left and on the right. Thus,
for r, s ∈ [0, p], we will consider all derivations X ∗=⇒ uXv where r is the highest occurring
priority in u and s is the highest occurring priority in v. To ease notation, we define Σmax r to
be the set of words in Σ∗

≤r in which r is the highest occurring priority. Since Σmax r = Σ+
max r,

we will write Σ+
max r to remind us that this is not an alphabet. Notice that for r ∈ [1, p], we

have Σ+
max r = Σ∗

≤rrΣ∗
≤r and Σ+

max 0 = Σ∗
≤0.

Language of ends. In order to perform an inductive construction, we need a way to
transform pairs (u, v) ∈ Σ+

max r × Σ+
max s into words over an alphabet with fewer priorities.

Part of this will be achieved by the end maps ←−τ r(·) and −→τ s(·) as follows. Let Σ̂ be the
priority alphabet obtained from Σ by adding the letters #, ←−# , and −→# as letters with priority
zero. Now for r ∈ [1, p], the function ←−τ r : Σ+

max r → Σ̂∗
≤r−1 is defined as:

←−τ r(w) = u
←−#v, where w = urx1r · · ·xnrv for some n ≥ 0, u, v, x1, . . . , xn ∈ Σ∗

≤r−1.

Thus, ←−τ r(w) is obtained from w by replacing the largest possible infix surrounded by r

with ←−#. For r = 0, it will be convenient to have the constant function ←−τ 0 : Σ+
max 0 → {

←−#}.
Analogously, we define for s ∈ [1, p] the function −→τ s : Σ+

max s → Σ̂∗
≤s−1 by

−→τ s(w) = u
−→#v, where w = usx1s · · ·xnsv for some n ≥ 0, u, v, x1, . . . , xn ∈ Σ∗

≤s−1.

Moreover, we also set −→τ 0 : Σ+
max 0 → {

−→#} to be the constant function yielding −→#.
In particular, for r, s ∈ [1, p], we have ←−τ r(w),−→τ s(w) ∈ Σ̂≤p−1 and thus we have reduced

the number of priorities. Now consider for r, s ∈ [0, p] the language

EX,r,s = {←−τ r(u)#−→τ s(v) | X ∗=⇒ uXv, u ∈ Σ∗
≤rrΣ∗

≤r, v ∈ Σ∗
≤ssΣ∗

≤s}.

For the language EX,r,s, it is easy to construct a context-free grammar:

▶ Lemma 6.3. Given G, a non-terminal X, and r, s ∈ [0, p], one can construct a grammar
EX,r,s for EX,r,s of linear size.

Defining the sets EX,r,s with fresh zero-priority letters #, ←−#, −→# is a key trick in our
construction: Note that each word in EX,r,s is of the form u

←−#v#w−→#x for u, v, w, x ∈ Σ∗
≤p−1.

The segments u, v, w, x come from different blocks of the entire generated word, so applying
the block downward closure construction recursively to EX,r,s must guarantee that these
segments embed as if they were blocks. However, there are only a bounded number of
segments. Thus, we can reduce the number of priorities while retaining the block behavior
by using fresh zero-priority letters. This is formalized in the following lemma:

▶ Lemma 6.4. For u, u′, v, v′ ∈ Σ∗
≤p, we have u#v ≼B u′#v′ iff both (i) u ≼B u′ and

(ii) v ≼B v
′.

CONCUR 2023

39:14 Priority Downward Closures

Language of repeated words. Roughly speaking, the language EX,r,s captures the “ends” of
words derived in derivations X ∗=⇒ uXv with u ∈ Σ+

max r and v ∈ Σ+
max s: On the left, it keeps

everything that is not between two occurrences of r and on the right, it keeps everything
not between two occurrences of s. We now need languages that capture the infixes that can
occur between r’s and s’s, respectively. Intuitively, these are the words that can occur again
and again in words derived from X. There is a “left version” and a “right version”. We set
for r, s ∈ [1, p]:
←−
RX,r,s = {yr | y ∈ Σ∗

≤r−1, ∃x, z ∈ Σ∗
≤r, v ∈ Σ+

max s : X ∗=⇒ xryrzXv}
−→
RX,r,s = {ys | y ∈ Σ∗

≤s−1, ∃u ∈ Σ+
max r, x, z ∈ Σ∗

≤r : X ∗=⇒ uXxsysz}.

The case where one side has highest priority zero must be treated slightly differently: There
are no enveloping occurrences of some r, s ∈ [1, p]. However, we can overapproximate those
words by the set of all words over a particular alphabet. Specifically, for r, s ∈ [0, p], we set
−→
RX,0,s = {a ∈ Σ≤0 | ∃u ∈ Σ+

max 0, v ∈ Σ+
max s : X ∗=⇒ uXv, a occurs in u}

←−
RX,r,0 = {a ∈ Σ≤0 | ∃u ∈ Σ+

max r, v ∈ Σ+
max 0 : X ∗=⇒ uXv, a occurs in v}

▶ Lemma 6.5. Given G, a non-terminal X, and r, s ∈ [0, p], one can construct grammars
←−
RX,r,s, −→RX,r,s for ←−RX,r,s,−→RX,r,s, respectively, of linear size.

Overapproximating derivable words. The languages EX,r,s and ←−RX,r,s and −→RX,r,s now
serve to define overapproximations of the set of (u, v) ∈ Σ+

max r × Σ+
max s with X

∗=⇒ uXv:

One can obtain each such pair by taking a word from EX,r,s, replacing ←−# and −→# , resp., by
words in r

←−
R ∗

X,r,s (←−R ∗
X,0,s if r = 0) and s

−→
R ∗

X,r,s (−→R ∗
X,r,0 if s = 0), respectively. By choosing

the right words from EX,r,s, ←−RX,r,s, and −→RX,r,s, we can thus obtain u#v. However, this
process will also yield other words that cannot be derived. However, the key idea in our
construction is that every word obtainable in this way from EX,r,s, ←−RX,r,s, and −→RX,r,s will
be in the block downward closure of a pair of words derivable using X ∗=⇒ ·X·.

Let us make this precise. To describe the set of words obtained from EX,r,s, ←−RX,r,s,
and −→RX,r,s, we need the notion of a substitution. For alphabets Γ1,Γ2, a substitution
is a map σ : Γ1 → 2Γ∗

2 that yields a language in Γ2 for each letter in Γ1. Given a word
w = w1 · · ·wn with w1, . . . wn ∈ Γ1, we define σ(w) := σ(w1) · · ·σ(wn). Then for K ⊆ Γ∗

1, we
set σ(K) =

⋃
w∈K σ(w). Now let ΣX,r,s : Σ̂≤p → 2Σ̂∗

≤p be the substitution that maps every
letter in Σ≤p ∪{#} to itself (as a singleton) and maps←−# to r←−R ∗

X,r,s and −→# to s−→R ∗
X,r,s. Now

our observation from the previous paragraph can be phrased as:

▶ Lemma 6.6. For every u#v ∈ ΣX,r,s(EX,r,s), there are u′ ∈ Σ+
max r and v′ ∈ Σ+

max s with
u ≼B u

′, v ≼B v
′, and X ∗=⇒ u′Xv′.

Constructing the Kleene grammar. We now construct the Kleene grammar for L(G)↓B

by first computing the grammars EX,r,s, ←−RX,r,s, and −→RX,r,s for each non-terminal X and
each r, s ∈ [1, p]. Then, since EX,r,s, ←−RX,r,s, and −→RX,r,s generate languages with at most
p− 1 priorities, we can call our construction recursively to obtain grammars E ′

X,r,s, ←−R ′
X,r,s,

and −→R ′
X,r,s, respectively. Then, we add all productions of the grammars E ′

X,r,s, ←−R ′
X,r,s, and

A. Anand and G. Zetzsche 39:15

−→
R ′

X,r,s to G′. Moreover, we make the following modifications: Each production of the form
Y →

←−# (resp. Y → −→#) in EX,r,s is replaced with Y → Zr
←−
S ∗

X,r,s (resp. Y → Zs
−→
S ∗

X,r,s),
where ←−S X,r,s (resp. −→S X,r,s) is the start symbol of ←−R ′

X,r,s (resp. −→R ′
X,r,s), and Zr is a fresh

non-terminal used to derive r or ε: We also have Zr → r for each r ∈ [1, p] and Z0 → ε.
Moreover, each production Y → # in E ′

X is removed and replaced with a production Y → w

for each production X → w in G. We call the resulting grammar G′.

Correctness. Let us now observe that the grammar G′ does indeed satisfy L(G′)↓B = L(G)↓B.
The inclusion “⊇” is trivial as G′ is obtained by adding productions. For the converse, we
need some terminology. We say that a derivation tree t1 in G′ is obtained using an expansion
step from t0 if we take an X-labeled node x in t0, where X is a non-terminal from G, and
replace this node by a derivation X ∗=⇒ uwv using newly added productions (i.e. using EX,r,s,
←−
RX,r,s, and −→RX,r,s and some Y → w where X → w was the production applied to x in t0).
Then by construction of G′, any derivation in G′ can be obtained from a derivation in G by
finitely many expansion steps. An induction on the number of expansion steps shows:

▶ Lemma 6.7. We have L(G′)↓B = L(G)↓B.

Acyclic derivations suffice. Now that we have the grammar G′ with L(G′)↓B = L(G)↓B, it
remains to show that every word in G′ can be derived using an acyclic derivation:

▶ Lemma 6.8. acyclic(G′)↓B = L(G)↓B.

Essentially, this is due to the fact that any repetition of a non-terminal X on some path
means that we can replace a corresponding derivation X

∗=⇒ uXv by using new productions

from E ′
X,r,s, ←−R ′

X,r,s, and −→R ′
X,r,s. Since these also have the property that every derivation

can be made acyclic, the lemma follows. See the full version for details.

Complexity analysis. To estimate the size of the constructed grammar, let fp(n) be the
maximal number of non-terminals of a constructed Kleene grammar for an input grammar
with n non-terminals over p priorities. By Lemmas 6.3 and 6.5, there is a constant c such that
each grammar EX , ←−RX , and −→RX has at most cn non-terminals. Furthermore, G′ is obtained
by applying our construction to 3n(p+ 1)2 grammars with p− 1 priorities of size cn, and
adding Zp. Thus fp(n) ≤ n+ 3n(p+ 1)2fp−1(cn) + 1. Since fp−1(n) ≥ 1, we can simplify to
fp(n) ≤ 4n(p+ 1)2fp−1(cn). It is easy to check that f0(n) ≤ 4n+ 1 ≤ 5n, because EX,0,0 and
←−
RX,0,0 and −→RX,0,0 each only have one non-terminal. Hence fp(n) ≤ (4n(p+ 1)2)pf0(cpn) ≤
(4n(p+ 1)2) · 4(cpn), which is exponential in the size of G.

7 Conclusion

We have initiated the study of computing priority and block downward closures for infinite-
state systems. We have shown that for OCA, both closures can be computed in polynomial
time. For CFL, we have provided a doubly exponential construction.

Many questions remain. First, we leave open whether the doubly exponential bound
for context-free languages can be improved to exponential. An exponential lower bound
is easily inherited from the exponential lower bound for subwords [6]. Moreover, it is an
intriguing question whether computability of subword downward closures for vector addition
systems [17], higher-order pushdown automata [18], and higher-order recursion schemes [12]
can be strengthened to block and priority downward closures.

CONCUR 2023

39:16 Priority Downward Closures

References

1 Parosh Aziz Abdulla, Luc Boasson, and Ahmed Bouajjani. Effective lossy queue languages. In
Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors, Automata, Languages and
Programming, 28th International Colloquium, ICALP 2001, Crete, Greece, July 8-12, 2001,
Proceedings, volume 2076 of Lecture Notes in Computer Science, pages 639–651. Springer,
2001. doi:10.1007/3-540-48224-5_53.

2 Ashwani Anand and Georg Zetzsche. Priority downward closures, 2023. arXiv:2307.07460.
3 Mohamed Faouzi Atig, Ahmed Bouajjani, and Shaz Qadeer. Context-bounded analysis for

concurrent programs with dynamic creation of threads. Log. Methods Comput. Sci., 7(4), 2011.
doi:10.2168/LMCS-7(4:4)2011.

4 Mohamed Faouzi Atig, Dmitry Chistikov, Piotr Hofman, K. Narayan Kumar, Prakash Saivasan,
and Georg Zetzsche. The complexity of regular abstractions of one-counter languages. In
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
’16, pages 207–216, New York, NY, USA, 2016. Association for Computing Machinery. doi:
10.1145/2933575.2934561.

5 Mohamed Faouzi Atig, Roland Meyer, Sebastian Muskalla, and Prakash Saivasan. On the
upward/downward closures of Petri nets. In Kim G. Larsen, Hans L. Bodlaender, and
Jean-François Raskin, editors, 42nd International Symposium on Mathematical Foundations
of Computer Science, MFCS 2017, August 21-25, 2017 – Aalborg, Denmark, volume 83 of
LIPIcs, pages 49:1–49:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPIcs.MFCS.2017.49.

6 Georg Bachmeier, Michael Luttenberger, and Maximilian Schlund. Finite automata for the
sub- and superword closure of cfls: Descriptional and computational complexity. In Adrian-
Horia Dediu, Enrico Formenti, Carlos Martín-Vide, and Bianca Truthe, editors, Language
and Automata Theory and Applications – 9th International Conference, LATA 2015, Nice,
France, March 2-6, 2015, Proceedings, volume 8977 of Lecture Notes in Computer Science,
pages 473–485. Springer, 2015. doi:10.1007/978-3-319-15579-1_37.

7 Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg
Zetzsche. Context-bounded analysis of concurrent programs (invited talk). In Kousha Etes-
sami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata,
Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume
261 of LIPIcs, pages 3:1–3:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPIcs.ICALP.2023.3.

8 Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg
Zetzsche. Context-bounded verification of context-free specifications. Proc. ACM Program.
Lang., 7(POPL):2141–2170, 2023. doi:10.1145/3571266.

9 Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. Context-
bounded verification of thread pools. Proc. ACM Program. Lang., 6(POPL):1–28, 2022.
doi:10.1145/3498678.

10 J. Berstel. Transductions and Context-Free Languages. Vieweg+Teubner Verlag, 1979.
11 S. Blake, D. Black, M. Carlson, Elwyn B. Davies, Zheng Wang, and Walter Weiss. An

architecture for differentiated services. RFC, 2475:1–36, 1998.
12 Lorenzo Clemente, Pawel Parys, Sylvain Salvati, and Igor Walukiewicz. The diagonal problem

for higher-order recursion schemes is decidable. In Martin Grohe, Eric Koskinen, and Natarajan
Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 96–105. ACM, 2016. doi:
10.1145/2933575.2934527.

13 Bruno Courcelle. On constructing obstruction sets of words. Bulletin of the EATCS, 44:178–186,
January 1991.

https://doi.org/10.1007/3-540-48224-5_53
https://arxiv.org/abs/2307.07460
https://doi.org/10.2168/LMCS-7(4:4)2011
https://doi.org/10.1145/2933575.2934561
https://doi.org/10.1145/2933575.2934561
https://doi.org/10.4230/LIPIcs.MFCS.2017.49
https://doi.org/10.4230/LIPIcs.MFCS.2017.49
https://doi.org/10.1007/978-3-319-15579-1_37
https://doi.org/10.4230/LIPIcs.ICALP.2023.3
https://doi.org/10.1145/3571266
https://doi.org/10.1145/3498678
https://doi.org/10.1145/2933575.2934527
https://doi.org/10.1145/2933575.2934527

A. Anand and G. Zetzsche 39:17

14 Jean Goubault-Larrecq, Simon Halfon, Prateek Karandikar, K. Narayan Kumar, and Philippe
Schnoebelen. The ideal approach to computing closed subsets in well-quasi-ordering. CoRR,
abs/1904.10703, 2019. arXiv:1904.10703.

15 Hermann Gruber, Markus Holzer, and Martin Kutrib. The size of higman–haines sets.
Theoretical Computer Science, 387(2):167–176, 2007. Descriptional Complexity of Formal
Systems. doi:10.1016/j.tcs.2007.07.036.

16 Christoph Haase, Sylvain Schmitz, and Philippe Schnoebelen. The Power of Priority Channel
Systems. Logical Methods in Computer Science, Volume 10, Issue 4, December 2014. doi:
10.2168/LMCS-10(4:4)2014.

17 Peter Habermehl, Roland Meyer, and Harro Wimmel. The downward-closure of Petri
net languages. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer
auf der Heide, and Paul G. Spirakis, editors, Automata, Languages and Programming, 37th
International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings,
Part II, volume 6199 of Lecture Notes in Computer Science, pages 466–477. Springer, 2010.
doi:10.1007/978-3-642-14162-1_39.

18 Matthew Hague, Jonathan Kochems, and C.-H. Luke Ong. Unboundedness and downward
closures of higher-order pushdown automata. In Rastislav Bodík and Rupak Majumdar,
editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20–22, 2016, pages
151–163. ACM, 2016. doi:10.1145/2837614.2837627.

19 Leonard H. Haines. On free monoids partially ordered by embedding. Journal of Combinatorial
Theory, 6(1):94–98, 1969. doi:10.1016/S0021-9800(69)80111-0.

20 Graham Higman. Ordering by Divisibility in Abstract Algebras. Proceedings of the London
Mathematical Society, s3-2(1):326–336, January 1952. doi:10.1112/plms/s3-2.1.326.

21 Jean-Yves Le Boudec. The asynchronous transfer mode: a tutorial. Computer Networks
and ISDN Systems, 24(4):279–309, 1992. The ATM-Asynchronous Transfer Mode. doi:
10.1016/0169-7552(92)90114-6.

22 Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. General decidability
results for asynchronous shared-memory programs: Higher-order and beyond. Log. Methods
Comput. Sci., 18(4), 2022. doi:10.46298/lmcs-18(4:2)2022.

23 Richard Mayr. Undecidable problems in unreliable computations. In Gaston H. Gonnet
and Alfredo Viola, editors, LATIN 2000: Theoretical Informatics, pages 377–386, Berlin,
Heidelberg, 2000. Springer Berlin Heidelberg.

24 Jeffrey Shallit. A Second Course in Formal Languages and Automata Theory. Cambridge
University Press, 2008. doi:10.1017/CBO9780511808876.

25 Salvatore La Torre, Anca Muscholl, and Igor Walukiewicz. Safety of parametrized asynchronous
shared-memory systems is almost always decidable. In Luca Aceto and David de Frutos-Escrig,
editors, 26th International Conference on Concurrency Theory, CONCUR 2015, Madrid, Spain,
September 1.4, 2015, volume 42 of LIPIcs, pages 72–84. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2015. doi:10.4230/LIPIcs.CONCUR.2015.72.

26 Jan van Leeuwen. Effective constructions in well-partially-ordered free monoids. Discrete
Mathematics, 21(3):237–252, 1978.

27 Georg Zetzsche. An approach to computing downward closures. In Magnús M. Halldórsson,
Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages,
and Programming – 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10,
2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer Science, pages 440–451.
Springer, 2015. doi:10.1007/978-3-662-47666-6_35.

28 Georg Zetzsche. Computing downward closures for stacked counter automata. In Ernst W.
Mayr and Nicolas Ollinger, editors, 32nd International Symposium on Theoretical Aspects
of Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany, volume 30 of
LIPIcs, pages 743–756. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015. doi:
10.4230/LIPIcs.STACS.2015.743.

CONCUR 2023

https://arxiv.org/abs/1904.10703
https://doi.org/10.1016/j.tcs.2007.07.036
https://doi.org/10.2168/LMCS-10(4:4)2014
https://doi.org/10.2168/LMCS-10(4:4)2014
https://doi.org/10.1007/978-3-642-14162-1_39
https://doi.org/10.1145/2837614.2837627
https://doi.org/10.1016/S0021-9800(69)80111-0
https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1016/0169-7552(92)90114-6
https://doi.org/10.1016/0169-7552(92)90114-6
https://doi.org/10.46298/lmcs-18(4:2)2022
https://doi.org/10.1017/CBO9780511808876
https://doi.org/10.4230/LIPIcs.CONCUR.2015.72
https://doi.org/10.1007/978-3-662-47666-6_35
https://doi.org/10.4230/LIPIcs.STACS.2015.743
https://doi.org/10.4230/LIPIcs.STACS.2015.743

39:18 Priority Downward Closures

29 Georg Zetzsche. The complexity of downward closure comparisons. In Ioannis Chatzigiannakis,
Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy, volume 55 of LIPIcs, pages 123:1–123:14. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.123.

30 Georg Zetzsche. Separability by piecewise testable languages and downward closures beyond
subwords. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages
929–938. ACM, 2018. doi:10.1145/3209108.3209201.

https://doi.org/10.4230/LIPIcs.ICALP.2016.123
https://doi.org/10.1145/3209108.3209201

	1 Introduction
	2 Preliminaries
	3 The Block Order
	4 Regular Languages
	5 One-counter Languages
	6 Context-free Languages
	7 Conclusion

