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Abstract
We study the connection between stable-failures refinement and the ioco conformance relation.
Both behavioural relations underlie methodologies that have gained traction in industry: stable-
failures refinement is used in several commercial Model-Driven Engineering tool suites, whereas
the ioco conformance relation is used in Model-Based Testing tools. Refinement-based Model-
Driven Engineering approaches promise to generate executable code from high-level models, thus
guaranteeing that the code upholds specified behavioural contracts. Manual testing, however, is still
required to gain confidence that the model-to-code transformation and the execution platform do
not lead to unexpected contract violations. We identify conditions under which also this last step in
the design methodology can be automated using the ioco conformance relation and the associated
tools.
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1 Introduction

Formal Methods excel in eliminating subtle issues in complex software and system designs.
Unfortunately, they are often perceived as complicated and inaccessible. For long, this
sentiment has been a major reason for the slow industrial uptake of such methods. At the
same time, Model-Driven Engineering (MDE), which promotes the use of Domain-Specific
Languages (DSL) and code generation from models written in such languages, has managed
to gain traction. MDE’s success is in large part due to the close to perfect fit of a DSL
and its application domain, which is in sharp contrast to the gap between generic Formal
Methods and their domain of application.

1 corresponding author

© P. H. M. van Spaendonck and Tim A. C. Willemse;
licensed under Creative Commons License CC-BY 4.0

34th International Conference on Concurrency Theory (CONCUR 2023).
Editors: Guillermo A. Pérez and Jean-François Raskin; Article No. 4; pp. 4:1–4:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:p.h.m.v.spaendonck@tue.nl
https://orcid.org/0000-0002-9536-1524
mailto:t.a.c.willemse@tue.nl
https://orcid.org/0000-0003-3049-7962
https://doi.org/10.4230/LIPIcs.CONCUR.2023.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


4:2 The Best of Both Worlds: Model-Driven Engineering Meets Model-Based Testing

Currently, we are witnessing the adoption of formal MDE approaches, in which the
DSL is coupled to a design methodology that advocates a stepwise, compositional approach
based on behavioural contracts (sometimes referred to as service or behavioural interface
specification) of components. Commercial approaches of this kind are, e.g., Verum’s Dezyne
methodology [21, 20] and Cocotec’s Coco platform [6].

Underlying the stepwise approach is typically a notion of refinement; for instance, the
Dezyne methodology essentially utilises CSP’s stable-failures refinement [15, 10]. The central
idea is that the code that is generated from a model refines its behavioural contract, provided
that the model refines the same contract. This way, the code for entire constellations of –
guaranteed seemlessly cooperating – components can be generated with little effort.

One step often overlooked, however, is the fact that the model that is being verified is not
identical to the code that is executed: even if the code generator is flawless, the behaviour of
the component still depends on the execution platform, its operating system, the compilers
used, etcetera. As a result, testing is still required to gain confidence in the correct execution
of the generated code.

In practice, testing is still a largely manual and time-consuming activity; at best scripting
is used to automatically execute a number of manually crafted test cases. Model-Based Testing
(MBT) is a formal approach to testing that aims to improve on that situation. Tretmans’
conformance theory [17, 18] is one of the most widely used testing theories, which has even
found commercial use. As a starting point, MBT approaches take a formal specification,
describing the system-under-test, and automatically derive tests from that specification, thus
saving time on manually constructing and executing test cases, and maintaining these as the
specification (and implementation) evolve.

To enable reasoning about implementations, formal approaches to testing typically assume
that there is some (otherwise unknown) model with specific characteristics that underlies the
actual implementation. This is sometimes referred to as the testing assumption. For instance,
Tretmans [17, 18] assumes that implementations behave as input enabled Labelled Transition
Systems with inputs and outputs. Weiglhofer and Wotawa [26] observe that this class of
models is not quite suited in asynchronous settings and advocate internal choice Labelled
Transition Systems with inputs and outputs. Such transition systems accept inputs only in
states that are stable and no longer able to produce outputs. Crucially, implementations
that are obtained through the MDE approach often fall in this class: these generally employ
a run-to-completion semantics that assumes a component is ready for input only when it has
finished processing the previous input.

Combining formal MDE approaches and MBT approaches seems natural and beneficial,
but in practice, the two do not appear to match. Indeed, it is part of folklore that Tretmans’
conformance theory, viz. ioco, is impossible to reconcile with theories of refinement such
as the stable-failures refinement: as we also show in this paper, there are implementations
that formally refine their specifications, but that nevertheless do not pass tests derived from
such specifications. Vice versa, implementations that pass all tests derived from a given
specification do not necessarily refine that specification.

At the same time, there are specifications and implementations for which stable-failures
refinement and ioco both (do not) hold, suggesting there may be some room for combining
the MBT and MDE methodologies in practice. We address this issue in this paper. More
specifically, we study conditions under which Tretmans’ ioco conformance relation can be
used to assess the quality of implementations under the assumption (or guarantee) that the
implementation is a stable-failures refinement of its specification. Our contributions are
threefold:
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We characterise experiments that can be deduced from a specification – so-called stable-
failures testable traces – for which ioco is guaranteed not to reject implementations that
are a stable-failures refinement of that specification;
We show that, surprisingly, for the class of internal choice Labelled Transition Systems of
Weiglhofer and Wotawa [24, 26, 12, 13], the set of stable-failures testable traces coincides
with Tretmans’ suspension traces, implying that off-the-shelf ioco-based tooling can be
used to test these implementations;
We validate our theory in practice through a proof-of-concept implementation. In
particular, we assess whether industrial-grade executable code, obtained using Verum’s
Dezyne methodology:

passes all tests automatically derived from its behavioural contract, and
fails tests when subtle mutations are introduced in the code.

Related Work. Several authors have attempted to equip the CSP theory with a testing
theory. Cavalcanti and Gaudel [3] instantiate Gaudel’s testing theory [7] for the (divergence-
free fragment of the) CSP language and compare failures refinement to the conf relation.
Their work, unlike ours, does not fundamentally distinguish inputs and outputs, contrary to,
e.g., ioco. Sound and complete test suites for CSP’s refinement relation are studied in [14].
In [4], and also later in [5], CSP is equipped with the notion of input and output. The authors
use this distinction, in contrast to our work, to modify the stable-failures refinement to define
a new refinement relation that is stronger than ioco on input enabled CSP processes. In [25],
the authors give a denotational characterisation of an ioco-inspired conformance relation,
in the context of a CSP-like process algebra. They show that, when applied to processes
representing the suspension automata underlying a given specification and implementation,
their relation coincides with Tretmans’ ioco. Related to these approaches, in [11], the authors
introduce a conformance relation called CSP input-output conformance to test systems that
are both input and output enabled. They exploit use case templates to generate test cases
by means of counterexamples to stable failures refinement. Finally, in [1], the authors coin
input-output tock-CSP refinement and study its correspondence to a timed variant of ioco,
called tioco [16], showing that the latter is weaker than their refinement relation.

In the broader scope, there have been several studies looking at the ioco relation from the
perspective of refinement theories and game theory. For instance, in [23], the authors observe
that ioco is non-compositional – in contrast to a proper refinement relation – prompting the
authors to weaken the ioco relation. Their relation coincides with ioco when specifications
have no under-specified inputs (for a more detailed discussion, we refer to, e.g. [19]). In [9],
the authors compare ioco to alternating trace containment, a refinement relation in the
setting of game theory and formal verification. They omit internal transitions (also known
as silent steps) from their model, but their treatment does cover quiescence. The connection
between testing theory and game theory had been previously studied by Van den Bos and
Stoelinga [22].

Paper outline. Our paper is organised as follows. In Section 2, we introduce stable-failures
refinement and Tretmans’ ioco theory. Then, in Section 3 we introduce stable-failures testable
traces and study their role in testing implementations that refine their specifications. In
Section 4, we identify conditions that allow for proving stable-failures refinement using ioco.
Section 5 we describe our experiments with the theory we developed, and we draw conclusions
and sketch future work in Section 6.

CONCUR 2023



4:4 The Best of Both Worlds: Model-Driven Engineering Meets Model-Based Testing

2 Preliminaries

The behaviour of a system is typically formalised using (variations of) labelled transition sys-
tems (LTSs). Actions, taken from a sufficiently large alphabet Act, represent the observables
of a system. We presuppose a constant τ /∈ Act to represent an unobservable action; the set
Actτ denotes the set Act ∪ {τ}.

▶ Definition 1. A labelled transition system (LTS) over Act is a tuple ⟨S, ŝ, −→⟩, where S is
a set of states, ŝ ∈ S is the initial state and −→⊆ S × Actτ × S is the transition relation. We
denote the set of LTSs over Act by LT S(Act).

We often refer to a given LTS ⟨S, ŝ, −→⟩ by its initial state ŝ. We write s
x−→ s′ rather than

(s, x, s′) ∈ −→; moreover, we write s
x−→ when s

x−→ s′ for some s′, and s ̸ x−→ when s
x−→ does

not hold. The transition relation is lifted to a relation over S × Act∗
τ × S in the usual manner,

and we lift the notation introduced for −→ accordingly. We say that a word w ∈ Act∗
τ is a

concrete trace of an LTS ŝ iff ŝ
w−→, and we say that a state s is reachable exactly when ŝ

w−→ s

for some concrete trace w.
A further generalisation of −→ to a relation over words of observable actions ==⇒⊆

S × Act∗ × S is obtained as the smallest relation satisfying the following rules:

s
ϵ=⇒ s

s
w=⇒ s′′ s′′ x−→ s′ x ̸= τ

s
w x===⇒ s′

s
w=⇒ s′′ s′′ τ−→ s′

s
w=⇒ s′

We adopt the notational conventions we introduced earlier for −→ also for ==⇒. The set of

traces of a states s is denoted Traces(s) = {w ∈ Act∗ | s
w=⇒}. For a set of states S′, we

define Traces(S′) =
⋃

s′∈S′ Traces(s′).

▶ Definition 2. Let ⟨S, ŝ, −→⟩ be an LTS. For arbitrary state s ∈ S and set of states S′ ⊆ S,
we define:
1. init(s) = {x ∈ Actτ | s

x−→} and init(S′) =
⋃

s′∈S′ init(s′);
2. Sinit(s) = {x ∈ Act | s

x=⇒} and Sinit(S′) =
⋃

s′∈S′ Sinit(s′);
3. stable(s) iff τ /∈ init(s), and stable(S′) iff for all s′ ∈ S we have stable(s′).

We say that an LTS ⟨S, ŝ, −→⟩ is convergent when none of its states s ∈ S are divergent, i.e.,
no state in S is the start of an infinite sequence of τ -steps.

A set of observable actions X ⊆ Act is a refusal for a state s exactly when init(s) ∩ X = ∅.
Given a state s, we say that the pair (w, X) is a failure for state s when there is some s′

such that stable(s′), s
w=⇒ s′ and init(s′) ∩ X = ∅. The set of failures of a state s is denoted

Failures(s), and defined formally as follows:

Failures(s) = {(w, X) ∈ Act∗ × 2Act | ∃s′ : s
w=⇒ s′ ∧ stable(s′) ∧ X ∩ init(s′) = ∅}

We next recall a classical notion of refinement underlying process algebras such as CSP, see,
e.g. [15, 10].

▶ Definition 3. Let ⟨S, ŝ, −→⟩ be an LTS. For states s, t ∈ S, we define s ⊑F t iff Traces(t) ⊆
Traces(s) and Failures(t) ⊆ Failures(s). We say t is a stable-failures refinement of s iff s ⊑F t.

When interacting with an actual implementation, the initiative to communicate is often
not symmetric: the implementation can receive stimuli from its environment and produce
events that are to be consumed by the environment. We therefore refine the LTS model to
incorporate a distinction between inputs and outputs.
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▶ Definition 4. An input-output labelled transition system over (ActI , ActU ) is an LTS
⟨S, ŝ, −→⟩ over Act in which Act is partitioned into a set ActI of inputs and a set ActU

of outputs. We denote the set of input-output labelled transition systems (IOLTS) over
(ActI , ActU ) by IOLT S(ActI , ActU ).

As a notational convention we distinguish inputs from outputs by adding question- (?)
and exclamation-mark (!) symbols, respectively, in our examples. We stress that these
decorations are not part of action names. States are quiescent when they are stable and
refuse to produce output. Quiescence, defined formally below, is a crucial element in many
testing theories, needed to disqualify implementations that fail to produce output when not
expected.

▶ Definition 5. Let ⟨S, ŝ, −→⟩ be an IOLTS over (ActI , ActU ), and let s ∈ S. We say that s

is quiescent, denoted δ(s), iff stable(s) and init(s) ∩ ActU = ∅.

We say that an IOLTS ⟨S, ŝ, −→⟩ is an internal choice IOLTS iff inputs are only specified in
quiescent states; i.e., exactly when for all s ∈ S for which init(s) ∩ ActI ̸= ∅, also δ(s) holds
true. We denote the set of internal choice IOLTSs over (ActI , ActU ) by IOLT S⊓(ActI , ActU ).

Quiescence is typically treated as an output of the system, i.e., an observable of an
implementation under test. Let δ /∈ Act be a special constant denoting the observation of
quiescence, and let Actδ denote the set Act ∪ {δ}.

▶ Definition 6. Let ⟨S, ŝ, −→⟩ be an IOLTS over (ActI , ActU ), and let s ∈ S.
The outputs enabled in s, denoted out(s), is defined as out(s) = {δ | δ(s)}∪(ActU ∩init(s));
The inputs enabled in s, denoted in(s), is defined as in(s) = ActI ∩ Sinit(s).

For a set of states S′ ⊆ S, we define out(S′) =
⋃

s′∈S′ out(s′) and in(S′) =
⋂

s′∈S′ in(s′).

The notion of a suspension trace incorporates the observation of quiescence also in our
observations of the behaviour of an implementation over time.

▶ Definition 7. Let ⟨S, ŝ, −→⟩ be an IOLTS over (ActI , ActU ), and let s ∈ S. We say that a
sequence of events w ∈ Act∗

δ is a suspension trace of s iff w ∈ Traces(s∆) in the IOLTS ∆(ŝ)
over (ActI , ActU ∪ {δ}), where ∆(ŝ) = ⟨S∆, ŝ∆, −→∆⟩ is defined as follows:

S∆ = {s′
∆ | s′ ∈ S};

−→∆= {(s′
∆, x, s′′

∆) | s′ x−→ s′′} ∪ {(s′, δ, s′) | δ(s′)}.
The set of suspension traces of a state s ∈ S is denoted STraces(s).

We generalise the relation −→∆ to =⇒∆ as before and we allow ourselves to write s
w=⇒∆ s′,

for states s, s′ of an IOLTS ⟨S, ŝ, −→⟩, when we in fact mean s∆
w=⇒∆ s′

∆.

▶ Definition 8. Let ⟨S, ŝ, −→⟩ be an IOLTS over (ActI , ActU ). For states s ∈ S and suspension
traces w ∈ STraces(s), we define s after w = {s′ ∈ S | s

w=⇒∆ s′}. For sets of states S′ ⊆ S

we define S′ after w =
⋃

s′∈S′ s′ after w.

Formal testing theories usually build upon the assumption that an implementation can
be captured adequately in a submodel of IOLTSs. We recall two such submodels, viz., the
input output transition systems, used in Tretmans’ testing theory [17, 18] and the internal
choice input output transition systems, introduced by Weiglhofer and Wotawa [24, 26].

Tretmans’ input-output transition systems are IOLTSs with the additional assumption
that inputs will always be accepted. That is, implementations are assumed to be input
enabled.

CONCUR 2023
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▶ Definition 9. Let ⟨S, ŝ, −→, s0⟩ be an IOLTS over (ActI , ActU ). A state s ∈ S is input-
enabled iff ActI ⊆ Sinit(s). The IOLTS ŝ is an input output transition system (IOTS) iff
every state s ∈ S is input-enabled. We denote the class of input output transition systems
ranging over (ActI , ActU ) by IOT S(ActI , ActU ).

Weiglhofer and Wotawa’s model of internal choice input output transition systems relax the
requirement that implementations must be input-enabled at all times. Instead, they require
that only quiescent states are input-enabled, and inputs are only accepted in quiescent states.
Their model better fits with implementations that rely on some form of run to completion.

▶ Definition 10 (Internal choice IOTS). An IOLTS ⟨S, ŝ, −→⟩ is an internal choice input
output transition system over (ActI , ActU ) if for all states s ∈ S:
1. if δ(s), then ActI ⊆ init(s)
2. if init(s) ∩ ActI ̸= ∅ then δ(s).

We denote the class of internal choice input output transition systems over (ActI , ActU ) by
IOT S⊓(ActI , ActU ).

Testing is used to assess whether a given implementation conforms to its specification.
Several conformance relations have been proposed in the literature, and one of the most
prominent ones is input output conformance by Tretmans [17, 18]. This conformance relation
formalises when an implementation, assumed to behave as an input output transition system,
complies to a given specification. Following e.g. [9], we assume here that implementations
can behave, more generally, as input output labelled transition systems.

▶ Definition 11. Let imp, spec ∈ IOLT S(ActI , ActU ) be (a model of) an implementation
and specification, respectively. We say that imp input output conforms to spec, denoted
imp ioco spec, iff for all w ∈ STraces(spec) we have:
1. out(imp after w) ⊆ out(spec after w),
2. in(imp after w) ⊇ in(spec after w).
We remark that condition 2, on the inputs, can be dropped in the above definition in case
the implementation is input enabled, thus simplifying to the definition that can be found
in [17, 18]. After all, input enabledness guarantees that inputs can always be consumed by
the implementation.

3 Testing Refinements of Specifications

Refinement relations are particularly useful in a design methodology in which a system is
successively refined into smaller components, where, at each step, the relevant artefacts
can be related by a stable-failures refinement. Once the models for (sub)components are
sufficiently detailed and simple, implementing these as executable code should be reasonably
straightforward and is even done automatically in formal MDE approaches.

Despite the simplicity and details of these models, the conversion to executable code may
introduce bugs. Even if no bugs are introduced in this step, the platform on which the code
runs may inject issues not foreseen at the time of the design. Conformance testing is therefore
a step that cannot be omitted, but as the following example illustrates, the ioco-conformance
relation may flag implementations to be incorrect, despite these being correct with respect
to stable-failures refinement.

▶ Example 12. Consider the implementation imp, with initial state i0, depicted below (left)
and the specification spec, with initial state s0, depicted below (right).
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i0 i1 i2 i3
a? a? z!

a? a?

s0

s3

s1 s2

s4 s5

a? a?

x! z!a?
a? y!

a?

a? a?

Observe that spec ⊑F imp holds true. However, imp ioco spec does not hold, since
out(s0 after a δ a) = {y}, whereas out(i0 after a δ a) = {z}. ⌟

Conceptually, the non-conformance in the above example is caused by the ability to continue
testing beyond observations of quiescence. This suggests that, in general, we cannot safely
test the full specification for all its suspension traces. The question thus arises what subset
of the behaviour, modelled by a specification, is available to us for testing. We coin a set
of suspension traces for which we subsequently argue that testing for these cannot lead to
verdicts that conflict with previously established refinements.

▶ Definition 13. Let spec ∈ IOLT S(ActI , ActU ) be an arbitrary IOLTS. A suspension trace
w of spec is stable-failures testable exactly when for all prefixes v δ x of w, with x ∈ Actδ, we
have spec after v x = spec after v δ x. The set of all stable-failures testable suspension traces
is denoted TTraces(spec).

One may remark that the set Actδ that x may range over in the above definition is
too liberal. Indeed, since suspension traces are anomaly-free [27], x cannot be an output.
Restricting the set of symbols that x ranges over to ActI ∪ {δ} would therefore yield an
equivalent, though in practice somewhat more cumbersome, definition.

We start by noting two relevant properties of the set of stable-failures testable traces of a
specification.

▶ Lemma 14. We have Traces(spec) ⊆ TTraces(spec).

Proof. Pick some arbitrary w ∈ Traces(s). Since Traces(s) ⊆ STraces(s), also w ∈ Traces(s).
Moreover, since w ∈ Traces(s), also w ∈ Act∗. Since there is no prefix of the shape v δ x in
w ∈ Act∗, we find that w is stable-failures testable. Hence w ∈ TTraces(spec). ◀

▶ Lemma 15. The set TTraces(spec) is prefix closed.

Proof. Pick some w ∈ TTraces(spec), and let w′ be a prefix of w. Consider an arbitrary
prefix v δ x of w′. Then v δ x is also a prefix of w. Since w ∈ TTraces(spec) we therefore have
spec after v x = spec after v δ x. But then also w′ ∈ TTraces(spec). ◀

We next introduce the operators w and w on suspension traces. In essence, these operators
remove all δ-symbols (respectively, all but a terminal δ-symbol, if present) from a suspension
trace.

▶ Definition 16. Let x ∈ Actδ, y ∈ Act, v ∈ Act∗ and w ∈ Act+
δ . We define the operators

_ : Act∗
δ → Act∗

δ and _ : Act∗
δ → Act∗ as follows:

ϵ = ϵ, y v = y v, δ v = v

ϵ = ϵ, x = x, y w = y w, δ w = w

CONCUR 2023
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Observe that in case w ∈ Act∗, we have w = w = w. In case w ∈ Act∗
δAct+, we have w = w,

and in case w ∈ Act∗
δδ+ we have w = w δ.

▶ Lemma 17. Let spec = ⟨S, ŝ, −→⟩ be an arbitrary IOLTS. For all w ∈ TTraces(spec),
spec after w = spec after w.

Proof. The proof proceeds by means of an induction on the number of δ’s appearing in w.
Base case: w contains no δ-symbols. Then w ∈ Traces(spec) and since w = w for traces,
we immediately find the desired spec after w = spec after w.
Induction: suppose that for all z ∈ TTraces(spec), containing n δ-symbols, we have
spec after z = spec after z. Pick some w ∈ TTraces(spec) containing n + 1 δ-symbols.
Then w must be of the shape v δ u, with u ∈ Act∗, and v containing n δ-symbols. We
distinguish two cases:

Case u = ϵ. Then spec after w = spec after v δ = (spec after v) after δ By induction,
the latter is equal to (spec after v) after δ, which is equivalent to spec after v δ. We
distinguish two further cases:
∗ Case v ∈ Traces(spec). Then v δ = v δ = w, and consequently, spec after v δ =

spec after w.
∗ Case v /∈ Traces(spec). Then v = v′ δ for some v′ ∈ Traces(spec) and therefore

v δ = v′ δ δ. Observe that we have spec after v′ δ δ = spec after v′ δ = spec after v δ =
spec after w.

In both cases, we are done.
Case u ̸= ϵ. We necessarily have u = x u′ for some x and u′. Then, by Definition 13, we
have spec after w = spec after v δ x u′ = spec after v x u′. Since v x u′ contains exactly
n δ-symbols, we may conclude, by induction that spec after v x u′ = spec after v x u′.
But v x u′ = w, so we may conclude spec after w = spec after w. ◀

▶ Definition 18. We say that an IOLTS spec is stable-failures testable exactly when it
satisfies STraces(spec) = TTraces(spec).

It may be clear that not every IOLTS is stable-failures testable. For instance, the specific-
ation depicted in Example 12 contains suspension traces that are not stable-failures testable:
the sequence a δ a, which we used to illustrate the non-conformance of the implementation
to the specification is not stable-failures testable, since s0 after a δ a = {s4} ̸= {s2, s4} =
s0 after a a. On the other hand, the implementation depicted in the same example is stable-
failures testable. The class of internal choice IOLTSs also turns out to be stable-failures
testable, as asserted by the theorem below.

▶ Theorem 19. Every internal choice IOLTS is stable-failures testable.

Proof. Clearly, TTraces(spec) ⊆ STraces(spec), so it suffices to prove STraces(spec) ⊆
TTraces(spec). This can be shown using an induction on the length of the suspension
traces.

Base case w = ϵ. Since ϵ ∈ Traces(spec) ⊆ TTraces(spec), we are done.
Suppose that for w ∈ STraces(spec) of length n, we have w ∈ TTraces(spec). Let x ∈ Actδ

be such that w x ∈ STraces(spec). Let v δ y be a prefix of w x. If v δ y is a prefix of w,
then we may conclude spec after v y = spec after v δ y from our induction hypothesis and
we are done.
So suppose that v δ y = w x. It now suffices to prove that spec after v y = spec after v δ y.
Note that spec after v y ⊇ spec after v δ y follows from the fact that observations of δ

do not change state, so it suffices to prove spec after v y ⊆ spec after v δ y. Pick some
s ∈ spec after v y. From w x = v δ y ∈ STraces(spec) we may conclude that y /∈ ActU . We
distinguish two cases:
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Case y = δ. Then it immediately follows that also s ∈ spec after v δ y and we are done.
Case y ̸= δ. This implies that y ∈ ActI . Since spec is an internal choice IOLTS, we
find that there must be some s′ ∈ spec after v such that δ(s′) and s′ y=⇒∆ s. Let s′ be

such. Since s′ δ=⇒∆ s′, we may conclude that also s ∈ spec after v δ y. ◀

We next formally relate the failures refinement theory to the input output conformance
testing theory. Lemma 20 states that the outputs of implementations that are a stable-failures
refinement of a given specification can be safely tested using stable-failures testable suspension
traces. Likewise, Lemma 21, states that the inputs of convergent implementations that are a
stable-failures refinement of a given specification can be safely tested using stable-failures
testable suspension traces.

▶ Lemma 20. Let imp, spec ∈ IOLT S(ActI , ActU ). Assume that spec ⊑F imp holds true.
Then out(imp after w) ⊆ out(spec after w) for all w ∈ TTraces(spec).

Proof. Suppose that spec ⊑F imp. Towards a contradiction, assume that for some w ∈
TTraces(spec) we do not have out(imp after w) ⊆ out(spec after w). Without loss of generality,
assume that w is the shortest such trace. This implies, in particular, that w is not of the form
v δ, since such a suspension trace cannot give rise to the desired contradiction, and therefore
w ∈ Traces(spec). Note that we also can conclude that out(imp after w) ̸= ∅ and hence w ∈
STraces(imp). Since imp is quiescence-reducible [27], we therefore also have w ∈ Traces(imp).
By definition, imp after w ⊆ imp after w. Consequently, out(imp after w) ⊆ out(imp after w).
Furthermore, using Lemma 17 we may conclude that spec after w = spec after w, so also
out(spec after w) = out(spec after w).

Let X = out(imp after w) \ out(spec after w). We distinguish two cases:
Case δ ∈ X. Then, (w, ActU ) ∈ Failures(imp), but (w, ActU ) /∈ Failures(spec). Since
spec ⊑F imp, this cannot be the case. Contradiction.
Case δ /∈ X. Pick x ∈ X. Then w x ∈ Traces(imp), but w x /∈ Traces(spec). Again, since
spec ⊑F imp, this cannot be the case. Contradiction.

Since both cases lead to a contradiction, we may conclude that for all w ∈ TTraces(spec) we
have out(imp after w) ⊆ out(spec after w). ◀

▶ Lemma 21. Let imp, spec ∈ IOLT S(ActI , ActU ). Assume imp is convergent and assume
spec ⊑F imp holds true. Then in(spec after w) ⊆ in(imp after w) for all w ∈ TTraces(spec).

Proof. Assume that spec ⊑F imp. Suppose that for w ∈ TTraces(spec), in(spec after w) ⊆
in(imp after w) does not hold. Note that this implies that in(spec after w) ̸= ∅. Pick such w

and some input a ∈ in(spec after w) \ in(imp after w). By definition, this means that for all
s ∈ spec after w we have s

a=⇒. By Lemma 17, spec after w = spec after w, so also s
a=⇒ for

all s ∈ spec after w. Observe that this also implies that for all stable states t ∈ spec after w,
if any, we have t

a−→. We distinguish two cases:
w /∈ Traces(spec). Then w = w δ and since spec after w = spec after w δ ̸= ∅, there is some
t ∈ spec after w δ satisfying δ(t), and which is therefore stable. Since for every stable state
t ∈ spec after w δ we have t ∈ spec after w, we may conclude that (w, {a}) /∈ Failures(spec).
w ∈ Traces(spec). Since in that case w = w, we again conclude that (w, {a}) /∈
Failures(spec).

From the above, we thus conclude that (w, {a}) /∈ Failures(spec). We will next argue
that (w, {a}) ∈ Failures(imp). Since this contradicts spec ⊑F imp, we may conclude that
in(spec after w) ⊆ in(imp after w), finishing the proof.
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Concerning the remaining proof obligation (w, {a}) ∈ Failures(imp), we reason as follows.
Since a /∈ in(imp after w) and imp is convergent, we conclude that there must be some state
s ∈ imp after w such that stable(s) and s ̸ a−→. Let s be such a state. By definition, we have
imp after w ⊆ imp after w, so also s ∈ imp after w. But then (w, {a}) ∈ Failures(imp). ◀

One might wonder whether the convergence condition is strictly needed. The example below
illustrates that this condition can indeed not be dropped in general.

▶ Example 22. Consider the implementation imp, with initial state i0, depicted below (left)
and the specification spec, with initial state s0, depicted below (right).

i0i1 i2
τ τ

τ a?

x!

s0

a?

x!

Observe that spec ⊑F imp holds true. Moreover, note that due to the τ -loop, imp is not con-
vergent. By Lemma 20, we find that for every w ∈ STraces(spec), we have out(imp after w) ⊆
out(spec after w); this is readily checked. However, we have in(spec after ϵ) = {a} ̸= ∅ =
in(imp after ϵ). Consequently, imp ioco spec does not hold true. ⌟

The theorem below follows immediately from the two lemmata above.

▶ Theorem 23. Let imp, spec ∈ IOLT S(ActI , ActU ). Assume imp is convergent. If spec ⊑F

imp then also for all w ∈ TTraces(spec), we have:
1. out(imp after w) ⊆ out(spec after w), and
2. in(imp after w) ⊇ in(spec after w).

Theorem 23 specialises to standard ioco in case the specification is an internal choice
IOLTS and the implementation is convergent, as claimed by the corollary below.

▶ Corollary 24. Let spec ∈ IOLT S⊓(ActI , ActU ) and imp ∈ IOLT S(ActI , ActU ). Suppose
imp is convergent. Then spec ⊑F imp implies imp ioco spec.

We finish with the observation that in case the specification is an internal choice IOLTS
and the implementation is an internal choice IOTS, the requirement on the implementation
being convergent can be dropped, see the corollary below.

▶ Corollary 25. Let spec ∈ IOLT S⊓(ActI , ActU ) and imp ∈ IOT S⊓(ActI , ActU ). Then
spec ⊑F imp implies imp ioco spec.

4 Stable Failures Refinement through Testing

We next identify conditions under which we may conclude that a model of an implementation
is a stable-failures refinement of a given specification after exhaustively testing a faithful
implementation of that model.

Let us first observe that if the specification that is used for testing is not input enabled,
we will not be able to establish a stable-failures refinement relation between the specification
and the implementation. Since the ioco-conformance relation allows for partial specifications,
only those parts that are specified are tested for, and other parts are ignored, resulting in
potentially labelling such an implementation as one that conforms to its specification. As
a result, inputs that are not specified cannot be excluded to be part of some conforming
implementation and will thus lead to trace inclusion violations. This is illustrated by the
following (trivial) example.
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▶ Example 26. Consider the implementation imp, with initial state i0, depicted below (left)
and the specification spec, with initial state s0, depicted below (right).

i0 b?a? s0a?

Clearly, we have imp ioco spec, but the trace b ∈ Traces(i0) is not present in Traces(s0), thus
contradicting spec ⊑F imp. ⌟

Consequently we can only assess that an implementation refines a specification if the
latter is “at least as input enabled” as the implementation that we are (black box) testing
for. In Tretmans original testing theory, but also in Weiglhofer and Wotawa’s theory, the
input enabledness of the implementation is typically part of the testing assumption, which,
depending on the applications at hand, state that the implementation is either always input
enabled (IOTSs), or input enabled exactly (and only) in quiescent states (internal choice
IOTSs). We therefore confine our analysis to implementations that can be modelled as an
IOTS or an internal choice IOTS, and we study specifications that – in terms of their input
enabledness – fit these assumptions. For these systems, we have the following observation:

▶ Lemma 27. Let spec, imp be IOLTSs. Suppose that either:
both spec and imp are IOTSs, or
both spec and imp are internal choice IOTSs.

Then imp ioco spec implies Traces(imp) ⊆ Traces(spec).

Proof. Suppose that imp ioco spec. Let w ∈ Traces(imp) be such that w /∈ Traces(spec), and,
without loss of generality, assume that there is no shorter trace. Observe that w ̸= ϵ, since
ϵ is a weak trace of both imp and spec. Hence, w must be of the shape v x, for some trace
v ∈ Traces(imp) ∩ Traces(spec) and action x ∈ Act. Let v and x be such.

We first argue that x /∈ ActI . Observe that this follows trivially in case imp and spec
are both IOTSs, since spec would be required to accept input a at any moment. In case
spec is an internal choice IOTS, we reason as follows. Towards a contradiction, assume that
x ∈ ActI . Then v x /∈ Traces(spec) can only be the case when δ /∈ out(spec after v), since
spec is input enabled only (and exactly) in quiescent states. Since v x ∈ Traces(imp), we
must conclude that δ ∈ out(imp after v). But this violates our assumption that imp ioco spec.
Hence, also in case imp and spec are internal choice IOTSs, we have x /∈ ActI .

Consequently, x ∈ ActU and therefore x ∈ out(imp after v). Since v ∈ STraces(spec)
and imp ioco spec, we also find x ∈ out(spec after v). This implies that v x ∈ Traces(spec).
Contradiction. Hence, Traces(imp) ⊆ Traces(spec). ◀

In view of the above result, assuming some form of input enabledness of the specification
is essential for guaranteeing trace inclusion, which is an essential part of the refinement
relation. However, input enabledness does little to establish the other essential part of the
refinement relation, viz., the inclusion of the set of failures. This has to do with the fact
that refinement allows for observing the refusals of individual actions, contrary to the ioco
conformance relation. The next example illustrates the issue. We remark that the example
uses an implementation that behaves as an IOTS, but this can be modified easily to show
the same issue in internal choice IOTSs.

▶ Example 28. Consider the implementation imp, with initial state i0, depicted below (left)
and the specification spec, with initial state s0, depicted below (right).
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i0i1 i2

x!

a?

y!

a?

τ τ
s0 s1 y!τ

x!

a? a?

x!

Note that imp ioco spec; in particular, out(i0 after ϵ) = out(s0 after ϵ). Clearly, (ϵ, {y}) /∈
Failures(s0) since stable state s1 does not refuse y; of course, state s0 does not offer action y,
but since s0 is unstable, its refusals are not taken into account. However, since i1 is stable,
(ϵ, {y}) ∈ Failures(i0). Therefore, spec ⊑F imp does not hold true. ⌟

The above example illustrates that, from the point of view of stable-failures refinement,
output actions should be preserved and ultimately determined: τ -paths should eventually
lead to states in which only “trivial output choices” can be made.

▶ Definition 29. Let ⟨S, ŝ, −→⟩ be an IOLTS. We say that ŝ is ultimately determined iff for
all states s ∈ S and all x ∈ out(s after ϵ) there is some t ∈ s after ϵ such that out(t) = {x}.

Observe that the specification of Example 28 is not ultimately determined, since, e.g., there
is no state s ∈ s0 after ϵ such that out(s) = {y}.

▶ Proposition 30. For any IOTS imp and convergent, ultimately determined IOTS spec
satisfying imp ioco spec we have spec ⊑F imp.

Proof. Suppose that imp ioco spec holds true for IOTSs imp and spec, and that spec is both
convergent and ultimately determined. We show that spec ⊑F imp; by Lemma 27, it suffices
to prove that Failures(imp) ⊆ Failures(spec).

Towards a contradiction, assume that Failures(imp) ̸⊆ Failures(spec). Pick a failure
(w, X) ∈ Failures(imp) such that (w, X) ̸∈ Failures(spec). Observe that since Traces(imp) ⊆
Traces(spec), w ∈ Traces(imp) ∩ Traces(spec). Without loss of generality, assume that X is
as large as possible: there is no Y such that (w, Y ) ∈ Failures(imp) \ Failures(spec) such that
X ⊂ Y . Then imp w=⇒ t such that stable(t) holds true and init(t) ∩ X = ∅.

Note that since imp is an IOTS and t is stable, we have ActI ⊆ init(t) so X ⊆ ActU .
Because imp ioco spec, we have out(t) ⊆ out(imp after w) ⊆ out(spec after w). So there must
be a state s ∈ spec after w such that out(t) ∩ out(s) ̸= ∅. Let s be such a state, and pick
some x ∈ out(t) ∩ out(s). Since spec is convergent, all τ -paths are finite and end in a stable
state. Because spec is ultimately determined there must be some stable state s′ ∈ s after ϵ

such that out(s′) = {x}. Then out(s′) ⊆ out(t), and consequently, init(s′) ∩ X = ∅. But then
also (w, X) ∈ Failures(spec). Contradiction, so Failures(imp) ⊆ Failures(spec) and therefore
spec ⊑F imp. ◀

Note that there is a rather straightforward reason why we cannot simply drop the assumption
on the specification being convergent; see the example below.

▶ Example 31. Consider the implementation imp, with initial state i0, depicted below (left)
and the specification spec, with initial state s0, depicted below (right).

i0 i1
a?

x! y!

a?

s0 s1 y!

τ

x!
a?

a?
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Observe that imp ioco spec. Moreover, spec is trivially ultimately determined: s0 after ϵ =
{s0} and the only output action enabled in s0 is x. Because s0 is not stable, we have
(ϵ, {y}) /∈ Failures(s0). On the other hand, (ϵ, {y}) ∈ Failures(i0), so we cannot have spec ⊑F

imp. ⌟

We finish this section with a similar statement for the internal choice testing theory.

▶ Proposition 32. For any internal choice IOTS imp and convergent, ultimately determined
internal choice IOTS spec satisfying imp ioco spec we have spec ⊑F imp.

Proof. Let imp be an internal choice IOTS and spec a convergent, determined internal
choice IOTS. Assume that imp ioco spec holds true. We argue that also spec ⊑F imp
holds true. Towards a contradiction, suppose that spec ̸⊑F imp. Then, by Lemma 27,
Failures(imp) ̸⊆ Failures(spec).

Suppose Failures(imp) ̸⊆ Failures(spec). Pick a failure (w, X) ∈ Failures(imp) such that
(w, X) ̸∈ Failures(spec). Then imp w=⇒ t such that stable(t) holds true and init(t) ∩ X = ∅.
Note that since imp is an internal choice IOTS and stable(t) holds true, we have either
init(t) = ActI or ∅ ⊂ init(t) ⊆ ActU .

Suppose that init(t) = ActI . Because imp is an internal choice IOTS, δ ∈ out(t) and
therefore δ ∈ out(imp after w). Since imp ioco spec, also δ ∈ out(spec after w) and hence
w δ ∈ STraces(spec). This means that there must be some state s such that spec w=⇒ s,
stable(s) and init(s) ∩ ActU = ∅. Pick such a state s. Since spec is an internal choice
IOTS, init(s) = ActI . Note that also init(t) = ActI and therefore init(s) = init(t). But
then also init(s) ∩ X = ∅. Consequently, (w, X) ∈ Failures(spec). Contradiction.
Suppose that ∅ ⊂ init(t) ⊆ ActU . Then ActI ⊆ X. Moreover, because imp ioco spec, we
have ∅ ⊂ init(t) ⊆ out(imp after w) ⊆ out(spec after w). So, there must be some state s

such that spec w=⇒ s and init(t)∩out(s) ̸= ∅. Let s be such a state. Since spec is ultimately
determined, we find that for all x ∈ out(s), there must be some s′ ∈ s after ϵ such that
out(s′) = {x}. Pick some x ∈ init(t) ∩ out(s), and let s′ be such that s′ ∈ s after ϵ and
out(s′) = {x}. This means that out(s′) ⊆ init(t). Since spec is convergent and ultimately
determined, we may assume that s′ is stable. Observe that s′ cannot be quiescent since
out(s′) ⊆ init(t) ⊆ ActU . Since spec ∈ IOT S⊓, we therefore find that ActI ∩ init(s′) = ∅,
and hence init(s′) ⊆ init(t). Consequently, init(s′) ∩ X ⊆ init(t) ∩ X = ∅. From this, we
can conclude that (w, X) ∈ Failures(spec). Contradiction.

Hence, Failures(imp) ⊆ Failures(spec), and therefore spec ⊑F imp. ◀

5 A Small Experiment: Testing Dezyne using mCRL2

As a practical validation of our theory, we apply MBT to a specification and implementation
stemming from an industrial model of a multi-component controller at Philips Image Guided
Therapy systems. The implementation has been generated from specifications in the Dezyne
formal modelling DSL [21, 21]. In the Dezyne development methodology, a system is described
as a hierarchical composition of components by specifying:

a set of behavioural contracts, called interfaces. Each interface provides an abstraction of
a component, the so-called provided interface of the component, and
a behavioural model (a state machine) that describes how a component realises its
behavioural contract, by interacting with subcomponents. The ports via which the
component connects to subcomponents are called required ports, and by association,
the behavioural contracts upon which the component relies are therefore referred to as
required interfaces.
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Table 1 test run results of MBT applied to correct and faulty code-generated implementation.

correct Mutation
average impl. 1 2 3 4 5 6

detection rate 0% 96% 100% 100% 100% 100% 100%
actions required 200 45 41 9 8 10 17

state coverage 96% 80% 85% 46% 46% 63% 53%

The formal check that takes place in Dezyne, before generating code, is whether a component
complies to its provided interface. This check is answered by verifying whether the IOLTS
induced by the provided interface is stable-failures refined by the IOLTS obtained by
combining the IOLTS underlying the component and the IOLTSs underlying the behavioural
contracts of the subcomponents. The actual stable-failures refinement check is conducted
using the mCRL2 toolset [2, 8]. In case a component is found to comply to its provided
interface (and only then), the behavioural model of the component is fully automatically
converted into an equivalent executable C++ program. This way, a correct-by-construction
system can be built from the ground-up, or top-down by specifying, in a step-wise manner,
desired provided interfaces and introducing (sub)components that “implement” these.

For the system that we study in this section, we do not have access to the implementation
of the subcomponents for the required interfaces of our component, but we do have access
to their behavioural contracts and the code that was generated from the main component
itself. In our experiments, we therefore mimic the behaviour of the subcomponents via
a simulator that utilises the IOLTSs of the behavioural contracts of the subcomponents
instead. This yields so-called smart stubs. The specification IOLTS of the multi-component
controller consists of 25 unique states and 54 unique transitions and is stable-failures testable.
As per our theory, the MBT algorithm should not find any non-conformance since the
implementation (the component together with the smart stubs) is a stable-failures refinement
of the specification (the provided interface). Hence, if a non-conformance is found, the
implementation does not reflect the model of the component that was proved to comply
to its behavioural contract, and the non-conformance thus signals an actual issue with the
executable or the platform.

We are interested in assessing whether we can detect erroneous implementations of the
specification using ioco-based MBT techniques. To this end, we test the correct implement-
ation and, in addition, 6 manually created, faulty mutants thereof. The first five faulty
mutants are obtained by altering the implementation of the component such that a single
randomly chosen input which would normally result in a state change, now performs no
actual code execution, and thus results in no state change in the implementation. For the
sixth mutant, each provided interface has been given a preset (1/10) chance of remaining
idle, instead of providing a response when triggered, which should result in a non-conforming
quiescence observation.

Using an on-the-fly MBT algorithm, which implements the original ioco test algorithm [17,
18] in mCRL2, we generated and executed 100 test runs, each consisting of up-to 200
observable actions (including quiescence) for each mutant and for the correct implementation.
The results of this experiment are shown in Table 1. For each set of 100 test runs, we measured
the percentage of runs that detected a non-conformance, the average number of observable
actions (including quiescence) required to observe that non-conformance or terminate (in
the case that no non-conformance is detected) and the average specification state coverage,
i.e., unique states visited during a test-run. We observe that no non-conformances were
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detected when testing the correct implementation. In virtually all of the test runs on incorrect
implementations a non-conformance was detected when using incorrect implementations,
once more confirming the practical relevance of automated testing.

6 Conclusions

We studied the stable-failures refinement relation [15] and its relation to the ioco conformance
testing relation by Tretmans [17, 18]. In particular, we identified a set of experiments – called
stable-failures testable traces – derivable from a specification, for which ioco does not falsely
flag implementations as incorrect when these implementations have been shown to refine the
specification, thus addressing a major obstacle in applying Model-Based Testing techniques
in the Model-Driven Engineering development method. Furthermore, we showed that for
internal choice input output transition systems, these experiments coincide with the full set
of experiments usually associated with the ioco testing theory. To better understand the
limitations of ioco-based testing, we additionally identify conditions under which exhaustive
testing can establish that the implementation refines the specification used for testing.

We did not explore how to implement our testing theory efficiently for specifications whose
stable-failures testable traces are a proper subset of the suspension traces; this is left for
future work. For finite specifications, deriving stable-failures testable traces is easily achieved
by means of a determinisation-like algorithm, constructing a Suspension Automaton [17, 27]
and exploring that structure. For infinite specifications, efficiently deriving and selecting such
stable-failures testable traces on-the-fly would allow to combine the testing methodology
with other on-the-fly testing algorithms.
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