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Abstract
Vector Addition Systems (VAS), aka Petri nets, are a popular model of concurrency. The reachability
set of a VAS is the set of configurations reachable from the initial configuration. Leroux has studied
the geometric properties of VAS reachability sets, and used them to derive decision procedures for
important analysis problems. In this paper we continue the geometric study of reachability sets. We
show that every reachability set admits a finite decomposition into disjoint almost hybridlinear sets
enjoying nice geometric properties. Further, we prove that the decomposition of the reachability
set of a given VAS is effectively computable. As a corollary, we derive a new proof of Hauschildt’s
1990 result showing the decidability of the question whether the reachability set of a given VAS is
semilinear. As a second corollary, we prove that the complement of a reachability set, if it is infinite,
always contains an infinite linear set.
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1 Introduction

Vector Addition Systems (VAS), also known as Petri nets, are a popular model of concurrent
systems. The VAS reachability problem consists of deciding if a target configuration of a
VAS is reachable from some initial configuration. It was proved decidable in the 1980s [8,17],
but its complexity (Ackermann-complete) could only be determined recently [2, 3, 14].

The reachability set of a VAS is the set of all configurations reachable from the initial
configuration. Configurations are tuples of natural numbers, and so the reachability set of a
VAS is a subset of Nn for some n called the dimension of the VAS. Results on the geometric
properties of reachability sets have led to new algorithms in the past. For example, in [12]
it was shown that every configuration outside the reachability set R of a VAS is separated
from R by a semilinear inductive invariant. This immediately leads to an algorithm for
the reachability problem consisting of two semi-algorithms, one enumerating all possible
paths to certify reachability, and one enumerating all semilinear sets and checking if they are
separating inductive invariants. Another example is [13], where it was shown that semilinear
reachability sets are flatable. The result led to an algorithm for deciding whether a semilinear
set is included in or equal to the reachability set of a given VAS.
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6:2 Geometry of Reachability Sets of Vector Addition Systems

The separability and flatability results of [12,13] are proven not only for VAS reachability
sets, but for arbitrary semilinear Petri sets, a larger class with a geometric definition
introduced in [12]. So, in particular, [13] is an investigation into the geometric structure
of semilinear Petri sets. In this paper we study the structure of the non-semilinear Petri
sets. We introduce hybridization, or, equivalently, the class of almost hybridlinear sets, a
generalization of the hybridlinear sets introduced by Ginsburg and Spanier [4] and further
studied by Chistikov and Haase [1]. We prove the following decomposition:

▶ Theorem 1.1. Let X be a Petri set. For every semilinear set S there exists a partition
S = S1 ∪ · · · ∪ Sk into pairwise disjoint full linear sets such that for all i ∈ {1, . . . , k} either
X ∩ Si = ∅, Si ⊆ X or X ∩ Si is irreducible with hybridization Si. Further, if X is the
reachability set of a VAS, then the partition is computable.

Defining hybridization and irreducibility is beyond the scope of this introduction; in fact,
they will be introduced in Section 4 and 5 of this paper. However, we can already explain
two properties of the irreducible sets with a hybridization which, combined with Theorem
1.1, have important consequences.

Firstly, irreducible sets with hybridization are always non-semilinear. This leads to
a simple algorithm for deciding whether the reachability set X ⊆ Nd of a given VAS of
dimension d is semilinear. Let S := Nd and compute the partition S1 ∪ · · · ∪ Sk of Theorem
1.1. For every 1 ≤ i ≤ k, check whether X ∩ Si = ∅ or Si ⊆ X hold1. If this is the case for
all i, then let J be the set of indices i, where Si ⊆ X holds. We have

⋃
i∈J Si = X ∩ S = X,

and so, since S1, . . . , Sk are linear, X is semilinear. Otherwise, by Theorem 1.1 there exists
an i such that X ∩ Si is irreducible with hybridization Si, and hence non-semilinear. Since
semilinear sets are closed under intersection, X is not semilinear. The decidability of the
semilinearity of VAS reachability sets was first proved by Hauschildt [6], and in fact we arrive
at essentially the same algorithm. However, we provide a simpler correctness proof and a
clear geometric intuition. Further, our theorem holds for arbitrary Petri sets, a larger class
than VAS reachability sets.

Secondly, if a set X is irreducible with hybridization S, then there are infinitely many
points in the boundary ∂S of S that do not belong to S, i.e., |∂S \ X| = ∞. This allows
to prove that if S \ X is infinite, then S \ X contains an infinite linear set, which was left
as a conjecture in [7]. Namely the proof is now a simple induction on the dimension of the
semilinear set S: If S \ X is infinite, then some Si \ X is infinite. If for this i, we have
X∩Si = ∅ or Si ⊆ X, then Si \X is semilinear and hence contains an infinite line. Otherwise
we have that |∂Si \ X| = ∞, and hence by induction ∂Si \ X contains an infinite line. This
corollary is a first step towards understanding the complements of VAS reachability sets, for
which little is known.

The sections of the paper follow the structure of the main theorem. Section 2 contains
preliminaries. Section 3 introduces smooth sets, preparing for the introduction of hybridization
and Petri sets in Section 4. Section 5 introduces irreducibility and proves Theorem 1.1.
Section 6 proves the corollaries of Theorem 1.1.

2 Preliminaries

We let N,Z,Q,Q≥0 denote the natural, integer, and (non-negative) rational numbers.

1 It is well known that the first question can be reduced to the VAS reachability problem, and the second
is decidable by the flatability results mentioned before.
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Furthermore, we use uppercase letters except A for sets, with A being used for matrices.
We use boldface for vectors and sets of vectors. We denote the cardinality of a set X as |X|.

Given sets X, Y ⊆ Qn, Z ⊆ Q, we write X + Y := {x + y | x ∈ X, y ∈ Y} and
Z · X := {λ · x | λ ∈ Z, x ∈ X}. By identifying elements x ∈ Qn with {x}, we define
x + X := {x} + X, and similarly λ · X := {λ} · X for λ ∈ Q. We denote by XC the
complement of X. On Qn, we consider the usual Euclidean norm and its generated topology.
We denote the closure of a set X in this topology by X.

A vector space V ⊆ Qn is a set such that 0 ∈ V, V + V ⊆ V and Q · V ⊆ V. Given a set
F ⊆ Qn, the vector space generated by F is the smallest vector space containing F. Every
vector space V is finitely generated (f.g.), i.e. there exists a finite set F ⊆ Qn generating V.
Furthermore, it can also be expressed as {x ∈ Qn | Ax = 0} for some integer matrix A.

2.1 Cones, lattices, and periodic sets
A set C ⊆ Qn is a cone if 0 ∈ C, C + C ⊆ C and Q>0C ⊆ C. Given a set F ⊆ Qn, the cone
generated by F is the smallest cone containing F. If C is a cone, then C − C is the vector
space generated by C. Not every cone is finitely generated (f.g.). Instead, we have:

▶ Lemma 2.1 ( [19, Corollary 7.1a]). Let C ⊆ Qn be a cone. Then C is finitely generated if
and only if C = {x ∈ C − C | Ax ≥ 0} for some integer matrix A.

In particular, finitely generated cones are closed. The interior of a finitely generated
cone C is the set int(C) = {x ∈ C − C | Ax > 0}, where A is a matrix as above. The
boundary of the cone is ∂(C) := C \ int(C). It is well known that the boundary of a cone
is a a finite union of lower dimensional cones, called facets [19]. In fact, there is a defining
matrix A such that the facets are exactly the sets of solutions obtained by changing one of
the inequalities of Ax ≥ 0 into an equality. For example, the left part of Figure 1 shows
the cone {(x, y) | x − y ≥ y, y ≥ 0}. Its facets are the sets {(x, y) | x − y = 0, y ≥ 0} and
{(x, y) | x ≥ y, y = 0} (shown as black lines in the picture), and their union is the boundary
of the cone.

A cone C is definable if it is definable in FO(Q, +, ≥). A cone C is definable iff C \ {0} =
{x ∈ C − C | A1x > 0, A2x ≥ 0} for some integer matrices A1, A2. In this case the closure
C is finitely generated. Intuitively, changing an equation from from ≥ 0 to > 0 removes a
facet. Removing all facets yields int(C).

A set L ⊆ Zn is a lattice if L + L ⊆ L, −L ⊆ L and 0 ∈ L. For any finite set
F = {x1, . . . , xs} ⊆ Nn, the lattice generated by F is Zx1 + · · · +Zxs. Every lattice is finitely
generated, and even has a generating set linearly independent over Q.

A set P ⊆ Nn is a periodic set if P + P ⊆ P and 0 ∈ P. For any set F ⊆ Nn,
the periodic set F∗ generated by F is the smallest periodic set containing F. We have
F∗ = {p1 + · · · + pr | r ∈ N, pi ∈ F for all i}. A periodic set P is finitely generated if P = F∗

for some finite set F. Finitely generated periodic sets are characterized as follows:

▶ Lemma 2.2 ( [13, Lemma V.5]). Let P ⊆ Nn be a periodic set. Then P is finitely generated
as a periodic set if and only if Q≥0P is finitely generated as a cone.

Any set generates a lattice, a cone and a vector space. In the case of periodic sets these
have simple formulas; namely P − P, as well as Q≥0P and VectSp(P) := Q≥0(P − P) =
Q≥0P − Q≥0P respectively. These are also depicted in the right of Figure 1. On the other
hand, if C is a cone and L is a lattice, then C ∩ L is a periodic set. We will consider periodic
sets of this form in more depth in Section 2.3.
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Figure 1 Left: The cone generated by {(1, 1), (1, 0)} is shown in red, with its boundary in
black. The lattice (2, 0)Z + (0, 2)Z is the set of of blue dots. Their intersection is the periodic set
{(2, 0), (2, 2)}∗.
Middle: The periodic set P = {(1, 0), (1, 2), (1, 3)}∗ is shown in blue. Intuitively, the set
{(1, 1), (2, 1), (3, 1), . . .} is a “hole” of P. Inside P we find the red area (2, 3) + P, whose blue
points do not intersect the hole, i.e., (2, 3) + Fill(P) ⊆ P.
Right: Graph comparing the classes of sets defined in Section 2.

2.2 Dimension
The dimension of a vector space defined as its number of generators is a well-known concept.
It can be extended to arbitrary subsets of Qn as follows.

▶ Definition 2.3 ([11, 12]). Let X ⊆ Qn. The dimension of X, denoted dim(X), is the
smallest natural number k such that there exist finitely many vector spaces Vi ⊆ Qn with
dim(Vi) ≤ k and vectors bi ∈ Qn such that X ⊆

⋃r
i=1 bi + Vi.

This dimension function has the following properties.

▶ Lemma 2.4. Let X, X′ ⊆ Qn, b ∈ Qn. Then dim(X) = dim(b + X) and dim(X ∪ X′) =
max{dim(X), dim(X′)}. Further, if X ⊆ X′, then dim(X) ≤ dim(X′).

▶ Lemma 2.5 ([11, Lemma 5.3]). Let P be periodic. Then dim(P) = dim(VectSp(P)).

Lemma 2.5 for example shows that the lattice and the cone depicted in the left of Figure 1,
as well as the periodic set obtained as intersection have dimension 2, because all of them
generate the vector space Q2.

2.3 Finitely generated vs. full periodic sets
A set L is linear if L = b + P with b ∈ Nn and P ⊆ Nn a finitely generated periodic set. A
set S is semilinear if it is a finite union of linear sets. The semilinear sets coincide with the
sets definable via formulas φ ∈ FO(N, +, ≥), also called Presburger Arithmetic. This is the
usual definition of a linear set in theoretical computer science, however, we will work with
a slightly smaller class of linear sets, which we call full linear sets. As shown for example
in [20], working with this smaller class does not change the class of semilinear sets: A set S
is semilinear if and only if it is a finite union of full linear sets, i.e. linear sets b + P where P
is not only finitely generated, but even full, as in the following definition.

▶ Definition 2.6. A periodic P is full if P = C ∩ L, where C is a f.g. cone and L a lattice.

Full linear sets have even been used as the main definition of linear set in the literature
before, for example in [18]. Furthermore, while not directly defined, this class was also
utilized in [12,13] as well. For an example of a finitely generated periodic set which is not
full, consider the middle of Figure 1.
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There is another equivalent definition of full periodic sets, which uses an overapproximation
of a periodic set we call Fill(P). This overapproximation was first introduced in [11] with
the terminology lin(P). However, we avoid this terminology because in [12, 13], the same
author used the same notation with a slightly different meaning.

▶ Definition 2.7. Let P be a periodic set. The fill of P is the set Fill(P) := (P − P) ∩Q≥0P.

Intuitively, we overapproximate P via the intersection of the obvious lattice and cone.
The reason for using the closure of Q≥0P instead of the cone Q≥0P itself is Lemma 2.2: If
the cone is not closed, then the periodic set, in our case Fill(P), is not finitely generated. If
P was already finitely generated, the definitions coincide.

▶ Lemma 2.8. A periodic set P is full if and only if Q≥0P is a f.g. cone and P = Fill(P).

By Lemma 2.2, full periodic sets are finitely generated: Namely, their cone Q≥0P equals
C ∩ Q≥0L, which as intersection of f.g. cones is finitely generated by Lemma 2.1.

Let us conclude this subsection with the main advantage of full linear over linear sets.

▶ Lemma 2.9. Let P, Q periodic, P full, b, c ∈ Qn such that c + Q ⊆ b + P. Then Q ⊆ P.

Proof. Since P is full, by Lemma 2.8 it is sufficient to prove Q ⊆ P − P and Q ⊆ Q≥0P.
To prove Q ⊆ P − P, observe that Q = (c + Q) − c ⊆ (b + P) − (b + P) = P − P.
To prove Q ⊆ Q≥0P, write Q≥0P = {x ∈ VectSp(P) | Ax ≥ 0} for a matrix A, as in

Lemma 2.1. Let Ak be the k-th row of A. It suffices to show Akx ≥ 0 for all x ∈ Q. If we
had Akx < 0, then Ak(c + λx) < Akb for large enough λ, contradicting c + Q ⊆ b + P. ◀

Observe that if we replace full by finitely generated, then the lemma does not hold:
Choose P as the periodic set in the middle of Figure 1, then (2, 3) + {(1, 1)}∗ ⊆ P, and the
property is violated, since (1, 1) ̸∈ P.

Another advantage is that many proofs simplify in the full case. The following such case
will be a cornerstone of our main algorithm:

▶ Lemma 2.10 ([13, Corollary D.3]). Let P be a finitely generated periodic set. For every
x ∈ P the set S := P \ (x + P) is semilinear and satisfies dim(S) < dim(P).

To prove this, first show that P contains v + Fill(P), as in the middle of Figure 1, and
reduce to the case of full periodic P. For full P it is geometrically clear; for example removing
the red cone in the middle of Figure 1 from the set, we are left with a finite union of lines.

3 Smooth Periodic Sets

Not all periodic sets we need in the paper are finitely generated, but they are smooth, a
class introduced by Leroux in [13]. Intuitively, a smooth set P is “close” to being finitely
generated, in the sense that Fill(P) is finitely generated. This result (very similar to a result
of [11]) is proven in Section 3.1. In the rest of the section we show that smooth sets satisfying
a novel condition are closed under intersection and enjoy good properties (Proposition 3.9).

We first reintroduce the set of directions of a periodic set.

▶ Definition 3.1 ([13]). Let P be a periodic set. A vector d ∈ Qn is a direction of P if there
exists m ∈ N>0 and a point x such that x +N · md ⊆ P, i.e. some line in direction d is fully
contained in P. The set of directions of P is denoted dir(P).

We can now define smooth periodic sets.

CONCUR 2023



6:6 Geometry of Reachability Sets of Vector Addition Systems

▶ Definition 3.2 ([13]). Let P be a periodic set.
P is asymptotically definable if dir(P) is a definable cone, i.e. dir(P) \ {0} = {x ∈
VectSp(P) | A1x > 0, A2x ≥ 0} for some integer matrices A1, A2.
P is well-directed if every sequence (pm)m∈N of vectors pm ∈ P has an infinite subsequence
(pmk

)k∈N such that pmk
− pmj

∈ dir(P) for all k ≥ j.
P is smooth if it is asymptotically definable and well-directed.
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Figure 2 Left and middle: The periodic sets P = {(0, 0)} ∪ N2
>0 and P = {(x, y) ∈ N2 | y ≤ x2}

respectively. Neither is finitely generated, but both are smooth with Fill(P) = N2.
Right: Underapproximation of {(x, y) | y ≤ 2x+1} via a union of three cones. The starting points
are respectively (0, 0), (1, 0) and (2, 0).

Figure 2 shows two examples of smooth periodic sets that are not finitely generated.

▶ Example 3.3. Examples of non-smooth sets are P1 = {(x, y) | x ≥√
2y} and P2 = ({(0, 1)} ∪ {(2m, 1) | m ∈ N})∗ = {(x, n) ∈ N2 |

x has at most n bits set to 1 in the binary representation.}. P1 is not asymptotically de-
finable, because defining dir(P) requires irrationals, while P2 is not well-directed (see
observation 2 below).

Intuitively, the “boundaries” of a smooth periodic set in two dimensions are either straight
lines or function graphs “curving outward”, as in the example on the right of Figure 2.

We make a few observations:
1. The set dir(P) is a cone. Indeed, if two lines in different directions d and d′ are contained

in P, then by periodicity P also contains a d, d′ plane, and so P contains a line in every
direction between d and d′.

2. The most important case of Definition 3.2 is when the pm are all on the same infinite line
x + d ·N. Then the definition equivalently states that d ∈ dir(P), i.e. some infinite line in
direction d is contained in P. This makes sets where points are “too scarce” non-smooth.
For instance, the set P2 of Example 3.3 contains infinitely many points on a horizontal
line, but no full horizontal line, which would correspond to an arithmetic progression.

3.1 Fills of Smooth Sets are Finitely Generated
We show that, while a smooth periodic set P may not be finitely generated, the set Fill(P)
always is. We start with the following lemma.

▶ Lemma 3.4. Let P be a periodic set. Then int(Q≥0P) ⊆ Q≥0P ⊆ dir(P) ⊆ Q≥0P.

In particular, all these sets have the same closure.

Proof. Let x ∈ int(C), where C := Q≥0P. Then there exists ε > 0 such that the open ball
B(x, ε) of radius ε around x is contained in C by definition of interior. Hence for every
y ∈ B(x, ε

2 ), there exists f(y) ∈ B(y, ε
4 ) ∩ C by definition of closure. We have surrounded x

by points f(y) ∈ C, hence by convexity of C we have x ∈ C.
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Let d ∈ Q≥0P. Then there exists m ∈ N such that md ∈ P, in particular N · md ⊆ P.
Let d ∈ dir(P). Then by replacing d by a multiple md, there exists x such that

x + N · d ⊆ P. We define the sequence (xm)m∈N via xm := 1
m (x + m · d) ∈ Q≥0P, and

observe that its limit is d, i.e. d ∈ Q≥0P. ◀

▶ Example 3.5. The set on the left of Figure 2 satisfies int(Q≥0P) = Q≥0P ⊊ dir(P) = Q≥0P.
Indeed, int(Q≥0P) contains every direction except north and east, but they both belong
to dir(P). The middle set satisfies int(Q≥0P) ⊊ Q≥0P = dir(P) ⊊ Q≥0P, since int(Q≥0P)
contains neither north nor east, dir(P) contains east, and Q≥0P contains both.

We are now ready to reprove the result:

▶ Proposition 3.6 ([11, Lemma 5.1]). Let P be smooth. Then Fill(P) is full and hence f.g.

Proof. Since P is smooth, dir(P) is definable by definition. By Lemma 3.4 we have Q≥0P =
dir(P). So Q≥0P is the closure of a definable cone, and hence finitely generated by Lemma
2.1. Hence P = Fill(P) is the intersection of a f.g. cone and a lattice, and hence full. ◀

3.2 Underapproximating Periodic Sets
In Section 3.1 we have seen that smooth periodic sets can be overapproximated by full linear
sets in a natural way. Let us combine this with an underapproximation, mainly to provide a
formal basis for the boundary function intuition above.

▶ Proposition 3.7 ([13, Lemma F.1]). Let P be a periodic set. Let F ⊆ Qn finite.
F ⊆ (P − P) ∩ dir(P) if and only if there exists x such that x + F∗ ⊆ P.

Now consider any finitely generated cone C ⊆ dir(P). Then C ∩ (P − P) is full and hence
finitely generated by some set F. By applying Proposition 3.7, we obtain a vector xC ∈ P
such that xC + (C ∩ (P − P)) ⊆ P. This should be viewed as follows: Interpret the lattice
P − P as the set of “candidates” for being in P. Namely, since xC ∈ P, a vector xC + v can
only be in P if v ∈ P − P. Then xC + (C ∩ (P − P)) ⊆ P shows that every candidate in
the given shifted cone (base point non-zero, so strictly speaking not a cone according to our
definition) is actually in P. Repeating this process for larger and larger cones C, we obtain
an underapproximation of P of the form

⋃
f.g. C(xC + C) ∩ (P − P). The union of wider

and wider shifted cones intuitively has a convex function as upper and a concave function as
lower bound, as shown in the right of Figure 2.

Observe that this lower bound did not use smoothness, in general this might hence be a
strict underapproximation, as shown in the right of Figure 2.

3.3 Intersection of Smooth Sets
We would like smooth sets to be closed under intersection. Further, we would like that the
fill of an intersection of smooth sets is the intersection of the fills. However, this does not
hold in general. The following is a counterexample.

▶ Example 3.8. Define P := {0}∪N2
>0, see left of Figure 2, and P′ = {(0, 1)}∗, the y-axis. We

have {0} = dir(P∩P′) ⊊ dir(P)∩dir(P′). Also, {0} = Fill(P∩P′) ⊊ Fill(P)∩Fill(P′) = P′.

Fortunately, we can prove (see the Full version): Smooth sets P, P′ such that Fill(P),
Fill(P′), and Fill(P) ∩ Fill(P′) have the same dimension behave well under intersection.

CONCUR 2023



6:8 Geometry of Reachability Sets of Vector Addition Systems

▶ Proposition 3.9. Let P, P′ be smooth periodic sets such that
dim(Fill(P) ∩ Fill(P′)) = dim(Fill(P)) = dim(Fill(P′)). Then

1. dim(P ∩ P′) = dim(P) = dim(P′).
2. dir(P ∩ P′) = dir(P) ∩ dir(P′).
3. Fill(P ∩ P′) = Fill(P) ∩ Fill(P′).
4. P ∩ P′ is smooth.

4 Petri sets and Hybridizations

We introduce the remaining classes of sets used in our main result: Petri sets and sets
admitting a hybridization. Petri sets were introduced in [11–13]. Hybridizations are a novel
notion, and play a fundamental role in our main result.

4.1 Petri sets

Leroux introduced almost semilinear sets and developed their theory in [12,13]. Intuitively,
they generalize semilinear sets by replacing linear sets with smooth periodic sets.

▶ Definition 4.1 ([12,13]). A set X is almost linear if X = b + P, where b ∈ Nn and P is a
smooth periodic set, and almost semilinear if it is a finite union of almost linear sets.

It was shown in [12,13] that VAS reachability sets are almost semilinear. However, it is
easy to find almost semilinear sets that are not reachability sets of any VAS. Intuitively, the
definition of a smooth periodic set only restricts the “asymptotic behavior” of the set, which
can be “simple” even if the set itself is very “complex”.

▶ Example 4.2. Let Y ⊆ N>0 be any set. Then P := {(0, 0)} ∪ ({1} × Y) ∪ N2
>1 is a

smooth periodic set; indeed, P contains a line in every direction, and is thus well-directed
and asymptotically definable. So P is almost semilinear.

A way to eliminate at least some of these sets is to require that every intersection of the
set with a semilinear set is still almost semilinear, a property enjoyed by all VAS reachability
sets. For instance, assume that in Example 4.2 the set Y is not almost semilinear. Since the
intersection of P and the linear set (1, 0) + (0, 1) · N is equal to Y, we can eliminate P. This
idea leads to the notion of a Petri set.

▶ Definition 4.3 ([12,13]). A set X is called a Petri set if every intersection X ∩ S with a
semilinear set S is almost semilinear.

All smooth periodic sets shown so far are also Petri sets. To see that the positive examples
are indeed Petri sets we can use the following strong theorem from [13].

▶ Theorem 4.4 ([13, Theorem IX.1]). Reachability sets of VAS are Petri sets.

Many sets of the form {(x, y) | y ≤ f(x)} for convex f , or {(x, y) | y ≥ f(x)} for concave
f , and boolean combinations thereof, are VAS reachability sets, and hence Petri sets.
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Figure 3 Left: An almost linear set X = b + P with b = (0, 1) and P = {(x, y) | y ≤ x2} (in
blue). The property X + P ⊆ X implies that the “translation” of X to any point in the set (shown
in brown for a particular point) is included in the set.
Middle: The two smooth periodic sets P1 := {(x, y) | y ≥ log2(x + 1) + 3} ∪ {(0, 0)} in blue and
P2 := {(x, y) | y ≤ x2} in green. Their union is almost hybridlinear, but not almost linear.
Right: The smooth periodic sets P1 := {(x, y) | x ≥ y ≥ log2(x + 1)} and P2 := {(1, 0)}∗. The union
X does not have a hybridization, since P = {(0, 0)} is the only possibility to fulfill X + P ⊆ X.

4.2 Hybridizations
Given a Petri set X ⊆ Nn, it would be very useful to be able to partition Nn into finitely
many semilinear regions S1, . . . , Sk such that the sets Si ∩ X have a simpler structure. In
particular, we would like Si ∩ X to be almost linear. Unfortunately, for some Petri sets no
such partition exists (an example can be found in the full version of the paper). We replace
almost linearity by a slightly weaker notion for which the partition always exists: having a
hybridization (Definition 4.5).

A set is almost linear if there exists a vector b and a smooth periodic set P such that
X = b + P. The following definition is equivalent: There exists a vector b and a smooth
periodic set P such that b ∈ X and X + P ⊆ X ⊆ b + P.

We weaken this condition by requiring only the existence of a vector b and a smooth
periodic set P such that X + P ⊆ X ⊆ b + Fill(P).

That is, we drop the condition b ∈ X, and replace P on the right by the possibly larger
set Fill(P). (For example, the periodic sets on the left of Figure 3 as well as in the middle
satisfy Fill(P) = N2). We then call the set b + Fill(P) a hybridization of X. The formal
definition is as follows, where for technical reasons we also introduce weak hybridizations.

▶ Definition 4.5. Let X ⊆ Nn be non-empty. A set H is a weak hybridization of X if
there exists a finite set B ⊆ Nn and a smooth periodic set P such that H = B + Fill(P) and
X + P ⊆ X ⊆ H. If B = {b}, then H is a hybridization of X.

▶ Remark 4.6. There are full linear weak hybridizations which are not hybridizations. For
example X = 1 + 3N ∪ 2 + 3N has weak hybridization H = {0, 1, 2} + 3N = N. However,
since X does not contain any points congruent to 0 modulo 3, any periodic set P fulfilling
X + P ⊆ X has to fulfill P ⊆ 3N. Hence B cannot be chosen as a singleton.

It follows from this definition that almost linear sets have hybridizations. The reason for
the name (weak) hybridization is that the set H is always hybridlinear, a notion introduced
in [4] by Ginsburg and Spanier and later studied in [1] by Chistikov and Haase. We recall
the definition for future reference.

▶ Definition 4.7. A set H ⊆ Nn is hybridlinear if H = B + P for some finite set B and
some finitely generated periodic set P ⊆ Nn.

We end this section with a characterization of the sets that admit weak hybridizations.
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6:10 Geometry of Reachability Sets of Vector Addition Systems

▶ Definition 4.8. A non-empty set X ⊆ Nn is almost hybridlinear if there exist b1, . . . , br ∈
Nn and smooth P1, . . . , Pr with X =

⋃r
i=1 bi + Pi, such that Fill(Pi) = Fill(Pj) for all i, j.

▶ Theorem 4.9. A non-empty Petri set X ⊆ Nn is almost hybridlinear if and only if it has
a weak hybridization.

This theorem helps to find examples of non-trivial hybridizations (i.e. not of type P
has hybridization Fill(P)). For example [(0, 1) + P1] ∪ [(0, 6) + P2] for P1 = {(x, y) ∈
N2 | y ≤ x2} and P2 = {(x, y) ∈ N2 | y ≥ log2(x + 1)} has weak hybridization N2, since
Fill(P1) = Fill(P2) = N2. This is very similar to the middle of Figure 3. On the other hand,
in the right of Figure 3 the smooth periodic sets barely intersect, and then the union is
usually not almost hybridlinear.

5 Proof of Theorem 1.1

In this section we prove Theorem 1.1. The algorithm and its proof will refine the partition
in three steps, respectively described in Section 5.1, Section 5.2 and Section 5.3: During the
first two steps the sets X ∩ Si are not required to be irreducible, and in addition after the
first step, the Si are allowed to be hybridlinear instead of full linear.

5.1 Existence of a Hybridlinear Partition
We collect five important properties of (weak) hybridizations in Proposition 5.2. Then, we use
these properties to formulate a procedure for producing a partition S = S1 ∪ · · · ∪ Sk of sets,
not necessarily full linear, satisfying the properties of Theorem 1.1 except for irreducibility.
The procedure is described in Figure 4. It is effective for VAS reachability sets, but not in
general.

We start by reminding that the class of hybridlinear sets is closed under intersection.

▶ Lemma 5.1 ([10, Lemma 7.8]). Let b1 + Q1 and b2 + Q2 be linear sets. Then (b1 + Q1) ∩
(b2 + Q2) = B + (Q1 ∩ Q2) for some finite B.

▶ Proposition 5.2. The following statements hold:
1) If H is a weak hybridization of X, then dim(X) = dim(H).
2) If H is a weak hybridization of X and L = b + Q full linear s.t. dim(H ∩ L) = dim(H) =

dim(L), then H ∩ L is a weak hybridization for X ∩ L, or X ∩ L is empty.
3) If H is a (weak) hybridization for both X1 and X2, then H is a (weak) hybridization for

X1 ∪ X2.
4) For every Petri set X and semilinear S there is a partition X ∩ S = X1 ∪ · · · ∪ Xr of

X ∩ S such that every Xi has a (true) hybridization Li.
5) If X is the reachability set of a VAS, then the set {L1, . . . , Lr} of hybridizations of part

4) is computable.

Proof. For proofs 1) and 2), write H := B + Fill(P), where P is smooth and X + P ⊆ X.
1): This follows from the properties of dimension in Lemmas 2.4 and 2.5. In particular,
dim(P) = dim(V), where V is the vector space generated by P, also implies dim(P) =
dim(Fill(P)). Hence X ⊆ H implies dim(X) ≤ dim(P). Since X is non-empty, X + P ⊆ X
implies dim(X) ≥ dim(P).
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Partition(X, S). Input: Petri set X and semilinear set S:

1) If S is empty, return S. If S is not full, compute a partition S1, . . . , Sr of S into full linear
sets, return

⋃r
i=1 Partition(X, Si) and stop.

Otherwise, compute the set L = {L1, . . . , Lr} of hybridizations of the partition X1 ∪ · · · ∪ Xr

of X ∩ S given by Proposition 5.2(4), and move to step 2).
Remark: This step is not effective for arbitrary Petri sets, but it is effective for VAS
reachability sets by Proposition 5.2(5).
If r = 0, i.e., if X ∩ S is empty, then return S and stop. Otherwise, move to step 2).

2) For every Li ∈ L compute a decomposition Ki of LC
i ∩ S into full linear sets, where LC

i is
the complement of Li, and move to step 3).

3) Let M be the set of tuples (M1, . . . , Mr) ∈ ({L1} ∪ K1) × · · · × ({Lr} ∪ Kr) .

For every M ∈ M, let SM := S ∩ M1 ∩ · · · ∩ Mr.
Remark: {SM | M ∈ M} is a partition of S.
For every M ∈ M, define PM as follows: If dim(SM ) < dim(S), then PM :=
Partition(X, SM ), otherwise PM := {SM }. Output

⋃
M∈M PM .

Figure 4 The procedure Partition(X, S).

2): By Lemma 5.1, H ∩ L = F + (Fill(P) ∩ Q) for some finite set F. By Proposition 3.9,
we have that P ∩ Q is smooth and Fill(P ∩ Q) = Fill(P) ∩ Fill(Q) = Fill(P) ∩ Q. We have
X∩L ⊆ H∩L. We also have (X∩L)+(P∩Q) ⊆ X+P ⊆ X and (X∩L)+(P∩Q) ⊆ L+Q ⊆ L,
hence H ∩ L is a weak hybridization of X ∩ L.
3): Write B1 + Fill(P1) = H = B2 + Fill(P2), where P1 for X1 and P2 for X2 are as in the
definition of weak hybridization. By Lemma 5.1, we have H = H∩H = F+[Fill(P1)∩Fill(P2)]
for some finite set F. Define P := P1 ∩ P2 and X := X1 ∪ X2. By Proposition 3.9, P is
smooth and Fill(P) = Fill(P1) ∩ Fill(P2). We also have X + P ⊆ X.
4): Since X is a Petri set, X ∩ S is almost semilinear, and can hence be written as X =⋃r

i=1 bi + Pi for smooth periodic sets Pi ⊆ Nn and points bi ∈ Nn. Every Xi := bi + Pi is
by definition almost hybridlinear with hybridization bi + Fill(Pi), which is a full linear set.
5): 4) can be computed using the Kosaraju-Lambert-Mayr-Sacerdote-Tenney (KLMST)
decomposition [8–10,16]. The KLMST decomposition constructs a finite set of VASS-like
objects, called perfect marked graph transition sequences or perfect MGTSs, such that the
set of reachable configurations of the VAS is the union of the sets of reachable configurations
of the perfect MGTSs. Further, for every perfect MGTS one can effectively construct a set
of linear equations satisfying the following property: the set of solutions of the equation
system is a hybridization of the set of reachable configurations of the perfect MGTS. The
set of solutions of a system of linear equations is always hybridlinear. Moreover, for the
systems derived from MGTSs one can show that the set has a full linear hybridization
(e.g. [10, Lemma 5.1]). This gives us the desired hybridizations L1, . . . , Lr. 2 ◀

2 While Hauschildt already used the KLMST decomposition in [6] in 1990, it took until 2019 [15,16] to
fully understand the theoretical aspects behind the algorithm and its complexity of Ackermann.
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▶ Proposition 5.3. Let X be a Petri set and let S be a semilinear set. Partition(X, S)
produces a partition S = S1 ∪ · · · ∪ Sk into pairwise disjoint hybridlinear sets (not necessarily
full linear) such that for every i the set X ∩ Si is either empty or has weak hybridization Si.
Further, if X is the reachability set of a VAS, then the partition is computable.

Proof. The procedure is depicted in Figure 4, in addition we give an intuitive description
of it: In Step 1) we first partition S into full linear sets and consider them separately. So
assume that S is a full linear set. The procedure uses Proposition 5.2(5) to compute a set of
full linear hybridizations L1, . . . , Lr of a partition X1 ∪ · · · ∪ Xr of X ∩ S. Step 2) considers
all possible sets obtained by picking for each i ∈ {1, . . . , r} either the set Li or a linear set
of its complement (its complement is semilinear, and so a finite union of linear sets), and
intersecting all of them. The procedure adds all the sets having full dimension to the output
partition, and does a recursive call on the others.

Every step can be performed: The set L of Step 1 exists by Proposition 5.2(4). To check
the dimension of a semilinear set S =

⋃r
j=1 bj + F∗

j , which is needed in step 3), we use
Lemma 2.5 to obtain that for F∗

j this is simply the rank of the generator matrix, and by
Lemma 2.4 we have dim(S) = maxj dim(F∗

j ).
Termination: Partition(X, S) only performs a recursive call if S is not a full linear set or on
semilinear sets S′ with dim(S′) < dim(S), hence recursion depth is at most 2 dim(S) + 1 and
termination immediate.
Correctness: The proof obligation for correctness is that for every M = (M1, . . . , Mr) ∈ M,
where SM fulfills dim(SM ) = dim(S), X∩SM is either empty or has SM as weak hybridization.
Therefore fix such M .

▷ Claim 5.4. dim(Mj) = dim(S) for all j.

Proof of Claim. ≥ dim(S) follows since all these sets contain SM , which fulfills dim(SM ) =
dim(S). For the other direction, to prove “≤” for j where we choose Lj we have dim(S) ≥
dim(X ∩ S) = maxj dim(Lj) by Proposition 5.2. For other j we use LC

j ∩ S ⊆ S. ◁

The claim allows us to use Proposition 5.2(2). Let Xj be such that X ∩ S =
⋃r

j=1 Xj

and Xj has hybridization Lj . By applying Proposition 5.2(2) enough times, for every j

with Mj = Lj , we obtain that Xj ∩ SM has weak hybridization SM . This does not depend
on j because intersecting with Lj twice does not change the set. For all other j we have
Xj ∩ SM = ∅, since we intersect with the complement of an overapproximation. Hence
X∩SM =

⋃
j,Mj=Lj

(Xj ∩SM ) has weak hybridization SM by Proposition 5.2(3), or is empty
if we never chose Mj = Lj . ◀

5.2 Existence of a Full Linear Partition
We show that Proposition 5.3 can be strengthened to make the sets Si not only hybridlinear,
but even full linear, in a way that the sets Si are actually (true) hybridizations.

▶ Proposition 5.5. Let X be a Petri set. For every semilinear set S there exists a partition
S = S1 ∪ · · · ∪ Sk of S into pairwise disjoint full linear sets such that for every i the set
X ∩ Si is either empty or has hybridization Si. Further, if X is the reachability set of a VAS,
then the partition is computable.

Proof. The main algorithm uses a subroutine with the same inputs and outputs as itself, but
with the promise that X ∩ S has weak hybridization S. We first describe the main algorithm,
and then the subroutine.
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Main algorithm: First apply Proposition 5.3 to obtain a partition S = S1 ∪ · · · ∪ Sk into
hybridlinear sets otherwise satisfying the conditions. Output

⋃k
i=1 Subroutine(X, Si).

Subroutine: If S is already full linear, return S. Otherwise write S = {c1, . . . , cr}+Fill(P).
Let j ∼ k ⇐⇒ cj − ck ∈ Fill(P) − Fill(P) = P − P. Compute a system R of representatives
for ∼. For every i ∈ R, define Si := ci + Fill(P). Define S′ := S \

⋃
i∈R Si and output

{Si | i ∈ R} ∪ MainAlgorithm(X, S′).
Termination: We prove that recursion depth ≤ 2 dim(S) + 1 by proving dim(S′) < dim(S)

in the subroutine. For every equivalence class C of ∼, there exists c ∈ Zn such that cj −c ∈ P
for all j ∈ C. To see this, fix some i ∈ C, and write cj − ci = pj − p′

j ∈ P − P. Choose
c := ci −

∑
j∈C p′

j .
Then

⋃
j∈C cj + Fill(P) ⊆ c + Fill(P), and hence using Lemma 2.10 we obtain

dim(
⋃

j∈C cj + Fill(P) \ Si) ≤ dim(c + Fill(P) \ ci + Fill(P)) < dim(Fill(P)).
Correctness: The main algorithm is clearly correct if the subroutine is. In the subroutine,

we have Si ∩ Sj = ∅ since i ̸∼ j for i, j ∈ R. All Si are full linear by definition. Further-
more, X ∩ Si has weak hybridization H ∩ Si = Si by Proposition 5.2(2). To obtain that
the hybridization is not weak, observe that Proposition 5.2(2) specifically shows that the
intersection of the representations, which is the full linear representation of Si, is a weak
hybridization. ◀

5.3 Reducibility of almost hybridlinear Sets
The final ingredient of our main result is reducibility. We name it after its counterpart in
Hauschildt’s PhD thesis [6].

▶ Definition 5.6. A set X with hybridization c + Fill(P) is reducible if there exists x such
that x + Fill(P) ⊆ X.

In other words, X is reducible if every large enough point of its hybridization is already
in X. Observe that this does not follow from hybridization, as Fill(P) is larger than P.
Our usual examples of sets with hybridization are smooth periodic sets, these also illustrate
reducibility: The set in the left of Figure 2 is reducible, while the middle is not. Another
example of hybridization was in the middle of Figure 3, this set is also reducible. In fact,
whenever X = b + P, X is reducible if and only if dir(P) = Q≥0P. Namely, use Proposition
3.7 with F the generators of Fill(P). For other sets X, write X =

⋃r
i=1 bi + Pi as almost

hybridlinear set. Whether it is reducible again only depends on the cones dir(Pi), for a proof
see the full version. Since matrices for the definable cones dir(Pi) can in the case of VAS be
determined using KLMST-decomposition [6], we obtain the following.

▶ Theorem 5.7 ([6, even without promise]). The following problem is decidable.
Input: Reachability set R, represented via the transitions of the VASS, full linear set S.
Promise: R ∩ S has hybridization S.
Output: Is R ∩ S reducible?

We can now prove our main result.

▶ Theorem 1.1. Let X be a Petri set. For every semilinear set S there exists a partition
S = S1 ∪ · · · ∪ Sk into pairwise disjoint full linear sets such that for all i ∈ {1, . . . , k} either
X ∩ Si = ∅, Si ⊆ X or X ∩ Si is irreducible with hybridization Si. Further, if X is the
reachability set of a VAS, then the partition is computable.

Proof. Step 1: Use Proposition 5.5 to compute a partition S = S1 ∪ · · · ∪ Sk into full linear
sets such that X∩Si has hybridization Si if it is non-empty. For every set Si with X∩Si ̸= ∅
do Step 2.
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Step 2: Decide whether X ∩ Si is reducible using Theorem 5.7. If irreducible, output Si.
Otherwise, there exists x such that x + Q ⊆ X ∩ Si, where Si = c + Q. Find such an x, add
x + Q ⊆ X to the final partition and do a recursive call on Si \ (x + Q).

Termination: We claim that we only perform recursion on S′ with dim(S′) < dim(S).
To see this, take Si = c + Q such that X ∩ Si is reducible. We have dim(Si \ x + Q) =
dim(c+Q\x+Q) < dim(Q) by Lemma 2.10, wherefore the recursion uses a lower dimensional
set, and termination follows from bounded recursion depth.

Correctness: Follows from correctness of Proposition 5.5.
The partition is computable for VAS: We have to be able to find x with x + Q ⊆ X given

the promise that such an x exists. This is possible since containment of semilinear sets in
reachability sets is decidable by [13] using flatability. ◀

6 Corollaries of Theorem 1.1

6.1 VAS semilinearity is decidable
We reprove that the semilinearity problem for VAS is decidable. We start with a lemma,
whose full proof is in the full version.

▶ Lemma 6.1. Let X be a semilinear Petri set with hybridization c+Q. Then X is reducible.

Proof idea. The hybridization describes all “limit directions”, with the problematic ones
being for example “north” in case of the parabola {(x, y) | y ≤ x2}, which is a limit but not
actually a direction. If X is semilinear though, then the steepness can only increase finitely
often, namely when changing to a different linear component, and all limit directions are
actually also directions. Using this for generators of Fill(P) we find x + Fill(P) ⊆ X. ◀

▶ Corollary 6.2 ([6]). The following problem is decidable.
Input: Reachability set R of VAS, semilinear S.
Output: Is R ∩ S semilinear?

Proof. As also mentioned in the introduction, the algorithm computes the partition of
Theorem 1.1 and checks whether the third case does not occur.

Correctness: If R ∩ S is semilinear, then in particular R ∩ Si is semilinear for every part
Si of the partition. By Lemma 6.1, R ∩ Si cannot be irreducible, and so either R ∩ Si = ∅
or Si ⊆ R for all i.

On the other hand, if only the cases R ∩ Si = ∅ and Si ⊆ R occur, then the Si such that
Si ⊆ R form a semilinear representation. ◀

6.2 On the Complement of a VAS Reachability Set
We show that if the complement of a VAS reachability set is infinite, then it contains an
infinite linear set. The main part of the argument was already depicted in the middle of
Figure 3: If X contains enough of the boundary, then it is reducible.

We hence need to formalize the notion of boundary and interior also for full linear sets.
If L = b + Q is a full linear set, then int(L) := b + (Q ∩ int(Q≥0Q)) is the interior of
L and ∂(L) := b + (Q ∩ ∂(Q≥0Q)) is the boundary of L, both are inherited from the
cone. These sets are both semilinear, as can be seen by using the definition expressible via
φ ∈ FO(N, +, ≥), i.e. Presburger Arithmetic. Remember that we consider definable cones,
i.e. cones expressible in FO(Q, +, ≥). In the full version, we prove the following proposition,
formalizing the first part of the proof.
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Figure 5 Let C be the cone generated by (2, 1) and (1, 2) and assume that X + [(1, 1) + C] ⊆ X
holds. Then (0, 0) ∈ X implies that the whole red shifted cone is in X. Importantly, we obtain a
similar shifted cone for every point x′ ∈ X. Hence if ∂N2 ⊆ X, then almost all of N2 is contained
in X.

▶ Proposition 6.3. Let X be a set with hybridization c + Fill(P). Assume that |∂(c +
Fill(P)) \ X| < ∞. Then X is reducible.

The proof of Proposition 6.3 is illustrated in the above figure. The main difficulty is
defining a “wide enough” cone C, then Proposition 3.7 applied to C ∩ (P − P) does the rest.

▶ Corollary 6.4. Let X be a Petri set. Let S be a semilinear set such that S \ X is infinite.
Then S \ X contains an infinite linear set.

Proof. Proof by induction on dim(S). If dim(S) = 0, the property holds vacuously. Else
consider the partition of Theorem 1.1. Since S \ X is infinite, some Si \ X is infinite. Fix
such an i. Because of Theorem 1.1, Si ⊆ X or X ∩ Si = ∅ or X ∩ Si is irreducible. In
fact, only the third possibility is interesting. If Si ⊆ X, then Si \ X can not be infinite.
If Si ∩ X = ∅ then Si = Si \ X, hence it contains a line. Let us consider the case when
Si ∩ X is irreducible. Assume for contradiction that Si \ X does not contain an infinite
linear set. Then in particular ∂(Si) \ X does not. We have dim(∂(Si)) < dim(Si), since the
boundary is contained in the finite union of the facets. Hence |∂(Si) \ X| < ∞ by induction.
By Proposition 6.3, X ∩ Si is reducible. Contradiction. ◀

In the full version, we even prove another corollary of the partition. The proof is based
on the existence of a partition as in Theorem 1.1, which has the properties for two Petri sets
X1 and X2 at once.

▶ Corollary 6.5. Let X1 and X2 be Petri sets with X1 ∩ X2 = ∅. Then there exists a
semilinear set S′ such that X1 ⊆ S′ and X2 ∩ S′ = ∅.

▶ Corollary 6.6. Let V be a VAS, and X a Petri set such that Reach(V) ∩ X = ∅. Then there
exists a semilinear inductive invariant S′ of V such that Reach(V) ⊆ S′ and X ∩ S′ = ∅.

7 Conclusion

We have introduced hybridizations, and used them to prove a powerful decomposition theorem
for Petri sets. For VAS reachabillity sets the decomposition can be effectively computed. We
have derived several geometric and computational results. We think that our decomposition
can help to study the computational power of VAS. For example, it leads to this corollary:

▶ Corollary 7.1. Let f : N → N be a function whose graph does not contain an infinite line.
Then either {(x, y) | y < f(x)} or {(x, y) | y > f(x)} is not a Petri set.
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Proof. Assume for contradiction that both are Petri sets. Then, since finite unions of Petri
sets are again Petri sets, {(x, y) | y ̸= f(x)} is a Petri set. Its complement is the graph of f ,
which by assumption does not contain an infinite line. Contradiction to Corollary 6.4. ◀

We plan to study other possible applications of our result, derived from the fact that the
reachability relation of a VAS is also a Petri set.
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