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Abstract
We consider networks of processes that all execute the same finite-state protocol and communicate
via a rendez-vous mechanism. When a process requests a rendez-vous, another process can respond
to it and they both change their control states accordingly. We focus here on a specific semantics,
called non-blocking, where the process requesting a rendez-vous can change its state even if no
process can respond to it. In this context, we study the parameterised coverability problem of a
configuration, which consists in determining whether there is an initial number of processes and an
execution allowing to reach a configuration bigger than a given one. We show that this problem is
EXPSPACE-complete and can be solved in polynomial time if the protocol is partitioned into two
sets of states, the states from which a process can request a rendez-vous and the ones from which
it can answer one. We also prove that the problem of the existence of an execution bringing all
the processes in a final state is undecidable in our context. These two problems can be solved in
polynomial time with the classical rendez-vous semantics.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases Parameterised verification, Coverability, Counter machines

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2023.7

Related Version Full Version: https://arxiv.org/abs/2307.04546 [14]

1 Introduction

Verification of distributed/concurrent systems. Because of their ubiquitous use in applic-
ations we rely on constantly, the development of formal methods to guarantee the correct
behaviour of distributed/concurrent systems has become one of the most important research
directions in the field of computer systems verification in the last two decades. Unfortunately,
such systems are difficult to analyse for several reasons. Among others, we can highlight two
aspects that make the verification process tedious. First, these systems often generate a large
number of different executions due to the various interleavings generated by the concurrent
behaviours of the entities involved. Understanding how these interleavings interact is a
complex task which can often lead to errors at the design-level or make the model of these
systems very complex. Second, in some cases, the number of participants in a distributed
system may be unbounded and not known a priori. To fully guarantee the correctness of such
systems, the analysis would have to be performed for all possible instances of the system,
i.e., an infinite number of times. As a consequence, classical techniques to verify finite state
systems, like testing or model-checking, cannot be easily adapted to distributed systems and
it is often necessary to develop new techniques.
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7:2 Safety Analysis of Parameterised Networks with Non-Blocking Rendez-Vous

Parameterised verification. When designing systems with an unbounded number of parti-
cipants, one often provides a schematic program (or protocol) intended to be implemented by
multiple identical processes, parameterised by the number of participants. In general, even
if the verification problem is decidable for a given instance of the parameter, verifying all
possible instances is undecidable ([3]). However, several settings come into play that can be
adjusted to allow automatic verification. One key aspect to obtain decidability is to assume
that the processes do not manipulate identities and use simple communication mechanisms
like pairwise synchronisation (or rendez-vous) [13], broadcast of a message to all the entities
[10] (which can as well be lossy in order to simulate mobility [6]), shared register containing
values of a finite set [11], and so on (see [9] for a survey). In every aforementioned case, all the
entities execute the same protocol given by a finite state automaton. Note that parameterised
verification, when decidable like in the above models, is also sometimes surprisingly easy,
compared to the same problem with a fixed number of participants. For instance, liveness
verification of parameterised systems with shared memory is Pspace-complete for a fixed
number of processes and in NP when parameterised [7].

Considering rendez-vous communication. In one of the seminal papers for the verification
of parameterised networks [13], German and Sistla (and since then [4, 15]) assume that the
entities communicate by “rendez-vous”, a synchronisation mechanism in which two processes
(the sender and the receiver) agree on a common action by which they jointly change their
local state. This mechanism is synchronous and symmetric, meaning that if no process is
ready to receive a message, the sender cannot send it. However, in some applications, such
as Java Thread programming, this is not exactly the primitive that is implemented. When
a Thread is suspended in a waiting state, it is woken up by the reception of a message
notify sent by another Thread. However, the sender is not blocked if there is no suspended
Thread waiting for its message; in this case, the sender sends the notify anyway and the
message is simply lost. This is the reason why Delzanno et. al. have introduced non-blocking
rendez-vous in [5] a communication primitive in which the sender of a message is not blocked
if no process receives it. One of the problems of interest in parameterised verification is the
coverability problem: is it possible that, starting from an initial configuration, (at least)
one process reaches a bad state? In [5], and later in [20], the authors introduce variants
of Petri nets to handle this type of communication. In particular, the authors investigate
in [20] the coverability problem for an extended class of Petri nets with non-blocking arcs,
and show that for this model the coverability problem is decidable using the techniques of
Well-Structured Transitions Systems [1, 2, 12]. However, since their model is an extension of
Petri nets, the latter problem is Expspace-hard [17] (no upper bound is given). Relying on
Petri nets to obtain algorithms for parameterised networks is not always a good option. In
fact, the coverability problem for parameterised networks with rendez-vous is in P [13], while
it is Expspace-complete for Petri nets [19, 17]. Hence, no upper bound or lower bound can
be directly deduced for the verification of networks with non-blocking rendez-vous from [20].

Our contributions. We show that the coverability problem for parameterised networks with
non-blocking rendez-vous communication over a finite alphabet is Expspace-complete. To
obtain this result, we consider an extension of counter machines (without zero test) where
we add non-blocking decrement actions and edges that can bring back the machine to its
initial location at any moment. We show that the coverability problem for these extended
counter machines is Expspace-complete (Section 3) and that it is equivalent to our problem
over parameterised networks (Section 4). We consider then a subclass of parameterised
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networks – wait-only protocols – in which no state can allow to both request a rendez-vous
and wait for one. This restriction is very natural to model concurrent programs since when a
thread is waiting, it cannot perform any other action. We show that coverability problem
can then be solved in polynomial time (Section 5). Finally, we show that the synchronization
problem, where we look for a reachable configuration with all the processes in a given state,
is undecidable in our framework, even for wait-only protocols (Section 6).

Due to lack of space, some proofs are only given in [14].

2 Rendez-vous Networks with Non-Blocking Semantics

For a finite alphabet Σ, we let Σ∗ denote the set of finite sequences over Σ (or words). Given
w ∈ Σ∗, we let |w| denote its length: if w = w0 . . . wn−1 ∈ Σ∗, then |w| = n. We write N to
denote the set of natural numbers and [i, j] to represent the set {k ∈ N | i ≤ k and k ≤ j}
for i, j ∈ N. For a finite set E, the set NE represents the multisets over E. For two elements
m, m′ ∈ NE , we denote m + m′ the multiset such that (m + m′)(e) = m(e) + m′(e) for all
e ∈ E. We say that m ≤ m′ if and only if m(e) ≤ m′(e) for all e ∈ E. If m ≤ m′, then
m′ − m is the multiset such that (m′ − m)(e) = m′(e) − m(e) for all e ∈ E. Given a subset
E′ ⊆ E and m ∈ NE , we denote by ||m||E′ the sum Σe∈E′m(e) of elements of E′ present in
m. The size of a multiset m is given by ||m|| = ||m||E . For e ∈ E, we use sometimes the
notation HeI for the multiset m verifying m(e) = 1 and m(e′) = 0 for all e′ ∈ E \ {e} and,
to represent for instance the multiset with four elements a, b, b and c, we will also use the
notations Ha, b, b, cI or Ha, 2 · b, cI.

2.1 Rendez-Vous Protocols
We can now define our model of networks. We assume that all processes in the network follow
the same protocol. Communication in the network is pairwise and is performed by rendez-vous
through a finite communication alphabet Σ. Each process can either perform an internal
action using the primitive τ , or request a rendez-vous by sending the message m using the
primitive !m or answer to a rendez-vous by receiving the message m using the primitive ?m (for
m ∈ Σ). Thus, the set of primitives used by our protocols is RV (Σ) = {τ}∪{?m, !m | m ∈ Σ}.

▶ Definition 2.1 (Rendez-vous protocol). A rendez-vous protocol (shortly protocol) is a tuple
P = (Q, Σ, qin, qf , T ) where Q is a finite set of states, Σ is a finite alphabet, qin ∈ Q is the
initial state, qf ∈ Q is the final state and T ⊆ Q × RV (Σ) × Q is the finite set of transitions.

For a message m ∈ Σ, we denote by R(m) the set of states q from which the message m

can be received, i.e. states q such that there is a transition (q, ?m, q′) ∈ T for some q′ ∈ Q.
A configuration associated to the protocol P is a non-empty multiset C over Q for which

C(q) denotes the number of processes in the state q and ||C|| denotes the total number
of processes in the configuration C. A configuration C is said to be initial if and only if
C(q) = 0 for all q ∈ Q \ {qin}. We denote by C(P) the set of configurations and by I(P) the
set of initial configurations. Finally for n ∈ N \ {0}, we use the notation Cn(P) to represent
the set of configurations of size n, i.e. Cn(P) = {C ∈ C(P) | ||C|| = n}. When the protocol is
made clear from the context, we shall write C, I and Cn.

We explain now the semantics associated with a protocol. For this matter we define
the relation −→P ⊆

⋃
n≥1 Cn ×

(
{τ} ∪ Σ ∪ {nb(m) | m ∈ Σ}

)
× Cn as follows (here nb(·) is a

special symbol). Given n ∈ N \ {0} and C, C ′ ∈ Cn and m ∈ Σ, we have:

CONCUR 2023
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qin q1

q5

q3

q4 q6

q2

!a

?b !c

?a

?b !b
?c

Figure 1 Example of a rendez-vous protocol P.

1. C
τ−→P C ′ iff there exists (q, τ, q′) ∈ T such that C(q) > 0 and C ′ = C − HqI + Hq′I

(internal);
2. C

m−→P C ′ iff there exists (q1, !m, q′
1) ∈ T and (q2, ?m, q′

2) ∈ T such that C(q1) > 0 and
C(q2) > 0 and C(q1) + C(q2) ≥ 2 (needed when q1 = q2) and C ′ = C − Hq1, q2I + Hq′

1, q′
2I

(rendez-vous);

3. C
nb(m)−−−−→P C ′ iff there exists (q1, !m, q′

1) ∈ T , such that C(q1) > 0 and (C − Hq1I)(q2) = 0
for all (q2, ?m, q′

2) ∈ T and C ′ = C − Hq1I + Hq′
1I (non-blocking request).

Intuitively, from a configuration C, we allow the following behaviours: either a process
takes an internal transition (labeled by τ), or two processes synchronize over a rendez-vous m,
or a process requests a rendez-vous to which no process can answer (non-blocking sending).

This allows us to define SP the transition system (C(P), −→P) associated to P. We will
write C −→P C ′ when there exists a ∈ {τ} ∪ Σ ∪ {nb(m) | m ∈ Σ} such that C

a−→P C ′ and
denote by −→∗

P the reflexive and transitive closure of −→P . Furthermore, when made clear
from the context, we might simply write −→ instead of −→P . An execution is a finite sequence
of configurations ρ = C0C1 . . . such that, for all 0 ≤ i < |ρ|, Ci −→P Ci+1. The execution is
said to be initial if C0 ∈ I(P).

▶ Example 2.2. Figure 1 provides an example of a rendez-vous protocol where qin is the
initial state and q1 the final state. A configuration associated to this protocol is for instance
the multiset H2 · q1, 1 · q4, 1 · q5I and the following sequence represents an initial execution:
H2 · qinI

nb(a)−−−−→ Hqin, q5I
b−→ Hq1, q6I

c−→ H2 · q2I.

▶ Remark 2.3. When we only allow behaviours of type (internal) and (rendez-vous), this
semantics corresponds to the classical rendez-vous semantics ([13, 4, 15]). In opposition,
we will refer to the semantics defined here as the non-blocking semantics where a process
is not blocked if it requests a rendez-vous and no process can answer to it. Note that
all behaviours possible in the classical rendez-vous semantics are as well possible in the
non-blocking semantics but the converse is false.

2.2 Verification Problems
We now present the problems studied in this work. For this matter, given a protocol
P = (Q, Σ, qin, qf , T ), we define two sets of final configurations. The first one F∃(P) = {C ∈
C(P) | C(qf ) > 0} characterises the configurations where one of the processes is in the final
state. The second one F∀(P) = {C ∈ C(P) | C(Q \ {qf }) = 0} represents the configurations
where all the processes are in the final state. Here again, when the protocol is clear from
the context, we might use the notations F∃ and F∀. We study three problems: the state
coverability problem (SCover), the configuration coverability problem (CCover) and the
synchronization problem (Synchro), which all take as input a protocol P and can be stated
as follows:
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Problem name Question

SCover Are there C0 ∈ I and Cf ∈ F∃, such that C0 −→∗ Cf ?
CCover Given C ∈ C, are there C0 ∈ I and C′ ≥ C, such that C0 −→∗ C′?
Synchro Are there C0 ∈ I and Cf ∈ F∀, such that C0 −→∗ Cf ?

▶ Remark 2.4. The difficulty in solving these problems lies in the fact that we are seeking for
an initial configuration allowing a specific execution but the set of initial configurations is
infinite.

The difference between SCover and Synchro is that in the first one we ask for at least
one process to end up in the final state whereas the second one requires all the processes to
end in this state. Note that SCover is an instance of CCover but Synchro is not.

Observe that SCover should be seen as a safety property: if qf is an error state and the
answer is negative, then for any number of processes, no process will ever be in that error
state.

▶ Example 2.5. The rendez-vous protocol of Figure 1 is a positive instance of SCover, as
shown in Example 2.2. However, this is not the case for Synchro: if an execution brings a
process in q2, this process cannot be brought afterwards to q1. If q2 is the final state, P is
now a positive instance of Synchro (see Example 2.2). Note that if the final state is q4, P
is not a positive instance of SCover anymore. In fact, the only way to reach a configuration
with a process in q4 is to put (at least) two processes in state q5 as this is the only state from
which one process can send the message b. However, this cannot happen, since from an initial
configuration, the only available action consists in sending the message a as a non-blocking
request. Once there is one process in state q5, any other attempt to put another process in
this state will induce a reception of message a by the process already in q5, which will hence
leave q5. Finally, note that for any n ∈ N, the configuration Hn · q3I is coverable, even if P
with q3 as final state is not a positive instance of Synchro.

3 Coverability for Non-Blocking Counter Machines

We first detour into new classes of counter machines, which we call non-blocking counter
machines and non-blocking counter machines with restore, in which a new way of decrementing
the counters is added to the classical one: a non-blocking decrement, which is an action that
can always be performed. If the counter is strictly positive, it is decremented; otherwise it is
let to 0. We show that the coverability of a control state in this model is Expspace-complete,
and use this result to solve coverability problems in rendez-vous protocols.

To define counter machines, given a set of integer variables (also called counters) X, we
use the notation CAct(X) to represent the set of associated actions given by {x+, x−, x=0 |
x ∈ X} ∪ {⊥}. Intuitively, x+ increments the value of the counter x, while x− decrements it
and x=0 checks if it is equal to 0. We are now ready to state the syntax of this model.

▶ Definition 3.1. A counter machine (shortly CM) is a tuple M = (Loc, X, ∆, ℓin) such that
Loc is a finite set of locations, ℓin ∈ Loc is an initial location, X is a finite set of counters,
and ∆ ⊆ Loc × CAct(X) × Loc is finite set of transitions.

We will say that a CM is test-free (shortly test-free CM) whenever ∆ ∩ Loc × {x=0 | x ∈
X} × Loc = ∅. A configuration of a CM M = (Loc, X, ∆, ℓin) is a pair (ℓ, v) where ℓ ∈ Loc
specifies the current location of the CM and v ∈ NX associates to each counter a natural
value. The size of a CM M is given by |M | = |Loc|+ |X|+ |∆|. Given two configurations (ℓ, v)
and (ℓ′, v′) and a transition δ ∈ ∆, we define (ℓ, v) δ

⇝M (ℓ′, v′) if and only if δ = (ℓ, op, ℓ′)
and one of the following holds:

CONCUR 2023
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op = ⊥ and v = v′;
op = x+ and v′(x) = v(x) + 1 and
v′(x′) = v(x′) for all x′ ∈ X \ {x};
op = x− and v′(x) = v(x) − 1 and v′(x′) = v(x′) for all x′ ∈ X \ {x};
op = x=0 and v(x) = 0 and v′ = v.

In order to simulate the non-blocking semantics of our rendez-vous protocols with counter
machines, we extend the class of test-free CM with non-blocking decrement actions.

▶ Definition 3.2. A non-blocking test-free counter machine (shortly NB-CM) is a tuple
M = (Loc, X, ∆b, ∆nb, ℓin) such that (Loc, X, ∆b, ℓin) is a test-free CM and ∆nb ⊆ Loc ×
{nb(x−) | x ∈ X} × Loc is a finite set of non-blocking transitions.

Observe that in a NB-CM, both blocking and non-blocking decrements are possible, depending
on the type of transition taken. Again, a configuration is given by a pair (ℓ, v) ∈ Loc × NX .
Given two configurations (ℓ, v) and (ℓ, v′) and δ ∈ ∆b ∪∆nb, we extend the transition relation
(ℓ, v) δ

⇝M (ℓ, v′) over the set ∆nb in the following way: for δ = (ℓ, nb(x−), ℓ′) ∈ ∆nb, we
have (ℓ, v) δ

⇝M (ℓ′, v′) if and only if v′(x) = max(0, v(x) − 1), and v′(x′) = v(x′) for all
x′ ∈ X \ {x}.

We say that M is an NB-CM with restore (shortly NB-R-CM) when (ℓ, ⊥, ℓin) ∈ ∆ for
all ℓ ∈ Loc, i.e. from each location, there is a transition leading to the initial location with
no effect on the counters values.

For a CM M with set of transitions ∆ (resp. an NB-CM with sets of transitions ∆b and
∆nb), we will write (ℓ, v)⇝M (ℓ′, v′) whenever there exists δ ∈ ∆ (resp. δ ∈ ∆b ∪ ∆nb) such
that (ℓ, v) δ

⇝M (ℓ′, v′) and use ⇝∗
M to represent the reflexive and transitive closure of ⇝M .

When the context is clear we shall write ⇝ instead of ⇝M . We let 0X be the valuation
such that 0X(x) = 0 for all x ∈ X. An execution is a finite sequence of configurations
(ℓ0, v0) ⇝ (ℓ1, v1) ⇝ . . . ⇝ (ℓk, vk). It is said to be initial if (ℓ0, v0) = (ℓin, 0X). A
configuration (ℓ, v) is called reachable if (ℓin, 0X)⇝∗ (ℓ, v).

We shall now define the coverability problem for (non-blocking test-free) counter machines,
which asks whether a given location can be reached from the initial configuration. We denote
this problem Cover[M], for M ∈ {CM, test-free CM, NB-CM, NB-R-CM}. It takes as input
a machine M in M (with initial location ℓin and working over a set X of counters) and a
location ℓf and it checks whether there is a valuation v ∈ NX such that (ℓin, 0X)⇝∗ (ℓf , v).

In the rest of this section, we will prove that Cover[NB-R-CM] is Expspace-complete.
To this end, we first establish that Cover[NB-CM] is in Expspace, by an adaptation of
Rackoff’s proof which shows that coverability in Vector Addition Systems is in Expspace
[19]. This gives also the upper bound for NB-R-CM, since any NB-R-CM is a NB-CM. This
result is established by the following theorem, whose proof is omitted due to lack of space.

▶ Theorem 3.3. Cover[NB-CM] and Cover[NB-R-CM] are in Expspace.

To obtain the lower bound, inspired by Lipton’s proof showing that coverability in Vector
Addition Systems is Expspace-hard [8, 17], we rely on 2Exp-bounded test-free CM. We say
that a CM M = (Loc, X, ∆, ℓin) is 2Exp-bounded if there exists n ∈ O(|M |) such that any
reachable configuration (ℓ, v) satisfies v(x) ≤ 22n for all x ∈ X. We use then the following
result.

▶ Theorem 3.4 ([8, 17]). Cover[2Exp-bounded test-free CM] is Expspace-hard.
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ℓ′
in ℓa ℓb ℓin ℓfRstInc Counter Machine M

⊥ ⊥

Restore transitions

Figure 2 The NB-R-CM N .

We now show how to simulate a 2Exp-bounded test-free CM by a NB-R-CM, by carefully
handling restore transitions that may occur at any point in the execution. We will ensure
that each restore transition is followed by a reset of the counters, so that we can always
extract from an execution of the NB-R-CM a correct initial execution of the original test-free
CM. The way we enforce resetting of the counters is inspired by the way Lipton simulates
0-tests of a CM in a test-free CM. As in [17, 8], we will describe the final NB-R-CM by means
of several submachines. To this end, we define procedural non-blocking counter machines that
are NB-CM with several identified output states: formally, a procedural-NB-CM is a tuple
N = (Loc, X, ∆b, ∆nb, ℓin, Lout) such that (Loc, X, ∆b, ∆nb, ℓin) is a NB-CM, Lout ⊆ Loc,
and there is no outgoing transition from states in Lout.

Now fix a 2Exp-bounded test-free CM M = (Loc, X, ∆, ℓin), ℓf ∈ Loc the location to be
covered. There is some c, such that, any reachable configuration (ℓ, v) satisfies v(x) < 22c|M|

for all x ∈ X, fix n = c|M |. We build a NB-R-CM N as pictured in Figure 2. The goal of the
procedural NB-CM RstInc is to ensure that all counters in X are reset. Hence, after each
restore transition, we are sure that we start over a fresh execution of the test-free CM M . We
will need the mechanism designed by Lipton to test whether a counter is equal to 0. So, we
define two families of sets of counters (Yi)0≤i≤n and (Yi)0≤i≤n as follows. Let Yi = {yi, zi, si}
and Y i = {yi, zi, si} for all 0 ≤ i < n and Yn = X and Y n = ∅ and X ′ =

⋃
0≤i≤n Yi ∪ Y i.

All the machines we will describe from now on will work over the set of counters X ′.

Procedural-NB-CM TestSwapi(x). We use a family of procedural-NB-CM defined in [17, 8]:
for all 0 ≤ i < n, for all x ∈ Y i, TestSwapi(x) is a procedural-NB-CM with an initial location
ℓTS,i,x

in , and two output locations ℓTS,i,x
z and ℓTS,i,x

nz . It tests if the value of x is equal to 0, using
the fact that the sum of the values of x and x is equal to 22i . If x = 0, it swaps the values of
x and x, and the execution ends in the output location ℓTS,i,x

z . Otherwise, counters values are
left unchanged and the execution ends in ℓTS,i,x

nz . In any case, other counters are not modified
by the execution. Note that TestSwapi(x) makes use of variables in

⋃
1≤j<i Yi ∪ Y i.

Procedural NB-CM Rsti. We use these machines to define a family of procedural-NB-CM
called (Rsti)0≤i≤n that reset the counters in Yi ∪ Yi, assuming that their values are less
than or equal to 22i . Let 0 ≤ i ≤ n, we let Rsti = (LocR,i, X ′, ∆R,i

b , ∆R,i
nb , ℓR,i

in , {ℓR,i
out}). The

machine Rst0 is pictured Figure 3. For all 0 ≤ i < n, the machine Rsti+1 uses counters from
Yi ∪ Yi and procedural-NB-CM Testswapi(zi) and Testswapi(yi) to control the number of
times variables from Yi+1 and Y i+1 are decremented. It is pictured Figure 4. Observe that
since Yn = X, and Yn = ∅, the machine Rstn will be a bit different from the picture: there
will only be non-blocking decrements over counters from Yn, that is over counters X from
the initial test-free CM M . If yi, zi (and si) are set to 22i and yi, zi (and si) are set to 0,
then each time this procedural-NB-CM takes an outer loop, the variables of Yi+1 ∪ Y i+1
are decremented (in a non-blocking fashion) 22i times. This is ensured by the properties
of TestSwapi(x). Moreover, the location ℓTS,i,y

z will only be reached when the counter yi

CONCUR 2023
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ℓR,0
in ℓR,0

out
. . .nb(y0−) nb(y0−) nb(ȳ0−) nb(ȳ0−) nb(s̄0−)

Figure 3 Description of Rst0.

ℓR,i+1
in ℓR,i+1

1 ℓR,i+1
2 ℓR,i+1

3 ℓR,i+1
4

ℓR,i+1
5 ℓR,i+1

6 ℓR,i+1
r ℓTS,i,z

in

ℓTS,i,z
nz

ℓTS,i,z
z ℓTS,i,y

in

ℓTS,i,y
nz

ℓTS,i,y
z ℓR,i+1

out

TestSwapi(zi) TestSwapi(yi)

. . .

yi− yi+ zi− zi+

nb(yi+1−)

nb(ȳi+1−) ⊥ ⊥ ⊥

⊥
⊥

Figure 4 Description of Rsti+1.

is set to 0, and this will happen after 22i iterations of the outer loop, again thanks to the
properties of TestSwapi(x). So, all in all, variables from Yi and Y i+1 will take a non-blocking
decrement 22i

.22i times, that is 22i+1 .
For all x ∈ X ′, we say that x is initialized in a valuation v if x ∈ Yi for some 0 ≤ i ≤ n

and v(x) = 0, or x ∈ Y i for some 0 ≤ i ≤ n and v(x) = 22i . For 0 ≤ i ≤ n, we say that a
valuation v ∈ NX′ is i-bounded if for all x ∈ Yi ∪ Y i, v(x) ≤ 22i .

The construction ensures that when one enters Rsti with a valuation v that is i-bounded,
and in which all variables in

⋃
0≤j<i Yj ∪ Y j are initialized, the location ℓR,i

out is reached with
a valuation v′ such that: v′(x) = 0 for all x ∈ Yi ∪ Y i and v′(x) = v(x) for all x /∈ Yi ∪ Y i.
Moreover, if v is j-bounded for all 0 ≤ j ≤ n, then any valuation reached during the execution
remains j-bounded for all 0 ≤ j ≤ n.

Procedural NB-CM Inci. The properties we seek for Rsti are ensured whenever the
variables in

⋃
0≤j<i Yj ∪ Y j are initialized. This is taken care of by a family of procedural-

NB-CM introduced in [17, 8]. For all 0 ≤ i < n, Inci is a procedural-NB-CM with initial
location ℓInc,i

in , and unique output location ℓInc,i
out . They enjoy the following property: for

0 ≤ i < n, when one enters Inci with a valuation v in which all the variables in
⋃

0≤j<i Yj ∪Y j

are initialized and v(x) = 0 for all x ∈ Y i, then the location ℓInci
out is reached with a valuation

v′ such that v′(x) = 22i for all x ∈ Y i, and v′(x) = v(x) for all other x ∈ X ′. Moreover, if
v is j-bounded for all 0 ≤ j ≤ n, then any valuation reached during the execution remains
j-bounded for all 0 ≤ j ≤ n.

Procedural NB-CM RstInc. Finally, let RstInc be a procedural-NB-CM with initial
location ℓa and output location ℓb, over the set of counters X ′ and built as an alternation
of Rsti and Inci for 0 ≤ i < n, finished by Rstn. It is depicted in Figure 5. Thanks to the
properties of the machines Rsti and Inci, in the output location of each Inci machine, the
counters in Y i are set to 22i , which allow counters in Yi+1 ∪ Y i+1 to be set to 0 in the output
location of Rsti+1. Hence, in location ℓInc,n

out , counters in Yn = X are set to 0.
From [17, 8], each procedural machine TestSwapi(x) and Inci has size at most C × n2 for

some constant C. Hence, observe that N is of size at most B for some B ∈ O(|M |3). One
can show that (ℓin, 0X)⇝∗

M (ℓf , v) for some v ∈ NX , if and only if (ℓ′
in, 0X′)⇝∗

N (ℓf , v′) for
some v′ ∈ NX′ . Using Theorem 3.4, we obtain:
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ℓa ℓR,0
in ℓR,0

out ℓInc,0
in ℓInc,0

out ℓR,1
in ℓR,1

out ℓInc,n
in ℓInc,n

out ℓb

Rst0 Inc0 Rst1 Rstn

. . .⊥ ⊥ ⊥ ⊥

Figure 5 RstInc.

ℓin

qin+

Figure 6
Incrementing qin.

ℓin

q−

q′+

Figure 7 Transitions
for (q, τ, q′) ∈ T .

ℓin

q− p− q′+

p′+

Figure 8 Transitions for a rendez-vous
(q, !a, q′), (p, ?a, p′) ∈ T .

ℓin

q− nb(p1−) nb(pk−)

q′+

. . .

Figure 9 Transitions for a non-blocking
sending (q, !a, q′) ∈ T and R(a) = {p1 . . . pk}.

ℓin ℓf

q1− q2− qs−
. . .

Figure 10 Verification for the coverability of
CF = Hq1I + Hq2I + · · · + HqsI.

▶ Theorem 3.5. Cover[NB-R-CM] is Expspace-hard.

4 Coverability for Rendez-Vous Protocols

In this section we prove that SCover and CCover problems are both Expspace-complete
for rendez-vous protocols. To this end, we present the following reductions: CCover re-
duces to Cover[NB-CM] and Cover[NB-R-CM] reduces to SCover. This will prove that
CCover is in Expspace and SCover is Expspace-hard (from Theorem 3.3 and The-
orem 3.5). As SCover is an instance of CCover, the two reductions suffice to prove
Expspace-completeness for both problems.

4.1 From Rendez-vous Protocols to NB-CM
Let P = (Q, Σ, qin, qf , T ) a rendez-vous protocol and CF a configuration of P to be covered.
We shall also decompose CF as a sum of multisets Hq1I + Hq2I + · · · + HqsI. Observe
that there might be qi = qj for i ̸= j. We build the NB-CM M = (Loc, X, ∆b, ∆nb, ℓin)
with X = Q. A configuration C of P is meant to be represented in M by (ℓin, v), with
v(q) = C(q) for all q ∈ Q. The only meaningful location of M is then ℓin. The other ones
are here to ensure correct updates of the counters when simulating a transition. We let
Loc = {ℓin} ∪ {ℓ1

(t,t′), ℓ2
(t,t′), ℓ3

(t,t′) | t = (q, !a, q′), t′ = (p, ?a, p′) ∈ T} ∪ {ℓt, ℓa
t,p1

, · · · , ℓa
t,pk

|
t = (q, !a, q′) ∈ T, R(a) = {p1, . . . , pk}} ∪ {ℓq | t = (q, τ, q′) ∈ T} ∪ {ℓ1 . . . ℓs}, with final
location ℓf = ℓs, where R(m) for a message m ∈ Σ has been defined in Section 2. The
sets ∆b and ∆nb are shown Figures 6–10. Transitions pictured Figures 6–8 and 10 show
how to simulate a rendez-vous protocol with the classical rendez-vous mechanism. The
non-blocking rendez-vous are handled by the transitions pictured Figure 9. If the NB-CM M

faithfully simulates P, then this loop of non-blocking decrements is taken when the values
of the counters in R(a) are equal to 0, and the configuration reached still corresponds to a
configuration in P. However, it could be that this loop is taken in M while some counters
in R(a) are strictly positive. In this case, a blocking rendez-vous has to be taken in P, e.g.
(q, !a, q′) and (p, ?a, p′) if the counter p in M is strictly positive. Therefore, the value of the
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qin

qx q′
x

1x

q ℓin ℓf

q⊥

P(M)
!L !R

?L
?L

?incx

?R ?R

!decx

!incx ?decx

?nbdecx

Figure 11 The rendez-vous protocol P built from the NB-R-CM M . Note that there is one
gadget with states {qx, q′

x, 1x} for each counter x ∈ X.

reached configuration (ℓin, v) and the corresponding configuration C in P will be different:
first, C(p′) > v(p′), since the process in p has moved in the state p′ in P when there has
been no increment of p′ in M . Furthermore, all other non-blocking decrements of counters
in R(a) in M may have effectively decremented the counters, when in P no other process
has left a state of R(a). However, this ensures that C ≥ v. The reduction then guarantees
that if (ℓin, v) is reachable in M , then a configuration C ≥ v is reachable in P . Then, if it is
possible to reach a configuration (ℓin, v) in M whose counters are high enough to cover ℓF ,
then the corresponding initial execution in P will reach a configuration C ≥ v, which hence
covers CF .

▶ Theorem 4.1. CCover over rendez-vous protocols is in Expspace.

4.2 From NB-R-CM to Rendez-Vous Protocols
The reduction from Cover[NB-R-CM] to SCover in rendez-vous protocols mainly relies
on the mechanism that can ensure that at most one process evolves in some given set of
states, as explained in Example 2.5. This will allow to somehow select a “leader” among
the processes that will simulate the behaviour of the NB-R-CM whereas other processes will
simulate the values of the counters. Let M = (Loc, X, ∆b, ∆nb, ℓin) a NB-R-CM and ℓf ∈ Loc
a final target location. We build the rendez-vous protocol P pictured in Figure 11, where
P(M) is the part that will simulate the NB-R-CM M . The locations {1x | x ∈ X} will allow
to encode the values of the different counters during the execution: for a configuration C,
C(1x) will represent the value of the counter x. We give then P(M) = (QM , ΣM , ℓin, ℓf , TM )
with QM = Loc ∪ {ℓδ | δ ∈ ∆b}, ΣM = {incx, incx, decx, decx, nbdecx | x ∈ X}, and
TM = {(ℓi, !incx, ℓδ), (ℓδ, ?incx, ℓj) | δ = (ℓi, x+, ℓj) ∈ ∆b} ∪ {(ℓi, !decx, ℓδ), (ℓδ, ?decx, ℓj) |
δ = (ℓi, x−, ℓj) ∈ ∆b} ∪ {(ℓi, !nbdecx, ℓj) | (ℓi, nb(x−), ℓj) ∈ ∆nb} ∪ {(ℓi, τ, ℓj) | (ℓi, ⊥, ℓj) ∈
∆b}. Here, the reception of a message incx (respectively decx) works as an acknowledgement,
ensuring that a process has indeed received the message incx (respectively decx), and that
the corresponding counter has been incremented (resp. decremented). For non-blocking
decrement, obviously no acknowledgement is required. The protocol P = (Q, Σ, qin, ℓf , T ) is
then defined with Q = QM ∪ {1x, qx, q′

x | x ∈ X} ∪ {qin, q, q⊥}, Σ = ΣM ∪ {L, R} and T is
the set of transitions TM along with the transitions pictured in Figure 11. Note that there is
a transition (ℓ, ?L, q⊥) for all ℓ ∈ QM .

With two non-blocking transitions on L and R at the beginning, protocol P can faithfully
simulate the NB-R-CM M without further ado, provided that the initial configuration
contains enough processes to simulate all the counters values during the execution: after
having sent a process in state ℓin, any transition of M can be simulated in P. Conversely,
an initial execution of P can send multiple processes into the P(M) zone, which can mess
up the simulation. However, each new process entering P(M) will first send the message
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L, and as a consequence the process already in {q} ∪ QM , if any, will move to the deadlock
state q⊥ receiving this message, and then the new process will send the message R, which
will be received by some process in {qx, q′

x | x ∈ X}, if any. Moreover, the construction of
the protocol ensures that there can only be one process in the set of states {qx, q′

x | x ∈ X}.
Then, if we have reached a configuration simulating the configuration (ℓ, v) of M , sending a
new process in the P(M) zone will lead to a configuration (ℓin, v), and hence simply mimicks
a restore transition of M . So every initial execution of P corresponds to an initial execution
of M .

▶ Theorem 4.2. SCover and CCover over rendez-vous protocols are Expspace complete.

5 Coverability for Wait-Only Protocols

In this section, we study a restriction on rendez-vous protocols in which we assume that a
process waiting to answer a rendez-vous cannot perform another action by itself. This allows
for a polynomial time algorithm for solving CCover.

5.1 Wait–Only Protocols
We say that a protocol P = (Q, Σ, qin, qf , T ) is wait-only if the set of states Q can be
partitioned into QA — the active states — and QW — the waiting states — with qin ∈ QA

and:
for all q ∈ QA, for all (q′, ?m, q′′) ∈ T , we have q′ ̸= q;
for all q ∈ QW , for all (q′, !m, q′′) ∈ T , we have q′ ̸= q and for all (q′, τ, q′′) ∈ T , we have
q′ ̸= q.

From a waiting state, a process can only perform receptions (if it can perform anything),
whereas in an active state, a process can only perform internal actions or send messages.
Examples of wait-only protocols are given by Figures 12 and 13.

In the sequel, we will often refer to the paths of the underlying graph of the protocol.
Formally, a path in a protocol P = (Q, Σ, qin, qf , T ) is either a control state q ∈ Q or a finite
sequence of transitions in T of the form (q0, a0, q1)(q1, a1, q2) . . . (qk, ak, qk+1), the first case
representing a path from q to q and the second one from q0 to qk+1.

5.2 Abstract Sets of Configurations
To solve the coverability problem for wait-only protocols in polynomial time, we rely on a
sound and complete abstraction of the set of reachable configurations. In the sequel, we
consider a wait-only protocol P = (Q, Σ, qin, qf , T ) whose set of states is partitioned into a
set of active states QA and a set of waiting states QW . An abstract set of configurations γ is
a pair (S, Toks) such that:

S ⊆ Q is a subset of states, and,
Toks ⊆ QW × Σ is a subset of pairs composed of a waiting state and a message, and,
q ̸∈ S for all (q, m) ∈ Toks.

We then abstract the set of reachable configurations as a set of states of the underlying
protocol. However, as we have seen, some states, like states in QA, can host an unbounded
number of processes together (this will be the states in S), while some states can only host a
bounded number (in fact, 1) of processes together (this will be the states stored in Toks).
This happens when a waiting state q answers a rendez-vous m, that has necessarily been
requested for a process to be in q. Hence, in Toks, along with a state q, we remember the

CONCUR 2023



7:12 Safety Analysis of Parameterised Networks with Non-Blocking Rendez-Vous

last message m having been sent in the path leading from qin to q, which is necessarily in
QW . Observe that, since several paths can lead to q, there can be (q, m1), (q, m2) ∈ Toks
with m1 ̸= m2. We denote by Γ the set of abstract sets of configurations.

Let γ = (S, Toks) be an abstract set of configurations. Before we go into the configurations
represented by γ, we need some preliminary definitions. We note st(Toks) the set {q ∈ QW |
there exists m ∈ Σ such that (q, m) ∈ Toks} of control states appearing in Toks. Given a
state q ∈ Q, we let Rec(q) be the set {m ∈ Σ | there exists q′ ∈ Q such that (q, ?m, q′) ∈ T}
of messages that can be received in state q (if q is not a waiting state, this set is empty).
Given two different waiting states q1 and q2 in st(Toks), we say q1 and q2 are conflict-free in
γ if there exist m1, m2 ∈ Σ such that m1 ̸= m2, (q1, m1), (q2, m2) ∈ Toks and m1 /∈ Rec(q2)
and m2 /∈ Rec(q1). We now say that a configuration C ∈ C(P) respects γ if and only if for
all q ∈ Q such that C(q) > 0 one of the following two conditions holds:
1. q ∈ S, or,
2. q ∈ st(Toks) and C(q) = 1 and for all q′ ∈ st(Toks) \ {q} such that C(q′) = 1, we have

that q and q′ are conflict-free.
Note that these conditions only speak about states q such that C(q) > 0 as we are only
interested in characterising the reachable states (and unreachable states should not appear
in S or st(Toks)). Let JγK be the set of configurations respecting γ. Note that in JγK, for q in
S there is no restriction on the number of processes that can be put in q and if q in st(Toks),
it can host at most one process. Two states from st(Toks) can both host a process if they are
conflict-free.

Finally, we will only consider abstract sets of configurations that are consistent. This
property aims to ensure that concrete configurations that respect it are indeed reachable
from states of S. Formally, we say that an abstract set of configurations γ = (S, Toks) is
consistent if (i) for all (q, m) ∈ Toks, there exists a path (q0, a0, q1)(q1, a1, q2) . . . (qk, ak, q)
in P such that q0 ∈ S and a0 = !m and for all 1 ≤ i ≤ k, we have that ai = ?mi and that
there exists (q′

i, !mi, q′′
i ) ∈ T with q′

i ∈ S, and (ii) for two tokens (q, m), (q′, m′) ∈ Toks either
m ∈ Rec(q′) and m′ ∈ Rec(q), or, m /∈ Rec(q′) and m′ /∈ Rec(q). Condition (i) ensures that
processes in S can indeed lead to a process in the states from st(Toks). Condition (ii) ensures
that if in a configuration C, some states in st(Toks) are pairwise conflict-free, then they can
all host a process together.

▶ Lemma 5.1. Given γ ∈ Γ and a configuration C, there exists C ′ ∈ JγK such that C ′ ≥ C

if and only if C ∈ JγK. Checking that C ∈ JγK can be done in polynomial time.

5.3 Computing Abstract Sets of Configurations
Our polynomial time algorithm is based on the computation of a polynomial length sequence
of consistent abstract sets of configurations leading to a final abstract set characterising in
a sound and complete manner (with respect to the coverability problem), an abstraction
for the set of reachable configurations. This will be achieved by a function F : Γ → Γ, that
inductively computes this final abstract set starting from γ0 = ({qin}, ∅). Formal definition
of the function F relies on intermediate sets S′′ ⊆ Q and Toks′′ ⊆ QW × Σ, which are the
smallest sets satisfying the conditions described in Table 1.

From S and Toks, rules described in Table 1 add states and tokens to S′′ and Toks′′ from
the outgoing transitions from states in S and st(Toks). It must be that every state added to
S′′ can host an unbounded number of processes, and every state added to Toks′′ can host at
least one process, furthermore, two conflict-free states in Toks′′ should be able to host at
least one process at the same time.



L. Guillou, A. Sangnier, and N. Sznajder 7:13

Table 1 Definition of S′′, Toks′′ for γ = (S, Toks).

Construction of intermediate states S′′ and Toks′′

1. S ⊆ S′′ and Toks ⊆ Toks′′

2. for all (p, τ, p′) ∈ T with p ∈ S, we have p′ ∈ S′′

3. for all (p, !a, p′) ∈ T with p ∈ S, we have:
a. p′ ∈ S′′ if a /∈ Rec(p′) or if there exists (q, ?a, q′) ∈ T with q ∈ S;
b. (p′, a) ∈ Toks′′ otherwise (i.e. when a ∈ Rec(p′) and for all (q, ?a, q′) ∈ T , q /∈ S);

4. for all (q, ?a, q′) ∈ T with q ∈ S or (q, a) ∈ Toks, we have q′ ∈ S′′ if there exists (p, !a, p′) ∈ T

with p ∈ S;
5. for all (q, ?a, q′) ∈ T with (q, m) ∈ Toks with m ̸= a, if there exists (p, !a, p′) ∈ T with p ∈ S,

we have:
a. q′ ∈ S′′ if m /∈ Rec(q′);
b. (q′, m) ∈ Toks′′ if m ∈ Rec(q′).

qinq1

q2

q3 q4

q5

q6

q7
!a

!b
!d

!c?a, ?b

?c

?a, ?b

?c

?d

Figure 12 Wait-only protocol P1.

qin

q1

q2

q3 p2

p1

p3

p4

!a

!b

!m1

!m2

!m3

?a

?a, ?b

?m1, ?m3

?m2, ?m3

?m1, ?m2, ?m3

Figure 13 Wait-only protocol P2.

▶ Example 5.2. Consider the wait-only protocol P1 depicted on Figure 12. From ({qin}, ∅),
rules described in Table 1 construct the following pair (S′′

1 , Toks′′
1) = ({qin, q4}, {(q1, a),

(q1, b), (q5, c)}). In P1, it is indeed possible to reach a configuration with as many processes
as one wishes in the state q4 by repeating the transition (qin, !d, q4) (rule 3a). On the other
hand, it is possible to put at most one process in the waiting state q1 (rule 3b), because
any other attempt from a process in qin will yield a reception of the message a (resp. b) by
the process already in q1. Similarly, we can put at most one process in q5. Note that in
Toks′′

1 , the states q1 and q5 are conflict-free and it is hence possible to have simultaneously
one process in both of them.

If we apply rules of Table 1 one more time to (S′′
1 , Toks′′

1), we get S′′
2 = {qin, q2, q4, q6, q7}

and Toks′′
2 = {(q1, a), (q1, b), (q3, a), (q3, b), (q5, c)}. We can put at most one process in q3: to

add one, a process will take the transition (q1, ?c, q3). Since (q1, a), (q1, b) ∈ Toks′′
1 , there

can be at most one process in state q1, and this process arrived by a path in which the last
request of rendez-vous was !a or !b. Since {a, b} ⊆ Rec(q3), by rule 5b, (q3, a), (q3, b) are
added. On the other hand we can put as many processes as we want in the state q7 (rule 5a):
from a configuration with one process on state q5, successive non-blocking request on letter
c, and rendez-vous on letter d will allow to increase the number of processes in state q7.

However, one can observe that q5 can in fact host an unbounded number of processes:
once two processes have been put on states q1 and q5 respectively (remember that q1 and q5
are conflict-free in (S′′

1 , Toks′′
1)), iterating rendez-vous on letter c (with transition (q1, ?c, q3))

and rendez-vous on letter a put as many processes in state q5.
As a consequence we need to apply another transformation to (S′′

2 , Toks′′
2) to obtain

F (S′′
1 , Toks′′

1). We shall see that this second step has no impact when computing F (({qin}, ∅))
hence we have that F (({qin}, ∅)) = (S′′

1 , Toks′′
1).
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We shall finally get that F (γ) is equal to (S′, Toks′), where the construction of S′ from
(S′′, Toks′′), is given by Table 2 and Toks′ = Toks′′ \ (S × Σ), i.e. all states added to S′ are
removed from Toks′ so a state belongs either to S′ or to st(Toks′).

Table 2 Definition of S′ where F (γ) = (S′, Toks′) for (S′′, Toks′′).

Construction of state S′, the smallest set including S′′ and such that:

6. for all (q1, m1), (q2, m2) ∈ Toks′′ such that m1 ̸= m2 and m2 /∈ Rec(q1) and m1 ∈ Rec(q2),
we have q1 ∈ S′;

7. for all (q1, m1), (q2, m2), (q3, m2) ∈ Toks′′ s.t m1 ̸= m2 and (q2, ?m1, q3) ∈ T , we have q1 ∈ S′;
8. for all (q1, m1), (q2, m2), (q3, m3) ∈ Toks′′ such that m1 ̸= m2 and m1 ̸= m3 and m2 ̸= m3

and m1 /∈ Rec(q2), m1 ∈ Rec(q3) and m2 /∈ Rec(q1), m2 ∈ Rec(q3), and m3 ∈ Rec(q2) and
m3 ∈ Rec(q1), we have q1 ∈ S′.

▶ Example 5.3. Now the case of state q5 evoked in the previous example leads to applic-
ation of rule 7, since (q5, c), (q1, a) ∈ Toks′′

2 , and (q3, a) (q1, ?c, q3) ∈ T . Finally, we get
that F (S′′

1 , Toks′′
1) = F (F ({qin}, ∅)) = ({qin, q2, q4, q5, q6, q7}, {(q1, a), (q1, b), (q3, a), (q3, b)}).

Since q1 and q3 are not conflict-free, they won’t be reachable together in a configuration.
We consider now the wait-only protocol P2 depicted on Figure 13. In that case, to compute

F (({qin}, ∅)) we will first have S′′ = {qin} and Toks′′ = {(q1, a), (q2, b), (p1, m1), (p2, m2),
(p3, m3)} (using rule 3b), to finally get F (({qin}, ∅)) = ({qin, q1, p1}, {(q2, b), (p2, m2),
(p3, m3)})). Applying rule 6 to tokens (q1, a) and (q2, b) from Toks′′, we obtain that q1 ∈ S′:
whenever one manages to obtain one process in state q2, this process can answer the requests
on message a instead of processes in state q1, allowing one to obtain as many processes as
desired in state q1. Now since (p1, m1), (p2, m2) and (p3, m3) are in Toks′′ and respect the
conditions of rule 8, p1 is added to the set S′ of unbounded states. This case is a generalisation
of the previous one, with 3 processes. Once one process has been put on state p2 from qin,
iterating the following actions: rendez-vous over m3, rendez-vous over m1, non-blocking
request of m2, will ensure as many processes as one wants on state p1. Finally applying
successively F , we get in this case the abstract set ({qin, q1, q3, p1, p2, p3, p4}, {(q2, b)}).

We show that F satisfies the following properties.

▶ Lemma 5.4.
1. F (γ) is consistent and can be computed in polynomial time for all consistent γ ∈ Γ.
2. If (S′, Toks′) = F (S, Toks) then S ⊆ S′ (with S ̸= S′) or Toks ⊆ Toks′.
3. For all consistent γ ∈ Γ, if C ∈ JγK and C −→ C ′ then C ′ ∈ JF (γ)K.
4. For all consistent γ ∈ Γ, if C ′ ∈ JF (γ)K, then there exists C ′′ ∈ C and C ∈ JγK such that

C ′′ ≥ C ′ and C −→∗ C ′′.

5.4 Polynomial Time Algorithm
We now present our polynomial time algorithm to solve CCover for wait-only protocols. We
define the sequence (γn)n∈N as follows: γ0 = ({qin}, ∅) and γi+1 = F (γi) for all i ∈ N. First
note that γ0 is consistent and that Jγ0K = I is the set of initial configurations. Using Lemma
5.4, we deduce that γi is consistent for all i ∈ N. Furthermore, each time we apply F to
an abstract set of configurations (S, Toks) either S or Toks increases, or (S, Toks) stabilises.
Hence for all n ≥ |Q|2 ∗ |Σ|, we have γn+1 = F (γn) = γn. Let γf = γ|Q|2∗|Σ|. Using Lemma
5.4, we get:
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qin

w w′ ℓf

q1 q2 ℓin

0i pi 1i p′
i /

τ

!init
τ

?init !ackinit

?ackinit !w
?w

?inci !ackinci ?deci

?zeroi

!ackdeci

Figure 14 The protocol P – The coloured zone
contains transitions pictured in Figures 15–17.

ℓ ℓ′
!inci ?ackinci

Figure 15 Translation of (ℓ, xi+, ℓ′).

ℓ ℓ′
!deci ?ackdeci

Figure 16 Translation of (ℓ, xi−, ℓ′).

ℓ ℓ′
!zeroi

Figure 17 Translation of (ℓ, xi =0, ℓ′).

▶ Lemma 5.5. Given C ∈ C, there exists C0 ∈ I and C ′ ≥ C such that C0 −→∗ C ′ if and
only if there exists C ′′ ∈ Jγf K such that C ′′ ≥ C.

We need to iterate |Q|2 ∗ |Σ| times the function F to compute γf and each computation
of F can be done in polynomial time. Furthermore checking whether there exists C ′′ ∈ Jγf K
such that C ′′ ≥ C for a configuration C ∈ C can be done in polynomial time by Lemma 5.1,
hence using the previous lemma we obtain the desired result.

▶ Theorem 5.6. CCover and SCover restricted to wait-only protocols are in Ptime.

6 Undecidability of Synchro

It is known that Cover[CM] is undecidable in its full generality [18]. This result holds for a
very restricted class of counter machines, namely Minsky machines (Minsky-CM for short),
which are CM over 2 counters, x1 and x2. Actually, it is already undecidable whether there
is an execution (ℓin, 0{x1,x2})⇝∗ (ℓf , 0{x1,x2}). Reduction from this last problem gives the
following result.

▶ Theorem 6.1. Synchro is undecidable, even for wait-only protocols.

Fix M = (Loc, ℓ0, {x1, x2}, ∆) with ℓf ∈ Loc the final state. W.l.o.g., we assume that there
is no outgoing transition from state ℓf in the machine. The protocol P is described in
Figures 14–16. The states {0i, pi, 1i, p′

i | i = 1, 2} will be visited by processes simulating
values of counters, while the states in Loc will be visited by a process simulating the different
locations in the Minsky-CM. If at the end of the computation, the counters are equal to 0, it
means that each counter has been incremented and decremented the same number of times,
so that all processes simulating the counters end up in the state ℓf . The first challenge is to
appropriately check when a counter equals 0. This is achieved thanks to the non-blocking
semantics: the process sends a message !zeroi to check if the counter i equals 0. If it is does
not, the message will be received by a process that will end up in the deadlock state /. The
second challenge is to ensure that only one process simulates the Minsky-CM in the states
in Loc. This is ensured by the states {w, w′}. Each time a process arrives in the ℓin state,
another must arrive in the w′ state, as a witness that the simulation has begun. This witness
must reach ℓf for the computation to be a testifier of a positive instance of Synchro, but it
should be the first to do so, otherwise a process already in ℓf will receive the message “w”
and reach the deadlock state /. Thus, if two processes simulate the Minsky-CM, there will
be two witnesses, and they won’t be able to reach ℓf together.

CONCUR 2023



7:16 Safety Analysis of Parameterised Networks with Non-Blocking Rendez-Vous

7 Conclusion

We have introduced the model of parameterised networks communicating by non-blocking
rendez-vous, and showed that safety analysis of such networks becomes much harder than in
the framework of classical rendez-vous. Indeed, CCover and SCover become Expspace-
complete and Synchro undecidable in our framework, while these problems are solvable
in polynomial time in the framework of [13]. We have introduced a natural restriction of
protocols, in which control states are partitioned between active states (that allow requesting
of rendez-vous) and waiting states (that can only answer to rendez-vous) and showed that
CCover can then be solved in polynomial time. Future work includes finding further
restrictions that would yield decidability of Synchro. A candidate would be protocols in
which waiting states can only receive one message. Observe that in that case, the reduction
of Section 6 can be adapted to simulate a test-free CM, hence Synchro for this subclass of
protocols is as hard as reachability in Vector Addition Systems with States, i.e. non-primitive
recursive [16]. Decidability remains open though.
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