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Abstract
There is a recent separability result for the languages of well-structured transition systems (WSTS)
that is surprisingly general: disjoint WSTS languages are always separated by a regular language.
The result assumes that one of the languages is accepted by a deterministic WSTS, and it is not
known whether this assumption is needed. There are two ways to get rid of the assumption, none of
which has led to conclusions so far: (i) show that WSTS can be determinized or (ii) generalize the
separability result to non-deterministic WSTS languages. Our contribution is to show that (i) does
not work but (ii) does. As for (i), we give a non-deterministic WSTS language that we prove cannot
be accepted by a deterministic WSTS. The proof relies on a novel characterization of the languages
accepted by deterministic WSTS. As for (ii), we show how to find finitely represented inductive
invariants without having the tool of ideal decompositions at hand. Instead, we work with closures
under converging sequences. Our results hold for upward- and downward-compatible WSTS.
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1 Introduction

Czerwiński et al. [16, Theorems 6 and 7] have recently established a separability result for
the languages of well-structured transition systems (WSTS) [20, 4, 2, 23] that is surprisingly
general. Disjoint WSTS languages are always separated by a regular language: whenever we
have L(U ) ∩ L(V ) = ∅, then there is a regular language R with L(U ) ⊆ R and R ∩ L(V ) = ∅.
The result says that WSTS languages either intersect, or they are far apart in that a finite
amount of information is sufficient to distinguish them. Applications abound, we elaborate
on this in the related work. Unfortunately, the result comes with a grain of salt: it assumes
that one of the WSTS, U or V , is deterministic. All attempts to remove the assumption
have failed so far. The assumption is used for a central argument in the proof, namely that
inductive invariants can be represented in a finite way. With determinism, these invariants are
downward-closed sets in a WQO, and hence decompose into finitely many ideals [31, 21, 22].
This is precisely the finite amount of information needed for regularity.

A strategy to circumvent the assumption would be to show that WSTS can be determinized.
Czerwiński et al. already argue in this direction. In [16, Theorem 5], they show that
both finitely-branching WSTS and WSTS over so-called ω2-WQOs can be determinized.
Unfortunately, this does not cover all WSTS. To sum up, it is still open whether the regular
separability result holds for all WSTS languages, and we do not understand the impact of
non-determinism on the expressiveness of the WSTS model.
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8:2 Separability and Non-Determinizability of WSTS

Our first contribution is to prove the regular separability result for all WSTS languages,
without the assumption of determinism. We accept the fact that determinizing a WSTS no
longer yields a WSTS, and carefully study the resulting class of transition systems. They are
formed over a lattice in which sequences have subsequences that converge in a natural sense.
This leads us to define the closure of a set by adding the limits of all converging sequences.
The key insight is that the closure of an inductive invariant is again an inductive invariant.
Together with the fact that closed sets have finitely many maximal elements, we arrive
at the desired finite representation. In short, when moving from WQOs to converging
lattices, maximal elements of closed sets form an alternative to ideal decompositions of
downward-closed sets. We call the new transition systems converging.

Our second contribution is to show that WSTS cannot be determinized in general. We
give a WSTS language T that we prove cannot be accepted by a deterministic WSTS. The
proof relies on a novel characterization of the deterministic WSTS languages: they are
precisely the languages whose Nerode (right) quasi order is a WQO. The characterization
provides a first hint on how to construct T . The language should have an infinite antichain
in the Nerode quasi order, for then this cannot be a WQO. The second hint stems from
the determinizability result [16, Theorem 5]. The accepting WSTS should be infinitely
branching and the WQO should be no ω2-WQO. Such WQOs embed the so-called Rado
WQO [8, Section 2]. Moreover, the Rado WQO is known to have an infinite antichain when
constructing downward-closed sets [22, Proposition 4.2]. The definition of T is thus guided
by the idea of translating the Rado antichain into an antichain in the Nerode quasi order.
Interestingly, the underlying WSTS is deterministic except for the choice of the initial state.

We develop these results for upward-compatible WSTS [23]. Our third contribution is to
show that they also hold for downward-compatible WSTS. We achieve this by proving general
relationships between the models. A key insight is that the complement of a deterministic
upward-compatible WSTS is a deterministic downward-compatible WSTS. Moreover, the
reversal of an upward-compatible WSTS language is a downward-compatible WSTS language.

Details and proofs missing here can be found in the full version of this article [32].

Related Work. The converging transition systems (CTS) we use to generalize the regular
separability result [16] have a topological flavor, and indeed are inspired by Goubault-Larrecq’s
Noetherian transition systems [26, 27]. One difference is that we had to formulate CTS in
lattice-theoretic terms to be able to import a theorem from [16] that links regular separability
to the existence of finitely represented inductive invariants. Another difference is the study
of such invariants (we prove stability under closure) that has no analogue in [26, 27].

We show that deterministic WSTS accept a strictly weaker class of languages than their
non-deterministic counterparts. The work [3] also compares classes of WSTS languages,
but for fixed models (extended Petri nets). We allow the determinization to freely select
the WQO and the transitions, meaning we have considerably less syntactic constraints to work
with. There are also pumping lemmas to distinguish WSTS languages from (among others)
context-free languages [24]. Our characterization of the deterministic WSTS languages is
stronger than the necessary conditions in pumping lemmas. Our language witnessing the
weakness of deterministic WSTS is accepted by an infinitely-branching WSTS, a class of
systems studied in [7]. That work concentrates on decidability results and pays attention to
effectiveness, while we prove a statement of existence and do not need such assumptions.

There is recent interest in separability problems for infinite-state systems [17, 40, 14, 39, 12].
One reason is that standard algorithms rarely apply to separability problems, but these
problems tend to call for new approaches. With the basic separator technique [18], Czerwiński
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and Zetzsche have shown that there is hope for general methods that apply to a range of
separability problems [10, 11, 15]. With the closure of inductive invariants under converging
sequences, we hope to also have contributed a versatile tool.

Another reason for the popularity of separability problems is their usefulness in verification.
In [1], separators act as interpolants in abstraction-guided verification [9]. In [6], separators
are advocated as interfaces in rely-guarantee reasoning [30]. In this context, our result implies
that regular interfaces yield a complete proof method, provided the system is well-structured.

2 Well-Structured Transition Systems

We recall well-structured transition systems (WSTS) with upward compatibility [20, 4, 2, 23].
Downward compatibility will be addressed in Section 5.

Orders. Let (Q, ≤) be a quasi order and P ⊆ Q. We call P a chain, if ≤ restricted to P is
a total order. We call P an antichain, if the elements in P are pairwise incomparable. The
upward closure of P is ↑P = {q ∈ Q | ∃p ∈ P. p ≤ q}. We call P upward closed, if P = ↑P .
The powerset of Q restricted to the upward-closed sets is U(Q). The downward closure is
defined similarly and we use D(Q) for the downward-closed sets. We call (Q, ≤) a well quasi
order (WQO), if for every infinite sequence [pi]i∈N in Q there are indices i < j with pi ≤ pj .

Let (Q, ≤) be a partially-ordered set. We write max P for the set of maximal elements
in the subset P ⊆ Q. They may not exist, in which case the set is empty. We call (Q, ≤) a
complete lattice, if all P ⊆ Q have a greatest lower bound in Q, also called meet and denoted
by ⊔P ∈ Q, and a least upper bound in Q, also called join and denoted by

⊔
P ∈ Q. A

function f : Q → Q on a complete lattice is join preserving [13, Section 11.4], if it distributes
over arbitrary joins in that f(

⊔
P ) =

⊔
f(P ) for all P ⊆ Q, where f(P ) = {f(p) | p ∈ P}.

We call (Q, ≤) a completely distributive lattice, if it is a complete lattice where arbitrary
meets distribute over arbitrary joins, and vice versa:

⊔

a∈A

⊔
b∈Ba

pa,b =
⊔

f∈CA,B

⊔

a∈A

pa,f(a)
⊔

a∈A

⊔

b∈Ba

pa,b = ⊔

f∈CA,B

⊔
a∈A

pa,f(a) .

The definition makes use of the Axiom of Choice: CA,B denotes the set of choice functions
that map each a ∈ A to a choice b ∈ Ba. It is also important to note that, for any quasi
order (Q, ≤), (D(Q), ⊆) is a completely distributive lattice.

Labeled Transition Systems. A labeled transition system (LTS) is a tuple U = (Q, I, Σ, δ, F )
that consists of a set of states Q, in our setting typically infinite, a set of inital states I ⊆ Q, a
set of final states F ⊆ Q, a finite alphabet Σ, and a set of labeled transitions δ : Q×Σ → P(Q).
The LTS is deterministic, if |I| = |δ(p, a)| = 1 for all p ∈ Q and a ∈ Σ.

Its language is the set of words that can reach a final state from an initial state:

L(U ) = {w ∈ Σ∗ | δ(I, w) ∩ F ̸= ∅} .

Here, we extend the transition relation to sets of states and words: δ(P, w.a) = δ(δ(P, w), a)
and δ(P, a) =

⋃
p∈P δ(p, a). Finally, if the LTS is deterministic, we write (Q, y, Σ, δ, F ) and

δ(p, a) = q instead of (Q, {y}, Σ, δ, F ) and δ(p, a) = {q}.
Let U1 and U2 be LTS with Ui = (Qi, Ii, Σ, δi, Fi). We define their synchronized product

to be the LTS U1 × U2 = (Q1 × Q2, I1 × I2, Σ, δ, F1 × F2) where (q1, q2) ∈ δ((p1, p2), a), if
q1 ∈ δ1(p1, a) and q2 ∈ δ2(p2, a). Then L(U1 × U2) = L(U1) ∩ L(U2).
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8:4 Separability and Non-Determinizability of WSTS

Compatibility. We work with LTS U = (Q, I, Σ, δ, F ) whose states form a quasi order
(Q, ≤) that is compatible with the remaining components as follows. We have F = ↑F , the
final states are upward closed wrt. ≤. Moreover, ≤ is a simulation relation [36]: for all pairs
of related states p1 ≤ q1 and for all letters a ∈ Σ we have:

for all p2 ∈ δ(p1, a) there is q2 ∈ δ(q1, a) with p2 ≤ q2 .

We also make the quasi order explicit and call U = (Q, ≤, I, Σ, δ, F ) an upward-compatible
LTS (ULTS).

ULTS can be determinized, in the case of U this yields

U det = (D(Q), ⊆, ↓I, Σ, δdet , F det) .

The states are the downward-closed sets ordered by inclusion, the transition relation is defined
by closing the result of the original transition relation downwards, δdet(D, a) = ↓δ(D, a) for
all D ∈ D(Q) and a ∈ Σ, and the set of final states consists of all downward-closed sets that
contain a final state in the original ULTS, F det = {D ∈ D(Q) | D ∩ F ̸= ∅}.

▶ Lemma 1. Let U be an ULTS. Then U det is a deterministic ULTS with L(U det) = L(U ).

We write detULTS for the class of deterministic ULTS. The synchronized product of ULTS
is again an ULTS (with the product order).

Well-Structuredness. An upward-compatible well-structured transition system (WSTS) is
an ULTS U whose states (Q, ≤) form a WQO. The synchronized product of WSTS is again a
WSTS. We are interested in L(WSTS), the class of all languages accepted by WSTS. We also
study L(detWSTS) ⊆ L(WSTS), the class of languages accepted by deterministic WSTS.

We observe that we can focus on WSTS with a countable number of states.

▶ Lemma 2. For every L ∈ L(WSTS) there is a WSTS U with a countable number of states
so that L = L(U ).

The lemma needs two arguments: the language consists of a countable number of words, and
we can assume the transition relation to yield downward-closed sets.

3 Regular Separability of WSTS Languages

Two languages L1, L2 ⊆ Σ∗ are separable by a regular language, denoted by L1 | L2, if there
is a regular language R ⊆ Σ∗ with L1 ⊆ R and R ∩ L2 = ∅. Our main result is that disjoint
WSTS languages are always separable in this sense.

▶ Theorem 3. For L1, L2 ∈ L(WSTS), we have L1 | L2 if and only if L1 ∩ L2 = ∅.

The conclusion is the same as in the main theorem of [16], but we do not need the premise
that one of the languages is accepted by a deterministic WSTS. The implication from left to
right is trivial, the implication from right to left is our first contribution.

We summarize the arguments. The plan is to invoke the proof principle for regular
separability in [16, Theorem 11] and show that the product system has a finitely represented
inductive invariant. The principle holds for general ULTS but needs one of them deterministic.
Therefore, our first step is to determinize the given WSTS. Determinizing a WSTS will
yield an ULTS, but may ruin the WQO property. We show that the set of states of the
resulting ULTS still has a rich structure: it is a powerset lattice in which every infinite
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sequence contains a subsequence that converges in a natural sense. We call such ULTS
converging transition systems (CTS). We only define CTS as deterministic models, which is
why we determinize both WSTS. CTS are closed under products. Moreover, since the initial
languages are disjoint by the assumption, the product trivially has an inductive invariant. It
thus remains to turn this invariant of the product into an invariant that can be represented
in a finite way. The idea is to add the limits of all converging sequences in the invariant.
Since the CTS transitions are compatible with limits, the resulting set of states is again an
inductive invariant. By Zorn’s lemma, every set can contain only finitely many maximal
elements. The maximal elements thus form the finite representation that was needed to
conclude the proof.

It would be possible to give the proof at a set-theoretic level, by explicitly working with
products of powerset lattices. CTS allow us to abstract away the product structure and
highlight the key arguments in the limit construction. We turn to the details.

3.1 Proof Principle for Regular Separability
To establish regular separability, we rely on a proof principle introduced in [16]. The notion
of an inductive invariant will be recalled in a moment.

▶ Theorem 4 (Proof principle for regular separability, [16, Theorem 11]). Consider ULTS U , V ,
one deterministic. If U × V has a finitely represented inductive invariant, then L(U ) | L(V ).

Interestingly, the proof principle does not need the WQO assumption of WSTS but holds for
general ULTS. It does assume one of the ULTS to be deterministic, though. Recall that an
inductive invariant for an ULTS (Q, ≤, I, Σ, δ, F ) is a downward-closed set of states S ⊆ Q

that includes all initial states, excludes all final states, and is closed under taking transitions:

I ⊆ S S ∩ F = ∅ δ(S, a) ⊆ S .

The inductive invariant is finitely represented, if there is a finite set C ⊆ S with S = ↓C. We
refer to a set C that satisfies this as a cover of S.

When trying to invoke Theorem 4, finding an inductive invariant for U × V is easy: the
invariant is guaranteed to exist as soon as the language L(U × V ) = L(U ) ∩ L(V ) is empty,
which is precisely the hypothesis we start from.

▶ Lemma 5 ([16, Lemma 10]). An ULTS U admits an inductive invariant iff L(U ) = ∅.

The difficult part is to find an inductive invariant that can be represented in a finite way.
In [16], this was addressed with ideal decompositions [31, 21, 22]. The ideal decompositions,
however, needed the WQO assumption, which lead to the requirement in the main theorem
that one WSTS had to be deterministic. As we show in Section 4, this is a real restriction:
there are WSTS languages that cannot be accepted by a deterministic WSTS.

Our contribution is to find finitely represented inductive invariants without making use of
ideal decompositions. Our approach is to determinize the given WSTS with the construction
in Lemma 1, and accept that we can no longer guarantee the result to be a WSTS.

3.2 Converging Transition Systems: WSTS in Disguise
We propose converging transition systems (CTS), a new class of ULTS that is general enough
to capture determinized WSTS and retains enough structure to establish the existence
of finitely represented inductive invariants. CTS are inspired by Noetherian transition
systems [26, 27], but are formulated in a lattice-theoretic rather than in a topological way.

CONCUR 2023



8:6 Separability and Non-Determinizability of WSTS

Recall that determinized WSTS have as state space (D(Q), ⊆), where (Q, ≤) is a WQO.
In a WQO, every infinite sequence admits an increasing subsequence. It is well known [38]
that this may not hold for (D(Q), ⊆). However, a natural relaxation holds: every infinite
sequence [Xi]i∈N admits an infinite subsequence [Xφ(i)]i∈N, where any element that is present
in one set is present in almost every set. A similar property, defined for complete lattices, is
called convergence in the literature [25]. Our definition differs from the citation in two ways.
We restrict ourselves to sequences (as opposed to nets), and we require convergence to the
join (as opposed to lim sup = lim inf). This suffices for our setting.

▶ Definition 6. A converging lattice (Q, ≤) is a completely distributive lattice, where every
sequence [pi]i∈N has a converging subsequence [pφ(i)]i∈N. A converging sequence [qi]i∈N is an
infinite sequence with⊔

i∈N

⊔

j≥i

qj =
⊔
i∈N

qi .

The equality formalizes our explaination from before. In the context of sets, where join and
meet are respectively union and intersection, the right-hand side of the equation contains
all elements that appear in any set in the sequence. The left side iterates over every finite
initial segment, and includes every element that appears in all sets outside of this segment.
Every element that is missing in only finitely many sets will eventually be included.

Converging lattices not only generalize downward-closed subsets of WQOs, they are also
a sufficient condition for them. The backward direction is by [38, Proof of Theorem 3]. The
forward direction is by an application of the following fact [38], also [33, Fact III.3]: (D(Q), ⊆)
is well-founded if and only if the order is a WQO. The details are given in [32].

▶ Lemma 7. (D(Q), ⊆) is a converging lattice if and only if (Q, ≤) is a WQO.

The space of converging sequences is closed under the application of join preserving
functions as formulated next. While we would expect this result to be known, we have not
found a reference. The lemma is central to our argument, therefore we give the proof.

▶ Lemma 8. Let (Q, ≤) be a lattice, [pi]i∈N a converging sequence in Q, and f : Q → Q a
join preserving function. Then also [f(pi)]i∈N is converging.

Proof. Due to convergence of the given sequence, we have
⊔

i∈N ⊔j≥i pj =
⊔

i∈N pi. This
equality yields f(

⊔
i∈N ⊔j≥i pj) = f(

⊔
i∈N pi). By join preservation of f , we get⊔

i∈N
f( ⊔

j≥i

pj) =
⊔
i∈N

f(pi) .

Function f is not assumed to be meet preserving. But we can show an inequality that
is sufficient for our needs. For all S ⊆ Q and s ∈ S, we have f( ⊔S) ≤ f(s) ⊔ f( ⊔S). Join
preservation and the fact that s ∈ S yield f(s) ⊔ f( ⊔S) = f(s ⊔ ⊔S) = f(s). We have thus
shown f( ⊔S) ≤ f(s) for all s ∈ S. This means f( ⊔S) ≤ ⊔s∈S f(s).

We apply this inequality to the previous equality:⊔
i∈N

f(pi) =
⊔
i∈N

f( ⊔

j≥i

pj) ≤
⊔
i∈N

⊔

j≥i

f(pj) ≤
⊔
i∈N

f(pi) .

This is
⊔

i∈N ⊔j≥i f(pj) =
⊔

i∈N f(pi), as desired. ◀
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We explain the considerations that lead us to the definition of CTS given below. In the
light of Lemma 7, the states of a CTS should form a converging lattice. This, however, was not
enough to guarantee the existence of finitely represented inductive invariants. One requirement
of invariants is that they are closed under taking transitions. To understand which sets satisfy
this, we had to restrict the transition relation. We define CTS only as a deterministic model.
Then the transitions form a function δ(−, a) for every letter a ∈ Σ. Upward compatibility of
these functions is not very informative. Consider determinized WSTS: upward compatibility
gives us δ(S0 ∪ S1, a) ⊇ δ(S0, a), while we expect δ(S0 ∪ S1, a) = δ(S0, a) ∪ δ(S1, a). In
lattice-theoretic terms, we expect the transition functions δ(−, a) to be join preserving. A
benefit of this requirement is of course that it makes Lemma 8 available. An invariant
should also be disjoint from the final states so that we had to control this set as well. When
determinizing WSTS, a set D ∈ D(Q) is final as soon as it contains a single final state. Given
the definition of convergence, we relax this to containing a finite set of final states.

▶ Definition 9. A converging transition system (CTS) is an ULTS U = (Q, ≤, y, Σ, δ, F )
that is deterministic, where (Q, ≤) is a converging lattice, the functions δ(−, a) are join
preserving for all a ∈ Σ, and the final states satisfy

finite acceptance: for every
⊔

K ∈ F there is a finite set N ⊆ K with
⊔

N ∈ F .

The determinization of a WSTS yields a CTS, as it was one of the goals of the CTS
definition. Somewhat surprisingly, CTS do not add expressiveness but their languages are
already accepted by (non-deterministic) WSTS. The construction is via join prime elements
and can be found in the full version [32]. Together, the CTS languages are precisely the
WSTS languages, and one may see Definition 9 as a reformulation of the WSTS model.

▶ Proposition 10. If U is a WSTS, then U det is a CTS. For every CTS V , there is a
WSTS U with L(V ) = L(U ). Together, L(WSTS) = L(CTS).

The correspondence allows us to import the countability assumption from Lemma 2.
Indeed, if the WQO (Q, ≤) is countable, then there is only a countable number of downward-
closed sets in (D(Q), ⊆). This is by a standard argument for WSTS: each downward-closed
set can be characterized by its complement, the complement is upward closed, and is therefore
characterized by its finite set of minimal elements.

▶ Lemma 11. For every L ∈ L(CTS), there is a CTS U over a countable number of states
so that L = L(U )

We will also need that CTS are closed under synchronized products.

▶ Lemma 12. If U and V are CTS, so is U × V .

We summarize the findings so far. Given disjoint WSTS languages L(V1) ∩ L(V2) = ∅,
the goal is to show regular separability L(V1) | L(V2). We first determinize both WSTS. By
Proposition 10, V det

1 and V det
2 are CTS. Moreover, by Lemma 1, determinization preserves

the language. We use Lemma 11 to obtain countable CTS U1 and U2 that accept the same
languages. To show regular separability, we now intend to invoke Theorem 4 on U1 and U2.
CTS are already deterministic. It thus remains to show that U1 ×U2 has a finitely represented
inductive invariant. With Lemma 12, U1 × U2 is another CTS U . Moreover, the product
corresponds to language intersection, so L(U ) = ∅. By Lemma 5, we know that U has an
inductive invariant. We now show how to turn this invariant into a finitely represented one.

CONCUR 2023



8:8 Separability and Non-Determinizability of WSTS

3.3 Inductive Invariants in CTS
We show the following surprising property for countable CTS: every inductive invariant S

can be generalized to an inductive invariant cl(S) that is finitely represented. The closure
operator is defined by adding to S the joins of all converging sequences:

cl(S) = {
⊔
i∈N

pi | [pi]i∈N a converging sequence in S } .

▶ Proposition 13. Let U be a countable CTS and S an inductive invariant of U . Then also
cl(S) is an inductive invariant of U and it is finitely represented.

The proposition concludes the proof of Theorem 3. We simply invoke it on the inductive
invariant that exists by Lemma 5 as discussed above. The rest of the section is devoted to
the proof. We fix a countable CTS U = (Q, ≤, y, Σ, δ, F ) and an inductive invariant S ⊆ Q.

As Lemma 14 states, the closure is expansive and idempotent. This means further
applications do not add new limits. Here, we need the fact that we have a completely
distributive lattice. Moreover, the closure yields a downward-closed set. The closure is also
trivially monotonic, and hence an upper closure operator indeed [13, Section 11.7], but we
will not need monotonicity. The proof of Lemma 14 is given in the full version [32].

▶ Lemma 14. S ⊆ cl(S) = cl(cl(S)) = ↓cl(S).

Towards showing Proposition 13, we first argue for invariance.

▶ Lemma 15. cl(S) is an inductive invariant.

Proof. To prove that cl(S) is an inductive invariant, we must show two properties for the
joins

⊔
i∈N pi = p of converging sequences [pi]i∈N in S that we added. First, we must show

that we do not leave cl(S) when taking transitions, δ(p, a) ∈ cl(S) for all a ∈ Σ. Second, we
must show that the join is not a final state. We begin with the latter. Towards a contradiction,
suppose p ∈ F . Convergence yields

⊔
i∈N ⊔j≥i pj ∈ F . By the finite acceptance property of

CTS, there must be a finite set K ⊆ N with k = max K so that⊔
i∈K

⊔

j≥i

pj = ⊔

j≥k

pj ∈ F .

Since ⊔j≥k pj ≤ pk and F is upward closed, we obtain pk ∈ F . This is a contradiction: pk

belongs to the inductive invariant S and the invariant does not intersect the final states.
To show δ(p, a) ∈ cl(S), we first note that δ(pi, a) ∈ S for all i ∈ N. This holds as S is an

invariant and pi ∈ S. We now argue that not only the sequence [δ(pi, a)]i∈N is in S, but also
its join is in the closure. We use that the transition function δ(−, a) is join preserving. This
allows us to apply Lemma 8 showing that [δ(pi, a)]i∈N coverges. Since the sequence belongs
to S, we obtain

⊔
i∈N δ(pi, a) ∈ cl(S). We conclude by applying join preservation:

δ(p, a) = δ(
⊔
i∈N

pi, a) =
⊔
i∈N

δ(pi, a) ∈ cl(S) . ◀

It only remains to show that cl(S) is finitely represented.

▶ Proposition 16. There is a finite set C ⊆ cl(S) so that ↓C = cl(S).
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We break down the proof of Proposition 16 into two steps. First, we show that cl(S) can
be covered by an antichain. Then, we show that infinite antichain covers do not exist. This
implies that there must be a finite antichain cover. The proofs reasons over closed sets, sets
that contain the limits of their converging sequences. We rely on the fact that closed sets
have at least one maximal element.

▶ Lemma 17. Consider G ⊆ Q closed and non-empty. Then max G ̸= ∅.

Moreover, closedness remains intact after certain removals.

▶ Lemma 18. Consider G, H ⊆ Q where G is closed. Then G \ ↓H is closed.

We postpone the proofs of these lemmas until after the proof of Proposition 16.

▶ Lemma 19. There is an antichain cover of cl(S).

Proof. We claim that the maximal elements max cl(S) form an antichain cover of cl(S). It
is clear that max cl(S) is an antichain. Since cl(S) is downward closed by Lemma 14, we also
have ↓(max cl(S)) ⊆ cl(S). To see that max cl(S) is a cover, let G = cl(S) \ ↓(max cl(S))
and suppose G ̸= ∅. Lemma 18 tells us that G is closed. By Lemma 17, we get max G ̸= ∅.
Consider p ∈ max G. By the definition of G, we have p ̸∈ max cl(S). Then, however, there
must be q ∈ cl(S) with p ≤ q and p ̸= q. If q ∈ ↓(max cl(S)), then p ∈ ↓(max cl(S)) as well,
which is a contradiction to p ∈ G. If conversely q ∈ cl(S) \ ↓(max cl(S)) = G, then we have
a contradiction to p ∈ max G. ◀

Now we prove the second part of Proposition 16, which states that there can be no infinite
antichain cover.

▶ Lemma 20. There is no infinite antichain cover of cl(S).

Proof. Suppose there is an infinite antichain cover C ⊆ cl(S). Then, there is an infinite
sequence [pi]i∈N in C. By Definition 6, it has an infinite converging subsequence [pφ(i)]i∈N.
The closure operator adds

⊔
i∈N pφ(i) to cl(S). Since C is a cover of cl(S), there must be

q ∈ C with
⊔

i∈N pφ(i) ≤ q. Because pφ(i) ⊔ pφ(0) ≤ q and pφ(i), pφ(0) are incomparable, we
have pφ(i) < q for all i ∈ N. So pφ(i) < q for all i ∈ N, while at the same time q, pφ(i) ∈ C.
This contradicts the antichain property. ◀

We conclude by showing Lemma 17 and 18.

Proof of Lemma 17. Let ∅ ̸= G ⊆ Q be closed. We prove G chain complete, meaning for
every chain P ⊆ G the limit

⊔
P is again in G. Then Zorn’s lemma [29] applies and yields

max G ̸= ∅. We have Zorn’s lemma, because we agreed on the Axiom of Choice. Towards
chain completeness, consider an increasing sequence [pi]i∈N in G. We prove that

⊔
i∈N pi ∈ G.

For any i ∈ N, we have ⊔j≥i pi = pi. Hence, replacing each meet with the smallest element
shows convergence. Since [pi]i∈N converges and G is closed, we have

⊔
i∈N pi ∈ G.

Although we are in a countable setting, the argument for sequences does not yet cover all
chains. The problem is that the counting processs may not respect the order. To see this,
consider a chain P ⊆ G of ordinal size |P | = ω · 2. The chain is countable, but no counting
process can respect the order. We now argue that still

⊔
P ∈ G. By [34, Theorem 1], there

is a (wrt. inclusion) increasing sequence of subsets [Pi]i∈N in P(P ), where each Pi is finite
and

⋃
i∈N Pi = P . Finite chains contain maximal elements, so let pi = max Pi =

⊔
Pi. Then⊔

P =
⊔ ⋃

i∈N
Pi =

⊔
i∈N

⊔
Pi =

⊔
i∈N

pi .

Since [Pi]i∈N is an increasing sequence, [pi]i∈N is also an increasing sequence. As we have
shown before,

⊔
i∈N pi ∈ G. This concludes the proof. ◀

CONCUR 2023



8:10 Separability and Non-Determinizability of WSTS

Proof of Lemma 18. Consider G, H ⊆ Q with G closed. We show that G \ ↓H is closed.
Let [pi]i∈N be a converging sequence in G \ ↓H. Let q =

⊔
i∈N pi and suppose q ̸∈ G \ ↓H.

Since G is closed, q ∈ G. Then necessarily q ∈ ↓H. But by definition, pi ≤ q for all i ∈ N.
So pi ∈ ↓H as well. This contradicts the fact that the sequence [pi]i∈N lives in G \ ↓H. ◀

4 Non-Determinizability of WSTS

We show that the detWSTS languages form a strict subclass of the WSTS languages. To this
end, we define a WSTS language T that we prove cannot be accepted by a detWSTS. The
proof relies on a novel characterization of the detWSTS languages that may be of independent
interest. In the following, we call T the witness language. This is our second main result.

▶ Theorem 21. L(detWSTS) ̸= L(WSTS).

Towards the definition of T , recall that finitely-branching WSTS and WSTS over so-called
ω2-WQOs can be determinized [16, Theorem 5]. Moreover, it is known that ω2-WQOs are
precisely the WQOs that do not embed the Rado WQO [8, Section 2]. This suggests we
should accept the witness language T by an infinitely-branching WSTS over the Rado WQO.
We begin with our characterization of the detWSTS languages, as it will provide additional
guidance in the definition of the witness language.

4.1 Characterization of the detWSTS Languages
Our characterization is based on a classical concept in formal languages [28, Theorem 3.9].
The Nerode quasi order ≤L ⊆ Σ∗ × Σ∗ of a language L ⊆ Σ∗ is defined by w ≤L v, if

for all u ∈ Σ∗ we have that w.u ∈ L implies v.u ∈ L .

The characterization says that the detWSTS languages are precisely the languages whose
Nerode quasi order is a WQO. Note that this is not the folklore result [5, Proposition 5.1]
saying that a language is regular if and only if the syntactic quasi order is a WQO.

▶ Lemma 22 (Characterization of L(detWSTS)). L ∈ L(detWSTS) iff ≤L is a WQO.

Proof. ⇒ Let L = L(U ) with U = (Q, ≤, i, Σ, δ, F ) a detWSTS. We extend the order
≤ ⊆ Q × Q on the states to an order ≤U ⊆ Σ∗ × Σ∗ on words by setting w ≤U v, if
δ(i, w) = p and δ(i, v) = q with p ≤ q. Since U is deterministic, p and q are guaranteed to
exist and be unique. It is easy to see that ≤U is a WQO. We now show that ≤U is included
in the Nerode quasi order, and so also ≤L is a WQO. To this end, we consider w ≤U v and
u ∈ Σ∗ with w.u ∈ L, and show that also v.u ∈ L. We have δ(i, w.u) = δ(p1, u) = p2 and
δ(i, v.u) = δ(q1, u) = q2 with p1 = δ(i, w) and q1 = δ(i, v). Since w ≤U v, we have p1 ≤ q1.
With the simulation property of WSTS, this implies p2 ≤ q2. Since w.u ∈ L and L = L(U ),
we get p2 ∈ F . Since F is upward closed, also q2 ∈ F . Hence, v.u ∈ L(U ) = L as desired.

⇐ Consider a language L ⊆ Σ∗ whose Nerode quasi order ≤L is a WQO. We define the
trivial detWSTS UL = (Σ∗, ≤L, ε, Σ, δ, L). The states are all words ordered by the Nerode
quasi order. The empty word is the initial state, the language L is the set of final states. Note
that L is upward closed wrt. ≤L. The transition relation is defined as expected, δ(w, a) = w.a.
It is readily checked that L(UL) = L. ◀

The lemma gives a hint on how to construct the witness language T : we should make sure
the associated Nerode quasi order ≤T has an infinite antichain (then it cannot be a WQO).
To obtain such an antichain, remember that T will be accepted by a WSTS over the Rado
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WQO (R, ≤R) [38]. It is known that (D(R), ⊆) has an infinite antichain. Our strategy for
the definition of T will therefore be to translate the infinite antichain in (D(R), ⊆) into an
infinite antichain in (Σ∗, ≤T ). We turn to the details, starting with the Rado WQO.

4.2 Witness Language
Rado Order. Our presentation of the Rado WQO [38] follows [35]. The Rado set is the
upper diagonal, R = {(c, r) | c < r} ⊆ N2. The Rado WQO ≤R ⊆ R × R is defined by:

(c1, r1) ≤R (c2, r2), if r1 ≤ c2 ∨ (c1 = c2 ∧ r1 ≤ r2) .

Given an element (c, r), we call c the column and r the row, as suggested by Figure 1(left).
Columns will play an important role and we denote column i by Ci = {(i, r) | i < r} ⊆ R.
To arrive at a larger element in the Rado WQO, one can increase the row while remaining in
the same column, or move to the rightmost column of the current row, and select an element
to the right, Figure 1(middle).

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(0, 4)

(0, 5)

(0, 6)

(0, 7)

(0, 8)

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(1, 5)

(1, 6)

(1, 7)

(1, 8)

(2, 2)

(2, 3)

(2, 4)

(2, 5)

(2, 6)

(2, 7)

(2, 8)

(3, 3)

(3, 4)

(3, 5)

(3, 6)

(3, 7)

(3, 8)

(4, 4)

(4, 5)

(4, 6)

(4, 7)

(4, 8)

(5, 5)

(5, 6)

(5, 7)

(5, 8)

(6, 6)

(6, 7)

(6, 8)

(7, 7)

(7, 8)

column 3

row 5

...

(0, 0)

(1, 1)

(2, 2)

(3, 3)

(3, 5)

(3, 6)

(3, 7)

(3, 8)

(4, 4)

(5, 5)

(5, 6)

(5, 7)

(5, 8)

(6, 6)

(6, 7)

(6, 8)

(7, 7)

(7, 8) ...

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(1, 1)

(1, 2)

(1, 3)

(2, 2)

(2, 3) (3, 3)

(3, 4)

(3, 5)

(3, 6)

(3, 7)

(3, 8)

(4, 4)

(5, 5)

(6, 6)

(7, 7)

...

Figure 1 Rado order with the column and row of (3, 5) marked (left), with the elements larger
than (3, 5) marked (middle), and with the downward closure of column 3 marked (right).

It is not difficult to see that (R, ≤R) is a WQO [38]. In an infinite sequence, either the
columns eventually plateau out, in which case the rows lead to comparable elements, or the
columns grow unboundedly, in which case they eventually exceed the row in the initial pair.
The interest in the Rado WQO is that the WQO property is lost when moving to (D(R), ⊆).
This failure is due to the following well-known fact.

▶ Lemma 23 ([22], Proposition 4.2). {↓Ci | i ∈ N} is an infinite antichain in (D(R), ⊆).

To see the lemma, we illustrate the downward closure of a column in Figure 1(right). Inclusion
fails to be a WQO as each column Ci forms an infinite set that the downward closure ↓Cj

with j > i cannot cover. Indeed, ↓Cj only has the triangle to the bottom-left of column
Cj available to cover Ci, and the triangle is a finite set. We will use exactly this difference
between infinite and finite sets in our witness language. It will become clearer as we proceed.

Definition of T . The witness language is the language accepted by UR = (R, ≤R, C0, Σ, δ, R).
The set of states is the Rado set, the set of initial states is the first column, and the set of
final states is again the entire Rado set. The latter means that a word is accepted as long
as it admits a run. The letters in Σ = {a, ā, zero} reflect the operation that the transitions
δ ⊆ R × Σ × R perform on the states:

δ((c, r), a) = (c + 1, r + 1) δ((c + 1, r + 1), ā) = (c, r)
δ((c + 1, r), zero) = (0, c) δ((0, r + 1), zero) = (0, r) .

We will explain the transitions in a moment, but remark that they are designed in a way
that makes ≤R a simulation relation and hence UR a WSTS.
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▶ Lemma 24. T ∈ L(WSTS).

To develop an intuition to the language, consider

T ∩ a∗.ā∗.zero∗ = {an.ān.zeroi | n, i ∈ N} ∪ {an.āk.zeroi | n, k, i ∈ N, n − k > i} .

Until reading the first zero symbol, the language keeps track of the (Dyck) balance of a and ā

symbols in a word. If the balance becomes negative, the word is directly rejected. If the
balance is non-negative, it is the task of the zero symbols to distinguish a balance of exactly
zero from a positive balance. Words with a balance of exactly zero get accepted regardless of
how many zero symbols follow. Word that have a positive balance of c > 0 when reading
the first zero get rejected after reading c-many zero symbols. As we show, this is enough to
distinguish words with a balance of c > 0 from words with a balance of d > 0 for d ̸= c, and
thus obtain infinitely many classes in the Nerode quasi order. We turn to the details.

▶ Proposition 25. T /∈ L(detWSTS)

To prove T /∈ L(detWSTS), we associate with each column Ci in the Rado WQO the column
language Li = {w ∈ Σ∗ | δ(C0, w) = Ci}. It consists of those words that reach all states
in Ci from the initial column C0. The column languages are non-empty.

▶ Lemma 26. Li ̸= ∅ for all i ∈ N.

We start from the entire initial column, meaning ε ∈ L0. The transitions labeled by a move
from all states in one column to all states in the next column, Li.a ⊆ Li+1. This already
proves the lemma. The ā-labeled transitions undo the effect of the a-labeled transitions and
decrement the column, Li+1.ā ⊆ Li. In the initial column, this is impossible, δ(C0, ā) = ∅.
We illustrate the behaviour of a and ā in Figure 2 (left).

By Lemma 23, the columns form an antichain in (D(R), ⊆). The languages Li translate this
antichain into (actually several) antichains of the form we need. Combined, Lemmas 26, 27,
and 22 conclude the proof of Proposition 25, and therefore Theorem 21.

▶ Lemma 27. Every set K ⊆ Σ∗ with |K ∩ Li| = 1 for all i ∈ N is an antichain in (Σ∗, ≤T ).

In the rest of the section, we prove Lemma 27. The lemma claims that entire column
languages are incomparable in the Nerode quasi order, so we write L ̸∼T K if for all w ∈ L

and all v ∈ K we have w ̸≤T v and v ̸≤T w. Difficult is the incomparability with L0 stated
in the next lemma. The proof will make formal the idea behind the zero-labeled transitions.

(0, 0)

(1, 1)

(2, 2)

(2, 3)

(2, 4)

(2, 5)

(2, 6)

(2, 7)

(3, 3)

(3, 4)

(3, 5)

(3, 6)

(3, 7)

(4, 4)

(4, 5)

(4, 6)

(4, 7)

(5, 5)

(6, 6)

ā and a

...

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(1, 1)

(1, 2)

(1, 3)

(2, 2)

(2, 3) (3, 3)

(3, 4)

(3, 5)

(3, 6)

(3, 7)

(4, 4)

(5, 5)

(6, 6)

zero

...

Figure 2 The effect of a and ā-labeled transitions on column 3 (left) and the effect of zero-labeled
transitions on columns 0 and 3 (right).

▶ Lemma 28. L0 ̸∼T Lk for all k > 0.
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Proof. Let w ∈ L0 and v ∈ Lk, meaning w leads to all states in column 0 while v leads to all
states in column k > 0. It is easy to find a suffix that shows v ̸≤T w, namely ā. Appending
ā to v leads to column Ck−1, and so v.ā ∈ T , while there is no transition on ā from C0, and
so w.ā /∈ T .

For w ̸≤T v, we need the zero transitions. The idea is to make them fail in Ck for k > 0,
and have no effect in C0. The problem is that the states in Ck must simulate (0, r) for r ≤ k.
The trick is to fail with a delay. Instead of having no effect in C0, we let the zero transitions
decrement the row. Instead of failing in Ck, we let the zero transitions imitate the behavior
from (0, k) and move to (0, k − 1). This is illustrated in Figure 2(right).

By working with column languages, the zero transitions fail in Ck with a delay as follows.
We have L0.zero ⊆ L0 but Lk.zero ̸⊆ L0, meaning from C0 we again reach the entire
column C0, while from Ck we only reach the state (0, k − 1). The decrement behavior in the
initial column allows us to distinguish the cases by exhausting the rows. Certainly, zerok−1

is enabled in large enough states of C0, meaning w.zerok ∈ T . The state (0, k − 1) reached
by v.zero, however, does not enable corresponding transitions, v.zerok /∈ T . ◀

When executed in Ck with k > 0, the zero transitions resemble reset transitions [19]. An
analogue of leaving C0 unchanged despite decrements does not exist in the classical model.
Moreover, reset nets are defined over Nk (an ω2-WQO) as opposed to the Rado set. To
conclude the proof of Lemma 27, we lift the previous result to arbitrary column languages.

▶ Lemma 29. Li ̸∼T Lj for all i ̸= j.

Proof. Let i < j and consider w ∈ Li and v ∈ Lj . For v ̸≤T w, we append āj , which is
possible only from the larger column: v.āj ∈ T but w.āj /∈ T . For w ̸≤T v, we append āi.
Then w.āi ∈ L0 while v.āi ∈ Lk with k > 0. Now Lemma 28 applies and yields a suffix u so
that w.āi.u ∈ T but v.āi.u /∈ T . ◀

The WSTS accepting the witness language T uses non-determinism only in the choice of
the initial state. The transitions are deterministic. Moreover, the Rado WQO is embedded in
every non-ω2-WQO [8, Section 2]. Given the determinizability results from [16, Theorem 5],
language T thus shows non-determinizability of WSTS with minimal requirements.

5 Downward-Compatible WSTS

We show that the regular separability and non-determinizability results we have obtained for
upward-compatible WSTS so far can be lifted to downward-compatible WSTS (DWSTS).
In DWSTS, smaller states simulate larger ones and the set of final states is downward closed.
We lift our results by establishing general relations between the language classes L(WSTS),
L(DWSTS), L(detWSTS), and L(detDWSTS). Figure 3 summarizes them.

L(detWSTS) L(WSTS)

L(detDWSTS) L(DWSTS)

=cmp, Lemma 31
̸⊆rev, ̸⊇rev, Lemma 35

=rev, Lemma 30

⊊, Theorem 21

⊊, Theorem 34

Figure 3 Relations between language classes.
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Downward Compatibility. A downward-compatible LTS (DLTS) is an LTS D =
(Q, I, Σ, δ, F ) whose states are equipped with a quasi order ≤ ⊆ Q × Q so that the fol-
lowing holds. The final states are downward closed, ↓F = F , and ≥ is a simulation relation.
Recall that this means for all p1 ≤ q1 and for all q2 ∈ δ(q1, a) there is p2 ∈ δ(p1, a) with
p2 ≤ q2. We denote the class of deterministic DLTS by detDLTS. We use L(DLTS) and
L(detDLTS) to refer to the classes of all DLTS resp. detDLTS languages. If ≤ is also a
WQO, we call D a downward-compatible WSTS (DWSTS).

Relations between L(DLTS) and L(ULTS). The languages accepted by DLTS are the
reverse of the languages accepted by ULTS, and vice-versa. This is easy to see by reversing the
transitions. Let U = (Q, ≤, I, Σ, δ, F ) be an ULTS. We define U rev = (Q, ≤, F, Σ, δrev, ↓I)
to be its reversal. The initial and final states are swapped and the direction of the transitions
is flipped, δrev = {(p, a, q) | (q, a, p′) ∈ δ, p ≤ p′}. Note that we close the initial states
downwards and add transitions from states smaller than the original target. This corresponds
to the assumption that the original transitions relate downward-closed sets. The construction
can also be applied in reverse to get an ULTS Drev from a DLTS D.

▶ Lemma 30. If U ∈ ULTS (WSTS), then U rev ∈ DLTS (DWSTS) and L(U rev) = L(U )rev.
If D ∈ DLTS (DWSTS), then Drev ∈ ULTS (WSTS) and L(Drev) = L(D)rev.

The detDLTS languages are precisely the complements of the detULTS languages. For a
detULTS or detDLTS U = (Q, ≤, y, Σ, δ, F ), we define the complement U = (Q, ≤, y, Σ, δ, F )
by complementing the set of final states [37, Theorem 5].

▶ Lemma 31. U ∈ detULTS (detWSTS) iff U ∈ detDLTS (detDWSTS), and L(U ) = L(U ).

Behind this is the observation that, under determinism, ≤ is a simulation if and only if ≥
is [36, Theorem 3.3(ii)]. The details are in the full version [32].

5.1 Lifting Results
Regular Separability of DWSTS. We obtain the regular separability of disjoint DWSTS
languages as a consequence of the previous results. More precisely, we need Lemma 30,
Theorem 3, and the closure of the regular languages under reversal.

▶ Theorem 32. Let L1, L2 ∈ L(DWSTS). We have L1 | L2 if and only if L1 ∩ L2 = ∅.

Non-Determinizability of DWSTS. To show that DWSTS cannot be determinized, recall
our witness language T from Section 4. Surprisingly, we have the following.

▶ Lemma 33. T rev ∈ L(detDWSTS) and T
rev ∈ L(detWSTS).

For the first claim, recall that the witness language is accepted by the WSTS UR. The
DWSTS UR

rev has one minimal initial state, and transition images δrev(p, b) with one
minimal element for all p ∈ R and b ∈ Σ. Removing simulated states yields a deterministic
DWSTS. The details are in the full version [32]. For the second claim, T rev ∈ L(detWSTS)
by Lemma 31. But T rev = T

rev, and so T
rev ∈ L(detWSTS). Behind this is the fact that

bijections commute with complements, and reversal is a bijection.
The lemma allows us to prove non-determinizability for DWSTS. Notably, we do not

need a characterization for the languages of deterministic DWSTS.

▶ Theorem 34. T ∈ L(DWSTS) \ L(detDWSTS) and so L(DWSTS) ̸= L(detDWSTS).

Proof. By Lemma 33, T
rev ∈ L(detWSTS). Lemma 30 yields T ∈ L(DWSTS). Suppose T ∈

L(detDWSTS). Then T ∈ L(detWSTS) by Lemma 31. This contradicts Proposition 25. ◀
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5.2 Consequences
We have shown that neither upward- nor downward-compatible WSTS can be determinized.
This does not yet rule out the possibility of determinizing an upward-compatible WSTS into
a downward-compatible one, and vice versa. Given the correspondence in Lemma 30, we
should allow the determinization to reverse the language. We now show that also this form
of reverse-determinization is impossible: there are even deterministic languages that cannot
be reverse-determinized. This is by Lemma 33, Proposition 25, and Theorem 34.

▶ Lemma 35. T rev ∈ L(detDWSTS) but T /∈ L(detWSTS). Similarly, T
rev ∈ L(detWSTS)

but T /∈ L(detDWSTS)

After reversal, both witness languages T and T can be accepted by a deterministic WSTS.
When it comes to separability, this means the results from [16] apply to them. A consequence
of Lemma 35, however, is that there are WSTS languages that can neither be determinized
nor reverse-determinized. An instance is K = T.#.T

rev with # a fresh letter.

▶ Lemma 36. K ∈ L(WSTS), K ̸∈ L(detWSTS), and Krev ̸∈ L(detDWSTS).

When considering disjoint K1, K2 ∈ L(WSTS) that can neither be determinized nor reverse-
determinized, the separability result from [16] does not apply. Theorem 3 is stronger and
yields K1 | K2. The situation is similar for downward-compatible WSTS.

6 Conclusion and Future Work

We have shown that disjoint WSTS languages are always separated by a regular language.
This strengthens the popular separability result from [16] by showing that the premise in
that work (one language had to be accepted by a deterministic WSTS) is not needed. We
have also shown that deterministic WSTS accept a strictly weaker class of languages than
their non-deterministic counterparts, meaning the premise was a real restriction.

Behind our separability result is a closure of inductive invariants that adds limits of
converging sequences, and the fact that the transition relation is compatible with limits.
It would be interesting to formulate this in a topological setting [26, 27]. It would also be
interesting to apply our invariant closure in settings where separability does not coincide
with intersection emptiness and the complexity is open [6]. Finally, it would be interesting
to develop compositional verification technology based on separability.
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