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Abstract
Combinatorial optimisation technology has come a long way. We now have mature high-level
modelling languages in which to specify a model of the particular problem of interest [18, 7, 24, 6];
robust complete solvers in each major constraint paradigm, including Constraint Programming
(CP) [1, 19], MaxSAT [5, 11], and Mixed Integer Programming (MIP) [2, 3]; effective incomplete
search techniques that can easily be combined with complete solvers to speed up the search such
as Large Neighbourhood Search [23]; and enough general knowledge about modelling techniques
to understand the need for our models to incorporate components such as global constraints [25],
symmetry constraints [8], and more. All this has significantly reduced the amount of knowledge
required to apply this technology successfully to the many different combinatorial optimisation
problems that permeate our society.

And yet, not many organisations use such advanced optimisation technology; instead, they often
rely on the solutions provided by problem-specific algorithms that are implemented in traditional
imperative languages and lack any of the above advances. Further, while advanced optimisation
technology is particularly suitable for the kind of complex human-in-the-loop decision-making
problems that occur in critical sectors of our society, including health, transport, energy, disaster
management, environment and finance, these decisions are often still made by people with little or
no technological support. In this extended abstract I argue that to change this state of affairs, our
research focus needs to change from improving the technology on its own, to improving it so that
users can better trust, use, and maintain the optimisation systems that we develop with it. The rest
of this extended abstract discusses my personal experiences and opinion on these three points.

Trust

I highlight trust (which focuses on the user’s point of view) rather than trustworthiness (which is a
characteristic of the software itself) because I think it is the former rather than the latter that is at
stake for the adoption of optimisation technology.

One of the biggest hurdles I have found for trust in the context of optimisation systems is for
the domain experts to (feel like they) understand the underlying model. While many users will never
do (or have to), I believe it is key for domain experts to have a high-level understanding of the
constraints in the model, since their (dis)trust will likely spread through the organisation, impacting
the adoption of the system. Thanks to the use of high-level modelling languages in CP, our group
has achieved this [13] by documenting the constraints in a language the user knows (mathematics)
and linking each constraint to the particular part of the model that implements it (via comments).
While domain experts do not completely understand the model, the similarity between the format
they understand (mathematics) and the model constraint has helped them verify our perception
of their problem and improved their trust in the model. However, more needs to be done in this
direction via the development of formal techniques. For example, our group is exploring the use of
domain-specific languages [10] as a bridge between domain experts and modellers that helps both
trust and maintenance (see later). This [27] and other approaches need to be explored.

A very significant source of trust for our domain experts (and of trustworthiness for the software)
has been the development of two different models implemented by two different people for the same
problem [13]. While this can be seen as a prohibitively expensive exercise, it did not take that long
once the first model was mature, is a good way to onboard new optimisation team members, and has
helped up detect not only bugs but also differences in the interpretation of domain expert information.
For optimisation problems where it is not possible to verify the optimality (or even correctness) of
the solution, we see such redundant modelling as the only solution for now. Interestingly, a significant
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step forward in obtaining the trust of our domain experts has been the generation of an optimality
gap whenever an optimal solution could not be found due to time constraints. While explaining this
concept took time, once understood it has boosted their trust, particularly when tackling problems
where the solution is not easy verifiable or when approximated models/data are used (needed for
speed, see later). This makes it difficult to work with CP and SAT solvers, as they usually lack tight
lower bounds. Finally, trust is often developed through the use of the system, which I discuss below.

Use

Usability is known to be key for the deployment of software systems. By “system” in our context, I
refer to the combination of the problem model(s), the associated solver(s) and, importantly, the User
Interface (UI) that often integrates them and is fundamental to their success. In addition to the
traditional usability characteristics of software systems, I believe an optimisation system requires
particular care in the following areas. Interaction, i.e., the system must allow users to interact with
the UI not only to provide and modify the input data, but also to modify the constraints (at the
very least by turning some on/off) as well as explore and compare solutions, as argued in [17, 15].
Incremental compilers and solvers would significantly help in making this easier, as well as generic
ways for the UIs to communicate with them. Conflict resolution, that is, ensuring the system can not
only detect infeasible instances, but also support users in understanding the data/constraints that
cause infeasibility and how to modify the instance to make it feasible. Any interactive optimisation
system that has users, will likely have conflicts. Thus, it is mandatory for CP to improve its conflict
resolution technology which, while existent [16, 14, 22], is not widespread and it is often still problem-
dependent, overwhelming (in the number of constraints shown to the user) and slow. Without it,
users will be “stumped” when (rather than if) infeasibility is reached. Solution diversity, that is,
supporting users in obtaining a diverse set of (close-to-optimal) solutions, where diversity is measured
by a user-provided metric modelled somehow. While some solver-independent technology has been
developed and implemented for this [9, 20, 12], it should be easier to use and more widespread.
Further, it requires sophisticated solution comparison capabilities and, importantly, for optimal
solutions to be found in seconds rather than hours. This brings me to speed, an area where CP
solvers are falling behind. Most of our research group applications now use MIP solvers due to the
need for floats (which precludes us from using learning solvers such as Chuffed [4]), but also to the
lack of effective warm-start processes that are available in MIP solvers. Interestingly, data and model
approximations have been proved to achieve orders of magnitude speedups with small reductions in
optimality [13]. Developing generic (i.e., problem independent) accurate approximations would be
extremely useful for complex decision systems. Other areas where I think generic CP methods are
worth investigating more include dealing with uncertainty and online problems, ensuring solution
fairness (even if it is over time), and studying predict + optimise approaches.

Maintain

I know very few papers devoted to the issue of maintenance in optimisation technology. While this
may be due to my lack of knowledge, I suspect it is also due to the limited adoption of optimisation
technology. While the issues in this area are again common to other software systems, I believe the
solutions for CP require special attention. For example, the issue of changes in user requirements
(that our research group calls problem drift) seems particularly prevalent in decision-making systems,
as such problems can evolve rapidly due to unforeseen circumstances. This can make optimisation
systems obsolete faster than expected. Our research group has proposed to tackle problem drift
by developing a requirements model implemented in the above-mentioned MDSLs and created
by both domain experts and modellers that, when modified re-generates parts of the model to
support the modifications [27]. This and other approaches such as the creation of reusable models
components [21, 26], or instantiatable classes for common problem domains, are worth investigating.
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