
Incremental Constrained Clustering by Minimal
Weighted Modification
Aymeric Beauchamp #

University of Orléans, INSA Centre Val de Loire, LIFO EA 4022, France

Thi-Bich-Hanh Dao # Ñ

University of Orléans, INSA Centre Val de Loire, LIFO EA 4022, France

Samir Loudni #Ñ

TASC (LS2N-CNRS), IMT Atlantique, France
GREYC, University of Caen Normandy, France

Christel Vrain #Ñ

University of Orléans, INSA Centre Val de Loire, LIFO EA 4022, France

Abstract
Clustering is a well-known task in Data Mining that aims at grouping data instances according to
their similarity. It is an exploratory and unsupervised task whose results depend on many parameters,
often requiring the expert to iterate several times before satisfaction. Constrained clustering has been
introduced for better modeling the expectations of the expert. Nevertheless constrained clustering is
not yet sufficient since it usually requires the constraints to be given before the clustering process.
In this paper we address a more general problem that aims at modeling the exploratory clustering
process, through a sequence of clustering modifications where expert constraints are added on the
fly. We present an incremental constrained clustering framework integrating active query strategies
and a Constraint Programming model to fit the expert expectations while preserving the stability of
the partition, so that the expert can understand the process and apprehend its impact. Our model
supports instance and group-level constraints, which can be relaxed. Experiments on reference
datasets and a case study related to the analysis of satellite image time series show the relevance of
our framework.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Computing methodologies → Semi-supervised learning settings

Keywords and phrases Incremental constrained clustering, Constrained optimization problem, User
feedback

Digital Object Identifier 10.4230/LIPIcs.CP.2023.10

Related Version Extended Version: hal-04158825

Supplementary Material Software (Source Code): https://github.com/aymericb213/IAC
archived at swh:1:dir:8f611496af5ad016912ca3d55379b50b36541f89

Funding This work was supported by the French national research project HERELLES under grant
agreement ANR-20-CE23-0022.

Acknowledgements The authors want to thank the anonymous reviewers for their comments and
suggestions which helped to improve this paper.

1 Introduction

Clustering is a popular task in Data Mining in which data instances (i.e. points of a dataset)
are grouped into distinct clusters according to their similarity. Over time, many strategies
have been explored to compute data partitions, each of them having their own strengths and
biases. Constrained clustering [16] aims to find relevant clusters by stating some desired
properties in the form of constraints, thus alleviating the aforementioned biases. The most

© Aymeric Beauchamp, Thi-Bich-Hanh Dao, Samir Loudni, and Christel Vrain;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 10; pp. 10:1–10:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aymeric.beauchamp@univ-orleans.fr
https://orcid.org/0000-0001-9894-7056
mailto:thi-bich-hanh.dao@univ-orleans.fr
http://www.univ-orleans.fr/lifo/Members/dao
https://orcid.org/0000-0002-2740-6954
mailto:samir.loudni@imt-atlantique.fr
https://loudni.users.greyc.fr/
https://orcid.org/0000-0001-6245-7661
mailto:christel.vrain@univ-orleans.fr
http://www.univ-orleans.fr/lifo/Members/vrain
https://orcid.org/0000-0003-3307-0753
https://doi.org/10.4230/LIPIcs.CP.2023.10
https://hal.science/hal-04158825
https://github.com/aymericb213/IAC
https://archive.softwareheritage.org/swh:1:dir:8f611496af5ad016912ca3d55379b50b36541f89;origin=https://github.com/aymericb213/IAC;visit=swh:1:snp:91f1f1b21a62d5fb209ca82661fd2af41e1de1ca;anchor=swh:1:rev:2e5ed052eadbefdfbd032b7e35250e8ccc585858
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Incremental Constrained Clustering by Minimal Weighted Modification

commonly used constraints for clustering state that two points must be clustered together
(must-link) or apart (cannot-link) [32]. Other constraints exist as for instance limiting the
size or the diameter of the clusters [1]. They are usually given by a subject matter expert
(SME) that possesses domain knowledge on the data; they model his/her knowledge and
expectations about the result by expert constraints.

In practice, it may be difficult for an expert to express constraints solely on the basis
of the data. It is usually easier to him/her to provide feedback on the current partition
to refine it. This leads to a human-in-the-loop clustering process, where new constraints
given or validated by the expert are incrementally integrated, modifying the result until
user satisfaction. However, this raises several non trivial questions such as how to elicit the
constraints, how to integrate them, or how to further exploit them. By incorporating human
feedback and domain knowledge, the resulting clusters are more likely to align with the
expert expectations while making them more intuitive and interpretable. This incremental
setting mimics the natural step-by-step progression of an exploratory task such as clustering,
where the user needs to iterate several times before satisfaction. In such a process, the result
at each step should (1) be computed fast enough, (2) exploit the expert constraints efficiently
(3) be similar to the result of the previous step, in order not to disturb the expert.

A naive way to integrate new expert constraints is to restart a constrained clustering
algorithm. However, this presents at least two weaknesses: it starts from scratch without
ever considering intermediate results and the new constraints can lead to a partition very
different from the one previously shown to the expert. To cope with this problem, we propose
a first generic framework that allows for truly interactive and iterative constrained clustering
that fulfills the conditions mentioned above. Our main contributions are :

an incremental constrained clustering framework designed for human interaction, combin-
ing active constraint selection and clustering modification;
a new constraint programming model for minimal clustering modification, which ensures
the stability of the partition.

The paper is organized as follows. We review in Section 2 related work on incremental
constrained clustering and minimal clustering modification and present our method in Section
3. Experiments on reference and satellite image time series datasets are presented in Section
4 and perspectives are discussed in Section 5.

2 Related Work

The first works on using constraints in clustering are extensions of classic algorithms for
handling must-link/cannot-link constraints [33, 10, 35]. They either search for a solution
satisfying all the constraints [33] or a compromise between constraint satisfaction and
clustering quality [6]. Thereafter methods allowing to integrate more general constraints,
using declarative frameworks such as SAT [12], ILP [29] or CP [9] have been proposed. When
new constraints are given by the user, all these methods require to restart from scratch,
without any guarantee that the new partition will be similar to the previous one. Therefore
they are not suited for an incremental setting.

There is a growing body of works related to incremental constrained clustering. In [7], the
idea of gathering feedback from an existing result rather than expecting the user to provide
insightful constraints by themselves is demonstrated. Later, the authors of [11] studied the
problem of adding or removing a constraint from a constraint set satisfied by a partition.
They described conditions under which the problem is easy to solve and an algorithm working
under these conditions. In [26], a cluster refinement framework uses subclustering to find

A. Beauchamp, T.-B.-H. Dao, S. Loudni, and C. Vrain 10:3

representatives to present to the user before learning an embedding using the feedback.
More recently, [21] proposed an incremental variant of a collaborative constrained clustering
system that integrates constraint satisfaction in its objective function. Among declarative
approaches, an ILP model for minimal clustering modification (MCM) is proposed in [20].
It constrains cluster diameters with the objective of removing undesirable properties from
a partition. Another ILP model [28] computes a membership score for each point to each
cluster and optimizes a criterion based on this score. It can modify the assignment of points
to clusters, even if they are not involved in constraints. However those models are restrictive
since they cannot handle conflicting constraints, which make the problem unsolvable.

Our approach seeks to preserve the general cluster structure of an existing partition while
satisfying new constraints. To the best of our knowledge, this is the first approach explicitly
tackling both quality and stability. It is based on CP, therefore it can integrate different kinds
of constraints that can be either soft or hard, with some control over constraint relaxation
and the ability to handle conflicting constraints. We use subclustering in a similar way to
[26], albeit for a different purpose as it allows generalizing the changes decided by our CP
model as well as finding cluster representatives used in our objective function.

3 Incremental and Active Clustering Framework

Figure 1 Schematic view of the incremental clustering cycle.

In this section, we describe our proposed incremental and active clustering (IAC) frame-
work. Figure 1 gives a general overview of IAC. The incremental constrained clustering
loop starts from an initial partition computed by any clustering algorithm. This partition
is then shown to the user to collect his/her general feedback (satisfied or not). If he/she is
not satisfied, he/she can modify this partition in two ways: by manually providing a set of
constraints and/or by inferring it through an active constraint selection method. He/she can
also set the proportion of constraints to satisfy as well as the scope of modifications. The
clustering modification step updates the current partition according to these new constraints,
optionally generalizing modifications to unconstrained data instances. The output is a new
partition satisfying the constraints while preserving its stability, i.e. similar to the previous
one. This process is repeated until the user is satisfied by the resulting partition. It is
noteworthy that our framework is generic as any active constraint selection method and

CP 2023

10:4 Incremental Constrained Clustering by Minimal Weighted Modification

any modification algorithm could be used as long as the constraints generated match the
constraints handled in modification. We formulate the problem of clustering modification in
a declarative way and present a CP model. This has the benefit of being able to integrate
several types of constraints for the user feedback.

3.1 Minimal Weighted Clustering Modification
We consider the minimal weighted clustering modification (MWCM) problem: given a
partition P of N data instances (numbered from 1 to N) into a number K of clusters, and a
set of user constraints C, the objective is to find a new partition P ′ such that the constraints
are satisfied while minimizing some function f modeling the difference between P and P ′.
For solving this problem, Algorithm 1 shows the different steps that are detailed below.

Algorithm 1 Minimal Weighted Clustering Modification.
Input: Dataset X , partition P, constraints C, anchor generation rate α, super-instance rate β,

constraint satisfaction rate δ

Output: modified partition P ′

1: anchors← ComputeRepresentatives(X ,P, α) ▷ See section 3.1.1
2: X ← ComputeCOPInstances(X ,P, C, β) ▷ Instances used in COP (Section 3.1.2)
3: D ← DistanceMatrix(X, anchors) ▷ See section 3.1.1
4: p← GetConstrainedPartition(X,P) ▷ Cluster membership of the constrained instances
5: mods← SolveModel(D, p, C, δ) ▷ Solves the COP in Section 3.2
6: return ApplyModifications(mods,P) ▷ Updates P and generalizes modifications

3.1.1 Objective function and anchors
A straightforward candidate for f is to count the number of instances that have changed
their cluster membership between P and P ′ [20]:

arg min
N∑

i=1
I(P[i] ̸= P ′[i]) (1)

where P[i] denotes the number c ∈ [1, K]1 of the cluster containing instance i ∈ [1, N] and
I the indicator function that returns 1 if the expression given as argument is true, and 0
otherwise. The main drawback of Equation (1) is that it does not take into account the
structure of the clusters. For example, it is reasonable to consider that putting two instances
in a nearby cluster is more akin to the idea of minimal modification than putting one instance
into a faraway cluster. Therefore we propose an alternate objective function that integrates
a distance-based weighting of the modifications:

arg min
N∑

i=1
I(P[i] ̸= P ′[i]) D[i,P ′[i]] (2)

where D is a distance matrix of dimensions N ×K such that D[i, c] is the distance of instance
i to cluster c. This objective function measures the changes between P and P ′ and keeps the
cumulative distances resulting from these changes small. This objective function is integrated
into the model for MWCM that will be presented in Section 3.2.

1 We use the notation [1, K] for the set {1, .., K}.

A. Beauchamp, T.-B.-H. Dao, S. Loudni, and C. Vrain 10:5

A simple way to compute D[i, c] is to set D[i, c] = d(i, µc), where µc is the representative
(medoid or centroid) of c and d is a distance measure, typically the Euclidean distance. This
has however a known limitation: the modifications made by the model implicitly treat all
clusters as spherical. It can be counterproductive if the user seeks more complex shaped
clusters. To overcome this, we use anchors [17] such that each cluster will be represented by
a subset of its instances, in order to better represent its structure. Anchors are computed
by dividing each cluster c of the input partition into smaller sub-clusters using Single-Link
hierarchical clustering. For each of these sub-clusters, an anchor is defined as the instance
minimizing the sum of its distances with the other instances of the sub-cluster. Using anchors,
D[i, c] represents the distance of instance i to its closest anchor belonging to cluster c. A
parameter α defining the proportion of instances per cluster (in percentage) that will become
anchors is used. For example, a rate of 0% means that we only use medoids, while at a rate
of 100%, all instances are anchors (cf. Figure 2).

(a) α = 0% (medoids). (b) α = 5%. (c) α = 20%.

Figure 2 Anchor positions for different values of α computed from the partition generated by
Kmeans on lsun dataset. The anchors are represented bigger than normal instances.

3.1.2 Generalizing constraints with super-instances
In a real use case, we assume that the expert will only react on a small number of instances
per iteration. As a result, the clustering modification could become unnoticeable when the
dataset size is large compared to the number of constraints, which is a fairly common case.
Hence, exploiting expert feedback to generalize the modifications to relevant unconstrained
instances is an important issue w.r.t. the challenge of asking a reasonable number of queries.
This issue has been highlighted in [34], and is especially relevant in our incremental setting.
Furthermore, this generalization must be controlled to ensure the expert can grasp the scope
of potential modifications. We assume that, in most cases, the expert will want to modify
a zone around the selected instances and not only the instances themselves. Bearing this
intuition in mind, making use of nearest neighbors or a proximity radius seem adequate, but
these methods lack predictability: if an instance is within the radius of two constrained points
who were reassigned to different clusters, determining how to resolve the generalization is
not obvious.

We propose to use super-instances, i.e. virtual instances grouping several real data points,
to generalize the modifications. Note that generalization does not mean that new constraints
are generated, rather that the super-instances are passed directly to the model instead of
the data instances (see Appendix C). Thus any modification in the cluster membership of a
super-instance amounts to changing the membership of every real data instance that compose
it. The generalization scope is controlled as follows: the less a cluster is divided, the stronger
the impact of a modification. Thus the scope depends on the number of super-instances,
determined by a rate β proportional to the cluster size. As such, setting β to e.g. 10%

CP 2023

10:6 Incremental Constrained Clustering by Minimal Weighted Modification

means that each cluster will be split into a number of super-instances equal to 10% of its
size, with 1 being equivalent to not generalizing at all. Super-instances are determined by
sub-clustering each cluster of the current partition into small groups, each group representing
a super-instance. We empirically found that complete-link hierarchical clustering is adequate,
despite its memory usage which makes it unsuitable on large datasets. Other alternatives
include the density-based OPTICS as in [26], or the Furthest Point First (FPF) algorithm
[15]. However, user constraints defined on instances need to be transferred to super-instances.
This may raise potential conflicts. To avoid this pitfall, we ensure that every super-instance
contains no more than one constrained data point. If this is not the case, we split the
super-instance using the constrained instances as centers of the new split super-instances.
An illustrative case is given in Appendix A.

3.2 Constraint Optimization Problem Formulation
Taking advantage of declarative approaches, we formulate the problem of finding a similar
partition satisfying user constraints as a Constraint Optimization Problem (COP). In the
following, we use the term instance to denote a data instance or a super-instance if it is used.

Variables and Objective Function. Only instances that are subject to the constraints will
be concerned by the COP. Function GetConstrainedPartition in Algorithm 1 produces
the subset X containing the constrained instances. For each instance in i ∈ X, we define a
variable Gi with the domain [1, K], where Gi = c means instance i is assigned to cluster c in
the new partition P ′. Using Eq. (2), the objective function is:

arg min
∑
i∈X

I(Gi ̸= P[i]) D[i, Gi] (3)

User constraints. Several instance-level and group-level constraints can be expressed in
our model, as below. Must-link (ML)/cannot-link (CL) constraints on two instances i, j

stating that the instances must/cannot be in the same cluster, can be expressed by Gi = Gj

for ML and Gi ̸= Gj for CL. We also compute the transitive closure on ML/CL constraints
[25], which derives supplementary constraints according to three rules : (i) if ML(a, b) and
ML(b, c), then ML(a, c); (ii) similarly ML(a, b) and CL(b, c) imply CL(a, c) ; (iii) in a
binary clustering case (K = 2), CL(a, b) and CL(b, c) imply ML(a, c).
Triplet constraint (a, p, n) [23] states that a reference instance a is more similar to instance
p than to instance n. Instance p is therefore called positive instance and n negative. This
constraint can be expressed using an implication constraint as follows:

Ga = Gn =⇒ Ga = Gp (4)

Span-limited constraints [27] restricting the span of a set of instances S ⊆ X. A specific
span-limited constraint states that the instances of S must be assigned only to clusters from
a given subset C ⊆ [1, K]. It can be expressed using the count global constraint2:

count(c, [Gi | i ∈ S], =, 0) ∀ c /∈ C (5)

A generic span-limited constraint specifies that the instances of S must be assigned to at
most a number γ of clusters. It can be expressed using the constraint atmost_nvalue3 [5]:

atmost_nvalue(γ, [Gi | i ∈ S]) (6)

2 https://sofdem.github.io/gccat/gccat/Ccount.html
3 https://sofdem.github.io/gccat/gccat/Catmost_nvalue.html

https://sofdem.github.io/gccat/gccat/Ccount.html
https://sofdem.github.io/gccat/gccat/Catmost_nvalue.html

A. Beauchamp, T.-B.-H. Dao, S. Loudni, and C. Vrain 10:7

More thematic expert feedback can also be integrated as implication constraints. In our
model, they are of the form P =⇒ Q, where P and Q are conjunctions of simpler constraints
such as ML/CL.

Cluster creation. Our model allows P ′ to have more clusters than P , by defining the domain
of Gi as [1, K ′], with K ′ > K. This enables assigning an instance to a new cluster if some
constraints are unsatisfied. For example, if K = 2 and the expert states three constraints
Gi ̸= Gj , Gj ̸= Gl and Gl ≠ Gi, then it is necessary to create a new cluster. Given its
conditions of apparition, it will typically be very small. In order to prevent the model from
creating clusters because it would be optimal to do so w.r.t. the objective function, we set
the distance D[i, k′] to a value greater than all other distances for K < k′ ≤ K ′.

Relaxing constraints. During the incremental process, the expert could make mistakes
when trying to improve the partition, which would result in adding conflicting constraints,
thus leading to an over-constrained CP model. We reify the user constraints to gain control
over constraint satisfaction. Each constraint c ∈ C is associated with a Boolean variable Sc

such that Sc = 1 iff c is satisfied. The satisfaction rate δ sets a lower/upper bound or the
exact value of the number of constraints the model must satisfy:∑

c∈C
Sc ⪌ δ · |C| (7)

Constraint relaxation can both solve problems with conflicting constraints and ignore - or warn
the user about - constraints that would modify instances far from their new cluster. Relaxation
however increases runtime due to the additional Boolean variables. As is, our framework
automatically detects ML/CL conflicts and reduces the satisfaction rate accordingly.

Managing the constraint store. Algorithm 1 solves this COP with the user constraints
collected at each iteration. The incremental setting raises the issue of managing the constraints
between iterations. It is possible to store every constraint received since the beginning of
the process to ensure that all expert feedbacks are respected. In the experiments, we choose
instead to treat the constraint set given at each iteration independently. In this way, if the
expert adds a constraint in conflict with another one given previously, we consider that the
user is simply rescinding some of his/her feedback. The expert can also mark some constraints
as mandatory so that they are kept satisfied throughout the process. Appropriately managing
the constraint store is a potential future research lead.

3.3 Active Constraint Selection
Obtaining constraints manually can be costly. This motivates active constraint selection
methods [2, 25, 37], which select the most informative constraints to query. To evaluate
the interest of exploiting an active constraint selection approach within our framework,
we use NPU [37], a neighborhood-based sampling strategy. Neighborhoods N are groups
of instances whose cluster assignment is certain, they represent the underlying clusters.
NPU iteratively builds the neighborhoods by selecting the most informative instance x∗

and querying its relation with respect to existing neighborhoods. The informativeness of an
instance x is defined by the ratio H(N|x)/E[q(x)], where H(N|x) is the entropy measure of
the uncertainty to assign x to a neighborhood in N , and E[q(x)] the expected number of
queries needed to discover its neighborhood.

CP 2023

10:8 Incremental Constrained Clustering by Minimal Weighted Modification

Exploiting this informativeness, we adapt the NPU framework to the incremental setting.
The neighborhoods N , which are initially empty, are constructed and kept throughout the
iterations. For each informative instance x∗, queries are put on the membership relation
between x∗ and each neighborhood N ∈ N . Once the user answers favorably, a ML constraint
is created with the queried neighborhood, otherwise a CL is created. If no ML is achieved, a
new neighborhood is created for x∗ (see the detailed algorithm in Appendix B). In relation
to constraint management between iterations, it must be pointed out that the preservation
of the neighborhoods between iterations prevents selecting constraints conflicting with those
selected in earlier iterations. Indeed, an instance stored in a neighborhood is never picked
again by NPU, and is only used to generate constraints with an instance that has not
been presented to the user before. The only factor that could cause previous constraints
to be involuntarily relaxed is a high generalization scope. We found no such occurences in
our experiments with the values we tested for β (see Section 4.2.1). Fig. 3 illustrates the
framework walkthrough on a toy example, with noticeable separation between non-spherical
clusters that KMeans is unable to recover.

(a) t = 0, ARI = 0.44. (b) t = 4, ARI = 0.66. (c) t = 7, ARI = 0.94. (d) t = 10, ARI = 1.

Figure 3 Illustration of IAC with (α = 20%, β = 30%) over 10 iterations on lsun dataset, starting
from a KMeans partition (Fig. 3a). Subsequent figures show the evolution of the partition after t

iterations of IAC with NPU. Adjusted Rand Index with ground truth is reported on each figure.

4 Experiments

In this section, the experiments aim to answer the following research questions (RQ):
1. What effect do IAC parameters (α and β) have on clustering results ? (Section 4.2.1)
2. How does our CP model scale with the number and type of constraints ? (Section 4.2.2)
3. How does the constraint relaxation of IAC compare with other methods that use soft

constraints ? (Section 4.2.3)
4. How effective is IAC in an active constraint selection context ? (Section 4.2.4)
5. What is the performance of our framework in terms of clustering quality, partition

similarity and runtime when compared to state of the art methods ? (Section 4.2.4)
6. How effective is our framework on a real use case with human feedback ? (Section 4.3)

4.1 Experimental Methodology
Evaluation measures. For all experiments we use datasets for which a ground-truth labeling
is known. The produced partition is then compared to the known partition using an
external measure. A high value of the measure indicates a good partition, meaning that the
clustering algorithm has successfully identified the already known structure. We consider
three measures: Adjusted Rand Index (ARI) [19], Adjusted Mutual Information (AMI) [31]
and Folkes-Mallows Index (FMI) [13]. ARI measure is defined by:

ARI(P,P ′) = 2(ab− cd)
(a + d)(d + b) + (a + c)(c + b) (8)

A. Beauchamp, T.-B.-H. Dao, S. Loudni, and C. Vrain 10:9

where a (resp. b) is the number of instances pairs clustered together (resp. apart) in P and
P ′, and c (resp. d) is the number of pairs clustered together (resp. apart) in P and apart
(resp. together) in P ′. AMI is a variation of Normalized Mutual Information corrected for
chance:

AMI(P,P ′) = MI(P,P ′)− E(MI(P,P ′))
max(H(P), H(P ′))− E(MI(P,P ′)) (9)

where MI is the measure of mutual information, H the entropy of a partition, and E the
expected mutual information if the partitions are random. Finally FMI is the geometric
mean of precision and recall, using one partition as a reference for the other:

FMI(P,P ′) =
√

TP

TP + FP
· TP

TP + FN
(10)

We also measure the runtime of the modification step (reclustering or MWCM) since it is
crucial to take it into account in the incremental setting. We set a timeout after 1 hour of
modification time.

Experimental protocol. We have implemented our CP model in Python 3.11 using the
CPMpy library [18], interfacing with CP-SAT solver from or-tools4. We chose this library
because it allows to easily use landmark ML libraries such as scikit-learn together
with CP. Code for reproducing the experiments is available at the repository given at
the summary of this paper. The implementation of NPU and all clustering algorithms
we considered for comparison (COPKMeans, PCKMeans and MPCKMeans) are from the
active-semi-supervised-clustering5 library. All experiments were run on a computer
with two 48-core Intel Xeon processors at 4 GHz and 64 GB of RAM running Ubuntu 20.04.

For each dataset, we first generate an initial partition with KMeans [24] with K set to
the true number of clusters. Queries correspond to pairwise constraints. We emulate user
feedback using the ground truth labeling of the data as an oracle i.e. a must-link constraint is
added if the selected pair of instances belong to the same class, and a cannot-link otherwise.
For RQs 1, 4 and 5, we perform 10 iterations of selection-modification loop. At each
iteration, we use the current partition to select a batch of 10 queries with NPU, get feedback
from the oracle, and apply either a constrained clustering algorithm to the full dataset or our
CP model for cluster modification. In order to smooth out the random effects occurring in
the partition initialisation and in constraint selection, we repeat each experiment 90 times.

To evaluate the overall performance over the 11 successive partitions (including the initial
partition) obtained for each run, we compute for each metric the area under the budget
curve (AUBC) [38]) for different fixed budgets of queries to ask the user. Given the budget
curve, the AUBC is calculated by the trapezoid method, and the higher value reflects better
performance of the evaluated method under varying budgets. For each metric, we compute
two types of AUBC: AUBCquality when comparing the successive partitions to the ground
truth partition, and AUBCsimilarity when comparing two consecutive intermediate partitions.
Since AUBCsimilarity values are defined over the interval [0, 0.9], we perform a min-max
normalization so that all metrics are defined over the [0, 1] range. To statistically compare the
performance of different algorithms and/or configurations of the same algorithm for different
parameter settings on multiple data sets, we resort to Bayesian pairwise comparison [4] using

4 https://developers.google.com/optimization
5 https://github.com/datamole-ai/active-semi-supervised-clustering

CP 2023

https://developers.google.com/optimization
https://github.com/datamole-ai/active-semi-supervised-clustering

10:10 Incremental Constrained Clustering by Minimal Weighted Modification

Table 1 Dataset Characteristics, with N the number of instances, A the number of features and
K the number of clusters or classes.

UCI FCPS

Name (N , A, K) Name (N , A, K) Name (N , A, K) Name (N , A, K)

iris (150, 4, 3) ionosphere (351, 34, 2) lsun (400, 2, 3) chainlink (1000, 3, 2)
wine (178, 13, 3) yeast (1484, 8, 10) target (770, 2, 6) wingnut (1016, 2, 2)
sonar (208, 60, 2) statlog (2310, 19, 7) atom (800, 3, 2) engytime (4096, 2, 2)
glass (214, 9, 6) Letters (20000, 16, 26)
ecoli (336, 7, 8) MNIST (70000, 784, 10)

baycomp6 library. The principle is to use Bayes’ rule to update a prior statistical distribution
representing the null hypothesis (both compared algorithms have the same performance),
with a likelihood function modeling the experimental observations. We then get a posterior
distribution, reflecting how the prior belief has changed, taking the observations into account.
Using the Markov chain Monte Carlo method, the posterior is sampled 50, 000 times to
estimate the probability of one algorithm being better than the other as well as the probability
of being in the region of practical equivalence (or rope). In practice, querying the posterior
distribution allows to simulate repeating the whole experimental process and to quantify the
likelihood of our results. We choose to fix to 1% the difference of performance between the
methods as the rope.

4.2 UCI and FCPS Datasets
In this section, we report experimental results on ten real-world datasets from the UCI
repository7 and on six synthetic datasets from the FCPS [30] suite designed to address
specific challenges to the clustering algorithms such as lack of linear separability, classes
defined by data density rather than data spacing, no cluster structure at all, etc. A summary
of the basic characteristics is given in Table 1. We used the versions of datasets available
under the library clustering-benchmarks8 [14].

4.2.1 Parameter Settings of IAC
To answer RQ1, we evaluate the effects of different parameter settings of the clustering
modification step of our IAC framework: the anchor generation rate α ∈ {0%, 5%, 20%}
and the super-instance generation rate β ∈ {10%, 30%, 50%, 100%}. This makes a total
of 12 configurations of parameter combinations to evaluate. Recall that α = 0% means
that we only compute the cluster medoids, while β = 100% means no generalization by
super-instances is performed. For each configuration and each metric, we perform Bayesian
pairwise comparison according to AUBCquality and AUBCsimilarity values for each of the
three metrics ARI, AMI and FMI over all the datasets and count the number of wins. More
precisely, given a pairwise comparison between two configurations conf1 and conf2, using a
Bayesian hierarchical model [8], we get three probabilities: the probability that conf1 has
higher scores than conf2, the probability that differences are within the region of practical
equivalence (rope), or that conf2 has higher scores. If (pconf1 > pconf2 + prope), then we
count this comparison as winning for conf1.

6 https://baycomp.readthedocs.io/en/latest/index.html
7 https://archive.ics.uci.edu/ml/index.php
8 https://clustering-benchmarks.gagolewski.com/weave/suite-v1.html

https://baycomp.readthedocs.io/en/latest/index.html
https://archive.ics.uci.edu/ml/index.php
https://clustering-benchmarks.gagolewski.com/weave/suite-v1.html

A. Beauchamp, T.-B.-H. Dao, S. Loudni, and C. Vrain 10:11

(a) ARI. (b) AMI. (c) FMI.

Figure 4 Pairwise plot comparing the number of wins for each configuration (α, β) using a
Bayesian hierarchical model, according to AUBCquality (horizontal) or AUBCsimilarity (vertical).
Best values are close to the top left, with configurations on the Pareto front in orange.

The table of wins is available in Appendix D. Configurations using anchors (i.e. α ̸= 0)
ensure the highest AUBCquality values in almost all configurations. Additionally, the best
values are obtained with α = 20%. For a fixed value of α, AUBCquality values increase
significantly with the decrease of β, 10% being the best value. This result suggests that
a large scope of generalization does not strongly impact the modification of the clustering
and thus its quality. AUBCsimilarity values have the opposite behavior: β = 10% is the
worst setting for similarity. Note that the impact of α seems negligible compared to β. It
slightly improves similarity when β is low, while its contribution seems negligible in the
absence of generalization. Generalizing modifications understandably degrades similarity,
albeit not dramatically. A Pareto front made of three configurations on every metric (see
Fig. 4) emerges from the results: one best in quality (20%, 10%), another best in similarity
(20%, 100%), and a compromise setup (20%, 30%).

Figure 5 plots the posterior distribution of pairwise comparison of configurations in a
simplex. The distribution is shown as a triangle with regions corresponding to different
samples of the distribution, e.g. Figure 5a compares the posterior distribution obtained with
α = 0% (medoids only) and β = 10% with the one obtained without generalization. This
indicates that there is a 88.9% probability that using medoids combined with SI for this
value of β is better than using medoids without SI.

(a) (0%, 10%) vs. (0%, 100%). (b) (5%, 100%) vs. (20%, 100%). (c) (20%, 30%) vs. (20%, 100%).

Figure 5 Simplex view of Bayesian comparison of two configurations w.r.t AUBCquality of ARI.
Each sample is plotted according to probabilities pconf1 (left), prope (top) and pconf2 (right).

4.2.2 Impact of Number and Types of User Constraints on Runtime
In this section, we answer RQ2 by studying two points: the computational efficiency of our
CP model and the expressiveness of our approach (see Sect. 3.2). For these experiments, we
consider 3 sizes of constraint set (10, 100, 1000). For each test case, we randomly generate sets
of four types of constraints (pairwise, triplet, span-limited specific and generic). We compute
an initial KMeans partition and run our CP model only once for each set of constraints and

CP 2023

10:12 Incremental Constrained Clustering by Minimal Weighted Modification

(a) letters. (b) MNIST.

Figure 6 Evolution of running time of our CP model for the two largest datasets when varying
the number and type of constraints, with 95% confidence interval. CPU times are in log-scale.

we report the average CPU times over 90 runs. For pairwise constraints, we disable the
computation of transitive closure to keep the number of constraints unchanged. Span-limited
constraints are created by randomly choosing 10 instances and finding the ground truth set
of clusters - or number of clusters, in the generic case - to which the group belongs.

Runtime analysis. Figure 6 shows the results we obtained for letters and MNIST datasets
with α = 0% and β = 100%. Our CP model can process 10 ML/CL constraints in less than
0.05 seconds, while for triplet and specific span-limited constraints the runtime reaches 0.035
and 0.15 seconds respectively. This seems very reasonable in an incremental context. For the
yeast dataset, with 100 pairwise constraints, it takes 0.35 seconds, whereas for triplet and
span-limited constraints the runtime increases up to 1.36 seconds. With 1000 constraints,
the runtime is more than 44s for specific span-limited, 67s for ML/CL, and over 180s for
triplet; generic span-limited constraints took up too much memory to finish. However, in
practice, the number of constraints expected from the user is in the tens rather than the
hundreds or thousands. Triplet and span-limited constraints show a substantial increase in
runtime compared to ML/CL constraints.

Mixed constraint types. One of the advantages of our approach is its ability to easily
combine different types of constraints without the need to create a specialized algorithm. To
demonstrate this ability, we compared two composite settings:

mlcl+triplet: generate pairwise and triplet constraints in equal proportions, e.g. 50
ML/CL and 50 triplet constraints for the 100 constraints case.
all: similar to mlcl+triplet, except a pairwise (resp. triplet) constraint is replaced by a
specific (resp. generic) span-limited constraint.

As far as we are aware, such problems cannot be solved by any existing techniques. Problems
with ML/CL and triplet constraints take much less time to solve than those involving the
three types of constraints, the latter being much more time-consuming. Surprisingly, with
1000 constraints, the ML/CL+Triplet combination takes less time compared to the case
where only triplet constraints are involved. All these results underline the relevance of
carefully selecting a small number of constraints to guarantee a good compromise between
efficiency and quality of the final clustering.

A. Beauchamp, T.-B.-H. Dao, S. Loudni, and C. Vrain 10:13

Table 2 Comparative study for clustering with pairwise constraints relaxation for the mk2 dataset.
Metrics are ARI with ground truth (Quality), ARI with unconstrained KMeans (Similarity), runtime
and number of constraints relaxed in the solution (nr).

Test case with conflicts Test case with δ = 94%

Quality Similarity Time nr Quality Similarity Time nr

IAC+Anchors 0.576 0.075 5.262 49.7 0.309 0.177 3.051 60.1
IAC+Anchors+SI 0.760 0.024 4.868 49.83 0.393 0.108 2.972 60.1
PCK-Means 0.081 0.051 3.639 149.3 0.375 0.045 2.834 66.5
MPCK-Means 0.078 0.017 29.27 159.9 0.406 0.019 26.98 61.2

4.2.3 Relaxing Constraints

We address the research question RQ3 by comparing IAC with existing constrained clustering
methods for constraint relaxation. We selected two methods: Pairwise Constrained K-
Means (PCK-Means) [3] allows the violation of ML and CL constraints, and Metric PCK-
Means (MPCK-Means) [6] combines PCK-Means with distance-metric learning [36]. As the
alternatives only support pairwise constraints, we compare performance for problems that
involve only ML/CL constraints. To that end, we consider two settings: in the first one,
we generate 950 constraints at random based on the ground truth and add 50 conflicting
constraints so that some constraints must be relaxed to solve the problem; in the second,
we generate 1000 constraints at random without any explicit conflict constraint and set the
satisfaction rate δ of IAC to the mean satisfaction rate of PCK-Means and MPCK-Means.
We run two variants of IAC: IAC+Anchors (α = 20%, β = 100%) and IAC+Anchors+SI
(α = 20%, β = 30%). Table 2 shows the performance of the different approaches for the
mk2 dataset, measured by ARI, runtime and number of constraints relaxed. Each value
in the table is the average of 90 runs with different sets of constraints. As previously, for
each run, we compute an initial KMeans partition and run our CP model only once for
each set of constraints. Results show that in the presence of conflicts, our method violates
fewer constraints than the other methods. Furthermore, the runtimes of IAC are comparable
to those of PCK-Means. In contrast, MPCK-Means is significantly more expensive. In
terms of clustering accuracy (measured by ARI), our approach clearly outperforms the
compared to the alternatives. When imposing a satisfaction rate to the model, PCK-Means
and MPCK-Means achieve comparable or better quality than IAC, but similarity stays low.
However, IAC achieves again better performance in number of constraints relaxed.

4.2.4 Comparing IAC with alternatives in the incremental setting

In this section, we address research questions RQ4 and RQ5, and conduct experiments to
evaluate the interest and performance of our IAC framework for active constraint section
context. NPU can be used in combination with any semi-supervised clustering algorithm,
we use the same ones as in the previous section, including COPK-Means algorithm [33].
This leads to several combinations, and for each combination we perform 10 iterations of
selection-modification loop. For each iteration, we use the current partition to select a batch
of 10 queries with NPU and at random, get feedback from the user, and perform either a
reclustering or MCM. In this experiment, queries correspond to pairwise constraints. In light
of the results of Section 4.2.1, we choose the compromise configuration between quality and
similarity (α = 20%, β = 30%) for this experiment.

CP 2023

10:14 Incremental Constrained Clustering by Minimal Weighted Modification

(a) Comparison to the ground truth. (b) Comparison to the previous partition.

Figure 7 ARI scores of the partition at each iteration of selection-modification, compared to
ground truth (left) or to the previous partition (right), for the glass dataset. All ARI scores are
the mean and 95% confidence interval over 90 runs. Higher is better.

Clustering quality comparison. Figure 7 shows the evolution of the ARI scores over 10
iterations of incremental and active clustering modification for the glass dataset. IAC+NPU
produces increasingly better clusterings as more iterations are given (cf. Fig. 7a), while
keeping a high similarity throughout the iterations (cf. Fig. 7b). None of the competitors
produces a clustering with a high ARI. Interestingly, both PCK-Means and COPK-Means
with NPU are able to find good clusterings while MPCK-Means is not, even after a relatively
large number of iterations. However, the behaviour of the competitors are more chaotic in
terms of similarity. We observe similar results for the other datasets (due to lack of space,
all other results are available via our link in the summary). These results also show that
methods with a random selection of constraints produce typically worse results. We validate
these observations by Bayesian comparison w.r.t. AUBCquality and AUBCsimilarity values
for each metric. Fig. 8 show that IAC has a high probability to perform better than the
alternatives on ARI ; we have similar results for AMI and FMI. Interestingly, using NPU
leads to better similarity (see Fig. 9). This suggests that the use of an active constraint
selection strategy brings another advantage besides improving the quality of the clustering.
However, in an online context, runtime is particularly important as it requires user interaction
and selecting the next query can be very costly, superseding the time taken for modification.
For the biggest datasets (Letters and MNIST), only methods using random selection finish
before timeout. We can conclude from these results that our model for minimal clustering
modification is effectively a better way for active incremental constrained clustering compared
to the naive approach to incrementality.

(a) IAC vs. COPK-Means. (b) IAC vs. PCK-Means. (c) IAC vs. MPCK-Means.

Figure 8 Bayesian comparisons with IAC using NPU w.r.t. AUBCquality values for ARI.

A. Beauchamp, T.-B.-H. Dao, S. Loudni, and C. Vrain 10:15

(a) ARI. (b) AMI. (c) FMI.

Figure 9 Bayesian comparison of IAC with or without NPU w.r.t AUBCsimilarity for all metrics.

Runtime comparison. In Fig. 10, the runtime of modification (reclustering or MWCM) is
shown for each dataset. The runtime of our model is comparable to those of the competitors,
although it seems to have better scaling on the largest datasets. Empirically, IAC is an order
of magnitude faster on yeast, statlog and letters datasets that have a large number of
clusters. It is also noteworthy that MPCK-Means is much slower than other methods due to
metric learning, yet this increase does not translate into better quality or similarity than
IAC. The limiting factor for the modification step of IAC is the computation of anchors and
super-instances, whose scaling is worse than solving the COP in itself.

Figure 10 Evolution of the runtime of tested methods on our benchmark datasets, in seconds
(log scale). Methods using NPU are hatched.

4.3 Tree Cut Data
Introducing the data. Our case study for research question RQ6 concerns the analysis of
satellite image time series (SITS) composed of 11 images of dimensions 724× 337 of a zone
of the Vosges mountains in eastern France, taken irregularly on the span of 3 years from
2016 to 2018. Each pixel is associated to a series of NDVI (Normalized Difference Vegetation
Index) values denoting the level of vegetation at each timestamp. At our disposition are
labels that separate the SITS into three classes: vegetation, artificial structures, and tree
cut zones. This last class has several properties: it was precisely labeled by domain experts,
whereas the two other classes are more approximately defined. It is also a very small class as
shown in Fig. 11a, containing only 639 instances (less than 0.3% of the data), which makes
it hard to detect with unsupervised learning. Image-wise, 10 zones have been identified as
places where trees have been cut within the time interval. Lastly, the evolution of these

CP 2023

10:16 Incremental Constrained Clustering by Minimal Weighted Modification

zones (a sharp decrease of NDVI value followed by a slow return to normal) is similar to that
of field harvesting or grassland mowing, which complicates the problem further. In these
conditions, expert intervention is paramount.

Problem definition. A set of 179 ML/CL constraints has been collected in [21] from domain
experts, focused on the two largest tree cut zones (204 and 147 instances, i.e. more than
half of tree cuts) as shown in Fig.11b. We define the problem as recovering these areas with
binary constrained clustering. Following [22], we clustered the dataset with K-Means and
K = 15, only retaining the cluster covering the areas the most as the “positive” cluster of
our problem. In Fig. 11c, this cluster is displayed in colors, while the “negative” cluster is
composed of all pixels not colored. We then used this binary partition as input of IAC, and
selected the unsatisfied user constraints in the partition to improve it. In our experiments,
79 constraints were unsatisfied. IAC was set to iterate until all constraints are satisfied. We
set β to 100% as the large dataset size means that super-instance computation takes hours
to complete, which is not compatible with a real life setting.

(a) Original image with highlighted tree cuts (red). (b) User constraints, ML (red) and CL (dashed blue).

(c) Initial partition (with inset). (d) Modified partition (with inset).

Figure 11 Some views of the use case ; pictures (c) and (d) show the “positive” cluster, before
and after modification. Highlighted therein are the true positives (green), false negatives (yellow),
and false positives (purple). Best viewed in colors.

Results. The modified clear cut cluster is displayed in Fig. 11d. The recovering of tree
cut can be observed as the green zone of true positives enlarges in this figure : the left area
progressed from 37 to 92 true positives, covering almost half the area. The right area gained
10 true positives. The modification was made within 22 seconds.

5 Conclusion

We have developed IAC, a framework for clustering modification that can be used in an
incremental setting where an expert iteratively adds constraints, either manually or using
an active method. A CP model for minimal weighted clustering modification ensures that
the general cluster structure is preserved to maintain some continuity between iterations, as

A. Beauchamp, T.-B.-H. Dao, S. Loudni, and C. Vrain 10:17

shown in experiments on reference datasets and on a real use case. It can also efficiently
exploit an active query strategy to converge faster, and handle contradictory constraints
that the user may give as input. The runtime of IAC is dependent of the constraint selection
step, which requires further experiments with more active methods and/or to develop a
new one suited for the incremental setting. It would also be interesting to explore the
use of multiple CP models for modification, such as [20] for minimal modification with
cluster-level constraints. Lastly, there remain open questions about the potential reuse of
relaxed constraints at a later iteration : What constraints to choose ? When to propose
them to the user ? The conception of a strategy answering these interrogations is worth
considering.

References
1 Arindam Banerjee and Joydeep Ghosh. Scalable clustering algorithms with balancing con-

straints. Data Min. Knowl. Discov., 13(3):365–395, 2006.
2 Sugato Basu, Arindam Banerjee, and Raymond J. Mooney. Active semi-supervision for pairwise

constrained clustering. In Proceedings of the Fourth SIAM International Conference on Data
Mining, pages 333–344. SIAM, 2004. doi:10.1137/1.9781611972740.31.

3 Sugato Basu, Arindam Banerjee, and Raymond J. Mooney. Active Semi-Supervision for
Pairwise Constrained Clustering. In ICDM, pages 333–344, 2004.

4 Alessio Benavoli, Giorgio Corani, Janez Demšar, and Marco Zaffalon. Time for a change: A
tutorial for comparing multiple classifiers through Bayesian analysis, 2017.

5 Christian Bessière, Emmanuel Hébrard, Brahim Hnich, Zeynep Kiziltan, and Toby Walsh.
Filtering Algorithms for the NValue Constraint. Constraints, 11(4):271–293, 2006.

6 Mikhail Bilenko, Sugato Basu, and Raymond J. Mooney. Integrating constraints and metric
learning in semi-supervised clustering. In Proceedings of the 21st International Conference on
Machine Learning, pages 11–18, 2004.

7 David Cohn, Rich Caruana, and Andrew Mccallum. Semi-Supervised Clustering with User
Feedback. Technical report, Cornell University, 2001. doi:10.1201/9781584889977.ch2.

8 Giorgio Corani, Alessio Benavoli, Janez Demšar, Francesca Mangili, and Marco Zaffalon.
Statistical comparison of classifiers through Bayesian hierarchical modelling. Machine Learning,
106(11):1817–1837, November 2017. doi:10.1007/s10994-017-5641-9.

9 Thi-Bich-Hanh Dao, Khanh-Chuong Duong, and Christel Vrain. Constrained clustering by
constraint programming. Artificial Intelligence, 244:70–94, 2017.

10 Ian Davidson and S. S. Ravi. Agglomerative Hierarchical Clustering with Constraints: Theor-
etical and Empirical Results. In Knowledge Discovery in Databases: PKDD 2005, Lecture
Notes in Computer Science, pages 59–70, 2005.

11 Ian Davidson, S. S. Ravi, and Martin Ester. Efficient incremental constrained clustering. In
Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 240–249, 2007.

12 Ian Davidson, S. S. Ravi, and Leonid Shamis. A SAT-based Framework for Efficient Constrained
Clustering. In Proceedings of the 2010 SIAM International Conference on Data Mining, pages
94–105, 2010.

13 E. B. Fowlkes and C. L. Mallows. A Method for Comparing Two Hierarchical Clusterings.
Journal of the American Statistical Association, 78(383):553–569, 1983.

14 Marek Gagolewski. A Framework for Benchmarking Clustering Algorithms, 2022.
15 Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical

Computer Science, 38:293–306, 1985.
16 Germán González-Almagro, Daniel Peralta, Eli De Poorter, José-Ramón Cano, and Salvador

García. Semi-Supervised Constrained Clustering: An In-Depth Overview, Ranked Taxonomy
and Future Research Directions, 2023.

CP 2023

https://doi.org/10.1137/1.9781611972740.31
https://doi.org/10.1201/9781584889977.ch2
https://doi.org/10.1007/s10994-017-5641-9

10:18 Incremental Constrained Clustering by Minimal Weighted Modification

17 Mathieu Guilbert, Christel Vrain, Thi-Bich-Hanh Dao, and Marcilio C. P. de Souto. Anchored
Constrained Clustering Ensemble. In International Joint Conference on Neural Networks,
IJCNN, 2022.

18 Tias Guns. Increasing modeling language convenience with a universal n-dimensional array,
cppy as python-embedded example. In Modref, volume 19, 2019.

19 Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classification, 2(1):193–
218, 1985.

20 Chia-Tung Kuo, S. S. Ravi, Thi-Bich-Hanh Dao, Christel Vrain, and Ian Davidson. A
framework for minimal clustering modification via constraint programming. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, pages 1389–1395, 2017.

21 Baptiste Lafabregue, Pierre Gançarski, Jonathan Weber, and Germain Forestier. Incremental
constrained clustering with application to remote sensing images time series. In 2022 IEEE
International Conference on Data Mining Workshops (ICDMW), 2022.

22 Thomas Lampert, Baptiste Lafabregue, Thi-Bich-Hanh Dao, Nicolas Serrette, Christel Vrain,
and Pierre Gancarski. Constrained Distance-Based Clustering for Satellite Image Time-
Series. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
12(11):4606–4621, 2019.

23 Eric Yi Liu, Zhaojun Zhang, and Wei Wang. Clustering with relative constraints. In Proceedings
of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’11, pages 947–955, New York, NY, USA, August 2011. Association for Computing
Machinery. doi:10.1145/2020408.2020564.

24 James MacQueen. Some Methods For Classification And Analysis Of Multivariate Observations.
In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,,
volume 1, pages 281–297, 1967.

25 Pavan Kumar Mallapragada, Rong Jin, and Anil K. Jain. Active query selection for semi-
supervised clustering. In 19th International Conference on Pattern Recognition, pages 1–4,
2008.

26 Logan Adam Mitchell. INCREMENT - Interactive Cluster Refinement. PhD thesis, Brigham
Young University, 2016.

27 Nguyen-Viet-Dung Nghiem, Christel Vrain, and Thi-Bich-Hanh Dao. Knowledge integration
in deep clustering. In Machine Learning and Knowledge Discovery in Databases - European
Conference, ECML PKDD 2022, Proceedings, Part I, volume 13713 of Lecture Notes in
Computer Science, pages 174–190. Springer, 2022. doi:10.1007/978-3-031-26387-3_11.

28 Nguyen-Viet-Dung Nghiem, Christel Vrain, Thi-Bich-Hanh Dao, and Ian Davidson. Con-
strained Clustering via Post-processing. In Discovery Science, Lecture Notes in Computer
Science, pages 53–67, 2020.

29 Abdelkader Ouali, Samir Loudni, Yahia Lebbah, Patrice Boizumault, Albrecht Zimmermann,
and Lakhdar Loukil. Efficiently finding conceptual clustering models with integer linear
programming. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence, IJCAI’16, pages 647–654, 2016.

30 Alfred Ultsch and Jörn Lötsch. The Fundamental Clustering and Projection Suite (FCPS): A
Dataset Collection to Test the Performance of Clustering and Data Projection Algorithms.
Data, 5(1):13, 2020.

31 Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for
clusterings comparison: Is a correction for chance necessary? In Proceedings of the 26th
Annual International Conference on Machine Learning, 2009.

32 Kiri Wagstaff and Claire Cardie. Clustering with instance-level constraints. In Proceedings of
the Seventeenth International Conference on Machine Learning, ICML ’00, pages 1103–1110,
San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

33 Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. Constrained k-means clustering
with background knowledge. In Proceedings of the Eighteenth International Conference on
Machine Learning (ICML 2001), pages 577–584, 2001.

https://doi.org/10.1145/2020408.2020564
https://doi.org/10.1007/978-3-031-26387-3_11

A. Beauchamp, T.-B.-H. Dao, S. Loudni, and C. Vrain 10:19

34 Kiri L. Wagstaff. Value, Cost, and Sharing: Open Issues in Constrained Clustering. In
Knowledge Discovery in Inductive Databases, pages 1–10, 2007.

35 Xiang Wang and Ian Davidson. Flexible constrained spectral clustering. In Proceedings of the
16th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD
’10, pages 563–572, 2010.

36 Eric Xing, Michael Jordan, Stuart J Russell, and Andrew Ng. Distance metric learning with
application to clustering with side-information. In Advances in Neural Information Processing
Systems, volume 15. MIT Press, 2002.

37 Sicheng Xiong, Javad Azimi, and Xiaoli Z. Fern. Active Learning of Constraints for Semi-
Supervised Clustering. IEEE Trans. on Knowledge and Data Engineering, 26(1):43–54, 2014.

38 Xueying Zhan, Huan Liu, Qing Li, and Antoni B. Chan. A Comparative Survey: Benchmarking
for Pool-based Active Learning. In Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, IJCAI-21, volume 5, pages 4679–4686, August 2021.

CP 2023

10:20 Incremental Constrained Clustering by Minimal Weighted Modification

A Super-instances generation

This is an example case of generating super-instances and splitting to prevent emergent
conflicts. In Fig. 12a, the clusters of the partition in Fig. 2 are divided into super-instances.
However, some super-instances contain multiple constrained instances, e.g. the green one in
the bottom left, which could lead to conflicts. In Fig. 12b, these super-instances have been
splitted.

(a) Result of generating super-instances through complete-link hierarchical clustering on every cluster.

(b) Final super-instances after splitting. Greyed instances are unconstrained and not used in the CSP.

Figure 12 Exemple preprocessing for super-instance generation on lsun dataset. Instances
sharing a color are represented by the same super-instance. ML constraints are in red, CL constraints
in dashed blue.

A. Beauchamp, T.-B.-H. Dao, S. Loudni, and C. Vrain 10:21

B Incremental NPU

This is the variant of NPU we use in the selection step of IAC. In Algorithm 2, the main
modifications are the removal of the reclustering step of the original NPU, and the output
of the set of constraints obtained from the queries for the modification step. Algorithm 3 is
unchanged and is shown to give a complete view of the algorithm.

Algorithm 2 Incremental NPU.
Input : Dataset D, partition P, oracle
Output : constraint set C

1: C ← ∅ ; l← 1 ; N ← N1 | N1 = {random(D)}
2: x∗ ←MostInformative(D,P,N)
3: for each Ni ∈ N in decreasing order of P (x∗ ∈ Ni) do
4: Query x∗ against any xi ∈ Ni to the oracle
5: if (x∗, xi, ML) then
6: C ← (x∗, xi, ML)
7: Ni = Ni ∪ x∗

8: break
9: else

10: C ← (x∗, xi, CL)
11: if no ML is returned then
12: l + + ; Nl = x∗ ; N ← N ∪Nl

return C

Algorithm 3 MostInformative.
Input : Dataset D, partition P, set of neighborhoods N
Output : most informative data point x∗

1: Learn a random forest classifier using P as labels
2: Compute the similarity matrix M s.t. M [i, j] is the number of leaves where i and j are

together normalized by the number of trees of the RF
3: for each x ∈ U = D \ N do
4: for i = 1 to l do

5: p(x ∈ Ni) =

1
|Ni|

∑
xj ∈Ni

M(x,xj)∑l

p=1
1

|Np|

∑
xj ∈Np

M(x,xj)

6: H(N|x) = −
∑l

i=1 p(x ∈ Ni) log2 p(x ∈ Ni)

7: E(x) =
l∑

i=1
i ∗ p(x ∈ Ni)

return arg max
x∈U

H(N |x)
E(x)

CP 2023

10:22 Incremental Constrained Clustering by Minimal Weighted Modification

C Modifications and generalization

For each modified instance (or super-instance), we store its initial cluster membership and its
new cluster membership. This allows the framework to keep a history of modifications and
to easily retrieve the partition at any given iteration. Considering generalization, we also
keep track of the composition of each constrained super-instance. When the COP produces
a solution, Algorithm 4 transmits the modifications from the super-instance to the real data.

Algorithm 4 ApplyModifications.
Input : dataset X , super-instances S, modifications M, partition P
Output : modified partition P ′

1: P ′ ← P
2: for each sp ∈ S do
3: points← {x ∈ X | x ∈ sp}
4: for each p ∈ points do
5: Update the membership of p in P ′ with the corresponding value in M

return P ′

D Bayesian pairwise comparison of IAC configurations

Table 3 Number of wins for each configuration (α, β) using a Bayesian hierarchical model. Values
in parentheses indicate the number of cases where the probability that a configuration has a higher
score is greater than 95%. Values of α and β are in percentage (%).

AUBCquality AUBCsimilarity

(α, β) ARI AMI FMI ARI AMI FMI

(0, 10) 9 (1) 10 (1) 9 (1) 0 0 0
(0, 30) 2 (0) 1 (0) 1 (0) 3 (1) 2 (0) 1 (1)
(0, 50) 0 0 0 6 (3) 6 (2) 4 (2)
(0, 100) 0 4 (1) 3 9 (9) 9 (9) 9 (9)
(5, 10) 10 (3) 10 (3) 10 (3) 1 (0) 1 (0) 1 (0)
(5, 30) 7 (3) 5 (3) 7 (3) 4 (2) 4 (1) 3 (1)
(5, 50) 1 (0) 2 (0) 1 (0) 6 (4) 6 (3) 4 (2)
(5, 100) 5 (2) 4 (0) 5 (1) 9 (9) 9 (9) 9 (9)
(20, 10) 10 (7) 10 (6) 10 (6) 1 (1) 2 (1) 1 (0)
(20, 30) 8 (3) 6 (3) 7 (3) 4 (2) 4 (2) 3 (1)
(20, 50) 4 (1) 3 (1) 4 (1) 6 (5) 6 (4) 6 (4)
(20, 100) 5 (2) 7 (3) 5 (1) 9 (9) 9 (9) 9 (9)

	1 Introduction
	2 Related Work
	3 Incremental and Active Clustering Framework
	3.1 Minimal Weighted Clustering Modification
	3.1.1 Objective function and anchors
	3.1.2 Generalizing constraints with super-instances

	3.2 Constraint Optimization Problem Formulation
	3.3 Active Constraint Selection

	4 Experiments
	4.1 Experimental Methodology
	4.2 UCI and FCPS Datasets
	4.2.1 Parameter Settings of IAC
	4.2.2 Impact of Number and Types of User Constraints on Runtime
	4.2.3 Relaxing Constraints
	4.2.4 Comparing IAC with alternatives in the incremental setting

	4.3 Tree Cut Data

	5 Conclusion
	A Super-instances generation
	B Incremental NPU
	C Modifications and generalization
	D Bayesian pairwise comparison of IAC configurations

