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Abstract
Discrete optimization problems expressible as dynamic programs can be solved by branch-and-bound
with decision diagrams. This approach dynamically compiles bounded-width decision diagrams to
derive both lower and upper bounds on unexplored parts of the search space, until they are all
enumerated or discarded. Assuming a minimization problem, relaxed decision diagrams provide
lower bounds through state merging while restricted decision diagrams obtain upper bounds by
excluding states to limit their size. As the selection of states to merge or delete is done locally, it
is very myopic to the global problem structure. In this paper, we propose a novel way to proceed
that is based on pre-solving a so-called aggregate version of the problem with a limited number of
states. The compiled decision diagram of this aggregate problem is tractable and can fit in memory.
It can then be exploited by the original branch-and-bound to generate additional pruning and guide
the compilation of restricted decision diagrams toward good solutions. The results of the numerical
study we conducted on three combinatorial optimization problems show a clear improvement in the
performance of DD-based solvers when blended with the proposed techniques. These results also
suggest an approach where the aggregate dynamic programming model could be used in replacement
of the relaxed decision diagrams altogether.
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1 Introduction

On top of their use for Boolean encodings [27], formal verification [25], model checking
[15], computer-aided design [29] and much more, decision diagrams (DDs) have recently
emerged as a tool for discrete optimization. They provide a compact way to encode a set
of solutions to a problem. Still, for large problems, DDs representing the whole solution
space – called exact DDs – can quickly become intractable to compute. Two variants of
DDs can be used instead: restricted [10] and relaxed [1, 8] DDs that respectively encode a
subset and superset of the set of solutions. When compiled based on a dynamic programming
(DP) model, these approximate DDs allow to compute bounds on the objective function for
any subproblem while controlling the size of the DD compiled. Restricted DDs aim to find
good admissible solutions by iteratively extending a bounded set of promising candidates
while dropping others, in a beam search fashion. On the other hand, relaxed DDs rely
on a problem-dependent state merging scheme to maintain an acceptable DD size while
preserving all solutions of the problem. In [9], Bergman et al. presented a branch-and-bound
algorithm solely based on these two ingredients, thus introducing a new general-purpose
discrete optimization framework and solver.
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13:2 Boosting DD-Based Branch-And-Bound with Aggregate Dynamic Programming

In addition to exploiting the compactness of DP models, the main novelty of this
approach is its unique way of deriving lower and upper bounds. In the last few years, some
algorithmic improvements have been suggested to further strengthen these bounds. Assuming
a minimization problem, Gillard et al. [19] showed how user-defined lower bound formulas
can be integrated to prune DDs during their compilation and thus concentrate the search
on promising parts of the search space. They also proposed a way to compute tighter lower
bounds for all nodes contained in a relaxed DD through local bounds. Rudich et al. [30]
introduced a peeling operator that splits a relaxed DD in two: one part containing all paths
traversing a selected exact node and the other containing all remaining paths. It allows both
to warm-start the compilation of subsequent relaxed DDs and to strengthen the bounds of
the nodes inside the relaxed DD on which the peeling has been performed. More recently, [16]
generalized the ideas of [19] and introduced the use of a cache storing new thresholds that
further enhance the pruning power of the solver. Other factors impacting the quality of the
bounds provided by relaxed DDs have been studied, including variable orderings [7, 11, 26]
and alternative compilation schemes [24]. Yet, all these approaches rely on a problem-specific
state merging operator at the heart of the relaxation, which does not yield tight relaxations
for all problems, as our computational experiments show.

After covering the necessary background about DD-based optimization, this paper presents
an alternate relaxation scheme for deriving good bounds by incorporating ideas from aggregate
dynamic programming [2, 3] to the DD-based discrete optimization framework. The underlying
idea of the approach is to deduce information about an original problem instance by creating
and solving an aggregate – relaxed – version of it. This is achieved by aggregating the
states of the DP model as to obtain a much smaller DP state space. If this aggregation is
adequately specified, one can compute a lower bound for any original subproblem by finding
the optimal solution of its aggregate version. Furthermore, this optimal aggregate solution
can be disaggregated and transposed in the original problem to find good heuristic solutions.
In practice, the aggregation-based lower bounds are used as additional pruning within the
compilation of relaxed and restricted DDs. Moreover, aggregate solutions are translated
into node selection heuristics to steer the compilation of restricted DDs toward resembling
solutions to the original problem, which are thus expected to be good.

Throughout the paper, the framework is illustrated on three different combinatorial
problems: the Talent Scheduling Problem, the Pigment Sequencing Problem and the Aircraft
Landing Problem. They are then used for the experimental evaluation of the framework,
the results of which show that the aggregation-based bound brings additional pruning and
enables solving more instances. Furthermore, the aggregation-based node selection heuristic
improves the quality of the solutions found early in the search and thus contributes to
speeding up the overall resolution. Finally, we show that a DD-based solver using only the
aggregation-based bound as relaxation performs almost equally well, which is a promising
direction for problems for which defining a merging operator is difficult or inefficient.

Although this paper is – to the best of our knowledge – the first to combine aggregate
dynamic programming with the DD-based branch-and-bound paradigm proposed by Bergman
et al, there has already been some hybridization work to combine discrete optimization with
DDs and other methods. For instance, in [12], Cappart et al. propose to use reinforcement
learning to guess the variable ordering that should be used to derive the best possible bounds
from the compiled approximate DDs. Other attempts combined DDs with Lagrangian
relaxation [13, 23] or MIP [5, 22, 31, 32]. On a slightly different note, a method has
been proposed where restricted DDs are used to generate good neighborhoods in a large
neighborhood search framework [20].
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2 Preliminaries

2.1 Discrete Optimization
A discrete optimization problem P involves finding the best possible solution x∗ from a
finite set of feasible solutions Sol(P) = D ∩ C. This set is determined by the domain
D = D0 × · · · ×Dn−1 from which the variables x = ⟨x0, . . . , xn−1⟩ each take on a value, i.e.
xj ∈ Dj , and by a set of constraints C imposed on the value assignments. The quality of
the solutions is evaluated according to an objective function f(x) that must be minimized.
Formally, the problem is defined as min {f(x) | x ∈ D ∩ C} and any optimal solution x∗ must
satisfy x∗ ∈ Sol(P) and ∀x ∈ Sol(P) : f(x∗) ≤ f(x). We describe below three optimization
problems that will be utilized in the paper as illustrations for the aggregation-based framework.

Talent Scheduling Problem. The Talent Scheduling Problem (TalentSched) is a film shoot
scheduling problem that considers a set N = {0, . . . , n− 1} of scenes and a set A =
{0, . . . , m− 1} of actors. Each scene i ∈ N involves a required set Ri ⊆ A of actors for
a duration Di ∈ N. Moreover, each actor k ∈ M has a pay rate Ck and is paid without
interruption from their first to their last scheduled scene. The objective of TalentSched is to
find a permutation of the scenes that minimizes the total cost of the film shoot.

Pigment Sequencing Problem. The Pigment Sequencing Problem (PSP) is a single-machine
production planning problem that aims to minimize the stocking and changeover costs while
satisfying a set of orders. There are different item types I = {0, . . . , n− 1} with a given
stocking cost Si to pay for each time period between the production and the deadline of
an order. For each pair i, j ∈ I of item types, a changeover cost Cij is incurred whenever
the machine switches the production from item type i to j. Finally, the demand matrix Q

contains all the orders: Qi
p ∈ {0, 1} indicates whether there is an order for item type i ∈ I at

time period p with 0 ≤ p < H and H the time horizon.

Aircraft Landing Problem. The Aircraft Landing Problem (ALP) requires to schedule the
landing of a set of aircrafts N = {0, . . . , n− 1} on a set of runways R = {0, . . . , r − 1}.
The aircrafts have a target Ti and latest Li landing time. Moreover, the set of aircrafts
is partitioned in disjoint sets A0, . . . , Ac−1 corresponding to different aircraft classes in
C = {0, . . . , c− 1}. For each pair of aircraft classes a, b ∈ C, a minimum separation time
Sa,b between the landings is given. The goal is to find the schedule that minimizes the total
waiting time of the aircrafts – the delay between their target time and scheduled landing
time – while respecting their latest landing time.

2.2 Dynamic Programming
Dynamic programming (DP) is a divide-and-conquer strategy introduced by Bellman [4]
for solving discrete optimization problems with an inherent recursive structure. It works
by recursively decomposing the problem in smaller and overlapping subproblems. The
cornerstone of the approach is the caching of intermediate results that allows each distinct
subproblem to be solved only once. A DP model of a discrete optimization problem P can
be defined as a labeled transition system consisting of:

the control variables xj ∈ Dj with j ∈ {0, . . . , n− 1}.
a set of state-spaces S = {S0, . . . , Sn} among which one distinguishes the initial state r,
the terminal state t and the infeasible state 0̂.

CP 2023



13:4 Boosting DD-Based Branch-And-Bound with Aggregate Dynamic Programming

a set t of transition functions s.t. tj : Sj ×Dj → Sj+1 for j = 0, . . . , n − 1 taking the
system from one state sj to the next state sj+1 based on the value d assigned to variable
xj , or to ⊥ if assigning xj = d is infeasible. These functions should never allow one to
recover from infeasibility, i.e. tj(0̂, d) = 0̂ for any d ∈ Dj .
a set h of transition value functions s.t. hj : Sj ×Dj → R representing the immediate
reward of assigning some value d ∈ Dj to the variable xj for j = 0, . . . , n− 1.
a root value vr.

On that basis, the objective function f(x) of P is formulated as follows:

minimize f(x) = vr +
n−1∑
j=0

hj(sj , xj)

subject to sj+1 = tj(sj , xj), for all j = 0, . . . , n− 1, with xj ∈ Dj

sj ∈ Sj , j = 0, . . . , n and x ∈ C. (1)

TalentSched. A DP model for TalentSched was introduced in [17] that we slightly adapt
here to make it suitable for the relaxation discussed in Section 2.3.1. States of this model
are pairs (M, P ) where M and P are disjoint sets of scenes that respectively must or might
still be scheduled. The only case where P is non-empty happens when a state is relaxed.

Control variables: xj ∈ N with 0 ≤ j < n decides which scene is shot in j-th position.
State spaces: S = {(M, P ) |M, P ⊆ N, M ∩ P = ∅}. The root state is r = (N, ∅) and
the terminal states are of the form (∅, P ).
Transition functions:

tj(sj , xj) =


(sj .M \ {xj} , sj .P \ {xj}) if xj ∈ sj .M,

(sj .M \ {xj} , sj .P \ {xj}), if xj ∈ sj .P and |sj .M | < n− j,

0̂, otherwise.

A scene from P can only be selected if there are more spots left than scenes in M .
Transition value functions: let a(Q) = ∪i∈QRi be the required set of actors for a set
of scenes Q. Given a state s = (M, P ), the set of actors that are guaranteed to be
on-location is computed as o(s) = a(s.M)∩ a(N \ (s.M ∪ s.P )) because they are required
both for a scene that must still be scheduled and for another that is guaranteed to be
scheduled. In the transition value functions, we add all the actors from Rxj

to this set
and sum the individual costs: hj(sj , xj) = Dxj

∑
k∈o(sj)∪Rxj

Ck.
Root value: vr = 0.

PSP. The PSP was already tackled with a DD-based approach in [16, 20]. We hereby recall
the DP model from [16] that allows the machine to be idle at some time periods. In this
model, the decisions are made backwards – this allows to define transition functions that only
lead to feasible production schedules. If variable xj decides the type of item to produce at
period j, the reverse variable ordering xH−1, . . . , x0 is thus used. To simplify the transition
functions, let us denote by P i

r the time period at which the r-th item of type i must be
delivered, i.e. P i

r = min{0 ≤ q < H |
∑q

p=0 Qi
p ≥ r} for all i ∈ N, 0 ≤ r ≤

∑
0≤p<H Qi

p.
Moreover, we define a dummy item type ⊥ used for idle periods and N ′ = N ∪ {⊥}.

States are pairs (i, R) with i the item type that the machine is currently set to produce
and R a vector that gives the remaining number Ri of demands to satisfy for each type i.

Control variables: xj ∈ N ′ with 0 ≤ j < H decides the item type to produce at period j.
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State space: S = {s | s.i ∈ N ′,∀i ∈ N, 0 ≤ s.Ri ≤
∑

0≤p<H Qi
p}. The root state is given

by r = ⟨⊥, (
∑

0≤p<H Q0
p, . . . ,

∑
0≤p<H Qn−1

p )⟩ and the terminal states are of the form
⟨i, (0, . . . , 0)⟩ with i ∈ N ′.
Transition functions:

tj(sj , xj) =


〈
ti
j(sj , xj), tR

j (sj , xj)
〉

, if xj ̸= ⊥ and sj .Rxj
> 0 and j ≤ P

xj

sj .Rxj
,〈

ti
j(sj , xj), tR

j (sj , xj)
〉

, if xj = ⊥ and
∑

i∈N sj .Ri < j + 1,

0̂, otherwise.

where

ti
j(sj , xj) =

{
xj , if xj ̸= ⊥
sj .i, otherwise.

tR
j (sj , xj) =

{
(sj .R0, . . . , sj .Rxj

− 1, . . . , sj .Rn−1), if xj ̸= ⊥
sj .R, otherwise.

In the transition function, the first condition ensures that there remains at least one
item to produce for the chosen type and that the current time period j is earlier than its
deadline. The second condition ensures that idle periods cannot be scheduled when the
remaining quantity to produce is equal to the number of periods left.
Transition value functions: the changeover and stocking costs are computed as:

hj(sj , xj) =
{

Cxjsj .i, if xj ̸= ⊥ and sj .i ̸= ⊥
0, otherwise.

}
+

{
Sxj
· (j − P

xj

sj .Rxj
), if xj ̸= ⊥

0, otherwise.

}
Root value: vr = 0.

ALP. We reproduce here the DP model presented in [28] where states are pairs (Q, ROP ),
with Q a vector that gives the remaining number of aircrafts of each class to schedule and
ROP a runway occupation profile: a vector containing pairs (l, c) that respectively give the
time and aircraft class of the latest landing scheduled on each runway. Similarly to the PSP
modeling, we denote by ⊥ either a dummy aircraft class or a dummy runway.

Control variables: we use pairs of variables (xj , yj) ∈ (C ×R) ∪ {(⊥,⊥)} with 0 ≤ j < n

that represent the decision to place an aircraft of class xj on runway yj , or to schedule
nothing at all in case of (⊥,⊥).
State spaces:
S = {(Q, ROP ) | ∀i ∈ C : Qi ≥ 0,∀k ∈ R : ROPk.l ≥ 0, ROPk.c ∈ C ∪ {⊥}}. The root
state is r = (⟨|A0|, . . . , |Ac−1|⟩ , ⟨(0,⊥), . . . , (0,⊥)⟩) and the terminal states are of the
form (⟨0, . . . , 0⟩ , ROP ).
Transition functions: if Ak

i gives the aircraft from class i that must be scheduled when
there are k aircrafts left from this class, we can define the function computing the earliest
landing time given a state s, a class x and a runway y:

E(s, x, y) =


T

A
s.Qx
x

, if s.ROPy.l = 0 and s.ROPy.c = ⊥,
max(s.ROPy.l + mini∈C Si,x, T

A
s.Qx
x

), if s.ROPy.l > 0 and s.ROPy.c = ⊥,
max(s.ROPy.l + Ss.ROPy.c,x, T

A
s.Qx
x

), otherwise.

This allows us to define the transition functions as:

tj(sj , xj , yj) =


(tQ

j (sj , xj , yj), tROP
j (sj , xj , yj)),

if xj ̸= ⊥ and sj .Qxj > 0
and E(sj , xj , yj) ≤ L

A
sj .Qxj
xj

,

(tQ
j (sj , xj , yj), tROP

j (sj , xj , yj)), if xj = ⊥ and
∑

i∈C
sj .Qi = 0,

0̂, otherwise.

CP 2023
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where

tQ
j (sj , xj , yj) =

{ 〈
sj .Q0, . . . , sj .Qxj

− 1, . . . , sj .Qc−1
〉

, if xj ̸= ⊥
sj .Q, otherwise.

tROP
j (sj , xj , yj) =

{ 〈
sj .ROP0, . . . , (E(sj , xj , yj), xj), . . . , sj .ROPr−1

〉
, if xj ̸= ⊥

sj .ROP, otherwise.

The first condition of the transition function ensures that there remains at least one
aircraft of the chosen class and that its earliest landing time is not greater its latest
landing time. The second condition only allows us to schedule dummy aircrafts when
there are no aircrafts left to schedule.
Transition value functions: the waiting time of the aircraft is computed as:

hj(sj , xj , yj) =

 E(sj , xj , yj)− T
A

sj .Qxj
xj

, if xj ̸= ⊥

0, otherwise.

Root value: vr = 0.
Because the runways are identical and independent, there are many symmetries in this model.
This can be mitigated by sorting the ROP of every state by increasing latest landing time,
breaking ties according to the previous aircraft class scheduled.

2.3 Decision Diagrams
When used to manipulate the DP model of a discrete optimization problem P, DDs are
graphical encodings that represent a set of solutions of the problem. More precisely, a
DD B = (U, A, σ, l, v) is a layered directed acyclic graph composed of a set of nodes U

interconnected by a set of arcs A. Starting from a single node ur corresponding to a DP state
given by the function σ(ur), the process of iteratively extending a set of partial solutions is
called the compilation of a DD and is described by Algorithm 1. Note that the highlighted
portions concern the ingredients introduced in Section 3 and can be ignored for now. The
algorithm begins by initializing a layer Li that only contains the root node ur, assuming its
state σ(ur) belongs to the i-th stage of the DP model. The subsequent layers of the DD are
then constructed sequentially by applying each valid transition of the DP model to every
node of the last completed layer at lines 8–16. Each layer thus corresponds to a stage of
the DP model and contains a single node for each state reached in order to preserve the
compactness of the model. The arcs a ∈ A materialize the transitions that exist between
the states of consecutive stages. In particular, the arc a = (u d−→ u′) connecting nodes
u ∈ Lj , u′ ∈ Lj+1 represents the transition between σ(u) and σ(u′). The decision associated
with this transition is stored by the label l(a) = d ∈ Dj and the transition value is given by
the arc value v(a).

The algorithm completes when the last layer Ln is generated, constituted by a single
node t called the terminal node. The DD thus constructed contains a set of ur ⇝ t

paths that can be combined with any previously discovered r ⇝ ur path, connecting
the root of the problem to ur. Any r ⇝ t path p = (a0, . . . , an−1) represents a solution
given by x(p) = (l(a0), . . . , l(an−1)). The objective value of such solution can also be
retrieved from the sequence of arcs by accumulating their values, and adding the root
value: v(p) = vr +

∑n−1
j=0 v(aj). The set of solutions contained in the DD is denoted as

Sol(B) = {x(p) | ∃p : r ⇝ t, p ∈ B}. A DD rooted at a node ur is exact if it perfectly
represents the set of solutions of the corresponding subproblem P|ur

, i.e. Sol(B) = Sol(P|ur
)

and v(p) = f(x(p)),∀p ∈ B. The best value among the u1 ⇝ u2 paths in B is denoted
v∗(u1 ⇝ u2 | B), and in particular v∗(u | B) = v∗(r ⇝ u | B).
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Algorithm 1 Compilation of DD B rooted at node ur with maximum width W .
1: i← index of the layer containing ur

2: Li ← {ur}
3: P̃ ← ∆(p̃) with p̃ the optimal solution for π(σ(ur)) // retrieve disaggregate solution
4: for j = i to n− 1 do
5: if |Lj | > W then
6: restrict or relax the layer to get W nodes with Algorithm 2
7: Lj+1 ← ∅
8: for all u ∈ Lj do
9: vrlb(σ(u))← max

{
vrlb(σ(u)), vagg(π(σ(u)))

}
// inject aggregation-based bound

10: if v∗(u | B) + vrlb(σ(u)) ≥ v then // rough lower bound pruning w.r.t. incumbent
11: continue
12: for all d ∈ Dj do
13: create node u′ with state σ(u′) = tj(σ(u), d) or retrieve it from Lj+1

14: create arc a = (u d−→ u′) with v(a) = hj(σ(u), d) and l(a) = d

15: score(a)← 1 if l(a) ∈ P̃j , 0 otherwise
16: add u′ to Lj+1 and add a to A

▶ Example 1. Let us define a TalentSched instance with 4 scenes with durations D =
⟨3, 5, 2, 4⟩ and 4 actors with pay rates C = ⟨10, 20, 30, 40⟩. The actor requirements for each
scene are given by R = ⟨{0, 3} , {0, 1, 3} , {0, 2, 3} , {0, 1, 2, 3}⟩. Figure 1 shows the exact DD
compiled for this instance with the DP model recalled in Section 2.2. Note that for each
state s = (M, P ) corresponding to a node in the DD, we only show the set M since P is
always empty in exact nodes. An optimal solution of the problem is ⟨0, 2, 3, 1⟩, which gives
an objective value of 106.

As the reader might have guessed, the compilation of an exact DD for a combinatorial
optimization problem suffers from the curse of dimensionality as much as the corresponding
DP model. This is why DD-based discrete optimization rarely relies on exact DDs but rather
on restricted and relaxed DDs. These two variants follow two distinct compilation schemes
that allow to maintain the number of nodes of each layer – called the width – under a given
parameter W . In Algorithm 1, this logic is performed at line 5 where the width of the current
layer is compared with W . If needed, the layer is then either restricted or relaxed at line 6
by calling Algorithm 2.

2.3.1 Approximate Decision Diagrams
As stated by Algorithm 2, restricted DDs simply remove surplus nodes from the layer until it
is reduced to W nodes. A heuristic is used to evaluate the nodes and drop the least promising
ones. Restricted DDs thus generate a subset of the solutions of the corresponding problem,
i.e. Sol(B) ⊆ Sol(P) and v(p) = f(x(p)),∀p ∈ B for a restricted DD B. They thus provide
upper bounds on the objective value.

As opposed to restricted DDs, a relaxed DD B yields lower bounds by representing
a superset of the solutions of the corresponding problem: Sol(B) ⊇ Sol(P) and v(p) ≤
f(x(p)),∀p ∈ B. This is achieved through a problem-specific state merging operator ⊕(σ(M))
that defines an approximate representation that includes all states σ(M) = {σ(u) | u ∈M}
corresponding to the merged nodes M and preserves all their outgoing transitions, although

CP 2023
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r{0, 1, 2, 3}0

a1{0, 2, 3}35 a2{1, 2, 3}15 a3{0, 1, 2}40 a4{0, 1, 3}16

b1{2, 3}50 b2{0, 2}75 b3{1, 2}55 b4{0, 3}55 b5{1, 3}31 b6{0, 1}56

c1{2}90 c2{3}70 c3{0}91 c4{1}71

t∅106

1,35 0,15 3,40 2,16

0,21

3,40

2,20
1,35

3,40

2,16

1,50

0,30

2,20

1,50

0,24

3,40

3,40

2,20

0,24

2,161,50

2,20

0,30

3,40 1,50 3,40 1,35

0,21

2,16 3,40 0,15 1,35

Figure 1 The exact DD for the TalentSched instance given in Example 1. Nodes are annotated
with their state and the best prefix value. Arcs are labeled with the associated decision in bold and
transition value. The arcs constituting one of the optimal solutions are highlighted in bold.

Algorithm 2 Restriction or relaxation of layer Lj with maximum width W .
1: while |Lj | > W do
2: M← select nodes from Lj according to their score
3: Lj ← Lj \M
4: create node µ with state σ(µ) = ⊕(σ(M)) and add it to Lj // for relaxation only
5: for all u ∈M and arc a = (u′ d−→ u) incident to u do
6: replace a by a′ = (u′ d−→ µ) and set v(a′) = ΓM(v(a), u)

it may also introduce infeasible transitions. In Algorithm 2, a meta-node is created for this
merged state at line 4 and the arcs pointing to the deleted nodes are redirected to this
merged node at line 6. The operator ΓM permits to adjust the value of these arcs if needed.
In all three formulations given below, this operator is the identity function.

TalentSched. The merging operator is defined by ⊕(M) = (⊕M (M),⊕P (M)) where
⊕M (M) =

⋂
s∈M s.M and ⊕P (M) = (

⋃
s∈M s.M ∪ s.P ) \ (

⋂
s∈M s.M). The definition of

⊕P (M) ensures that the resulting set of scenes that might be scheduled contains any scene
that must or might be scheduled in any of the states, except those that still must be scheduled
for all states.

PSP. A valid merging operator is ⊕(M) = (⊥, ⟨mins∈M s.R0, . . . , mins∈M s.Rn−1⟩). The
configuration of the machine is always reset to the dummy item type ⊥ as there is little chance
that merged states agree on it. For each item type, the remaining number of demands is
computed by taking the minimum value among all merged states, meaning that any demand
satisfied by at least one state is considered satisfied in the merged state.
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Figure 2 Respectively on the left and the right, a restricted and relaxed DD for the TalentSched
instance given in Example 1, compiled with W set to 3 and 4. Merged nodes are circled twice.

ALP. The merging operator is again defined separately for each component of
the states: ⊕(M) = (⊕Q(M),⊕ROP (M)). First, the minimum remaining
quantity of aircrafts for each class is stored in the merged state: ⊕Q(M) =
⟨mins∈M s.Q0, . . . , mins∈M s.Qc−1⟩. For the ROP, the minimum latest landing time on
each runway is kept and the last aircraft classes scheduled are reset to ⊥: ⊕ROP (M) =
⟨(mins∈M s.ROP0.l,⊥), . . . , (mins∈M s.ROPr−1.l,⊥)⟩.

▶ Example 2. Figure 2 shows approximate DDs for the TalentSched instance introduced
in Example 1. Despite having a maximum width of 3, the best solution contained in the
restricted DD is the optimal solution previously found. With a maximum width of 4, the
relaxed DD provides a global lower bound of 86. The path corresponding to this lower bound
is given by the assignment ⟨0, 2, 3, 0⟩, which is infeasible because scene 0 is scheduled twice.

2.3.2 Branch-and-Bound

In [9], a branch-and-bound algorithm based only on restricted and relaxed DDs was introduced.
It maintains a queue of open nodes that represent the set of subproblems that remain to
process. For each of them, a restricted DD is compiled in an attempt to improve the
incumbent solution. Then, a relaxed DD is constructed in order to both decompose the given
subproblem into even smaller ones and to compute a lower bound for each of them. These
nodes are then added to the branch-and-bound queue for further exploration, unless the
lower bound permits their direct elimination. Ultimately, the optimality of the best solution
discovered during the search is confirmed once the queue has been emptied.
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2.3.3 Rough Lower Bound
The rough lower bound (RLB) [19] is an additional optional modeling component that can
be specified to speed up the resolution of any optimization problem. For any node u, the
RLB gives a lower bound on the best value one can obtain when solving the corresponding
subproblem σ(u), i.e. vrlb(σ(u)) ≤ v∗(u⇝ t | B) with B the exact DD for the problem. It is
used at line 10 of Algorithm 1 to filter nodes a priori by comparing this lower bound with
the incumbent value v. Since the RLB is computed for each node of the approximate DDs
compiled throughout the branch-and-bound, it needs to be computationally cheap.

The RLB has the potential both to focus the compilation of restricted DDs on promising
parts of the search space and to strengthen the bounds obtained through relaxed DDs.
Furthermore, the branch-and-bound algorithm uses the RLB to make pruning decisions, if it
happens to be tighter than the bound obtained with relaxed DDs.

Example problems. In our computational experiments, we use the lower bound given by
Theorem 1 in [17] for TalentSched and the same RLB as in [20] for the PSP. We do not detail
them in this article for the sake of conciseness.

3 Aggregate Dynamic Programming for Decision Diagrams

As stated in the introduction, optimizations techniques based on DP and DDs can prove
highly effective [6, 13, 14, 18, 19]. In some cases, however, the state space of the DP models
is simply too large and the bounds derived from restricted and relaxed DDs are of little
to no use. This can be imputed either to the node selection heuristic or to the relaxation
scheme. The MinLP heuristic traditionally used favors keeping nodes with the best prefix
values. This locally-optimal selection policy may result in the elimination of all nodes that
lead to the optimal solution, or even to any feasible solution, particularly in cases of highly
constrained problems. In the latter case, the compilation of a restricted DD is a pure waste
of time: no feasible solution is found at the end of the compilation, and not even a bound on
the objective value can be exploited to reduce the optimality gap. The same phenomenon
is detrimental to the usefulness of compiled relaxed DDs whose bounds might be of low
quality when the node selection heuristic is oblivious to the global structure of the problem.
Indeed, the merging operator yields a loose representation when applied to an arbitrary set
of nodes for most problems. In the absence of a perfect heuristic, this situation will occur
under certain conditions. It inspired our pursuit of a more globally-focused approach that
could enhance the usefulness of the compiled DDs. This section presents a framework for
integrating aggregate dynamic programming ideas with DD-based optimization that aims to
address some of these shortcomings. Instead of relaxing the original problem by reasoning
on merged states, it proposes to use problem instance and state aggregation operators that
yield a simpler and relaxed version of the problem, which can be solved exactly. Solutions
of the aggregated problem can provide bounds that capture the global problem structure,
as well as guidance for the compilation of restricted DDs. This section details the role and
meaning of the components of the framework one by one.

3.1 Preprocessing: Problem Instance Aggregation
The goal of this preprocessing step is to create an aggregate and simpler problem instance by
reducing one or more dimensions of the problem. The instance aggregation operator Π must
be defined such that the aggregate problem instance P ′ = Π(P) is a relaxation of the original
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problem instance P. In practice, assuming the problem reasons over a set of elements, a
clustering algorithm can be used to create clusters of such elements. Then, the aggregate
problem instance can be obtained by considering aggregate elements that encompass all
elements in a given cluster and by adapting the instance data accordingly. Formally, if a
set E of elements is clustered into K clusters, we define two mapping functions: Φ : E →
{0, . . . , K − 1} that gives the cluster for each original element and Φ−1 : {0, . . . , K − 1} → 2E

that gives the set of original elements for a given cluster.

TalentSched. In [17], it is proved that there always exists an optimal solution to the
problem in which scenes with the same set of actors are scheduled together. This gives us the
opportunity to aggregate the problem by creating K clusters of scenes that require a similar set
of actors, which is plausible to occur in real film shoots. Scenes belonging to the same clusters
can then be aggregated by taking the intersection of their actor requirements and adding up
their durations. Formally, we write Π(P = (N, A, R, D, C)) = (ΠN (N), A, ΠR(R), ΠD(D), C)
with ΠN (N) = {0, . . . , K − 1}. The aggregate actor requirements are computed as ΠR(R) =
R′ with R′

i = ∩j∈Φ−1(i)Rj for all i ∈ ΠN (N) and the aggregate durations as ΠD(D) = D′

with D′
i =

∑
j∈Φ−1(i) Dj for all i ∈ ΠN (N).

PSP. The number of item types considered in a PSP instance dramatically impacts the
size of the state space – for instance, the case with only one item type can be solved
greedily. Therefore, and because it is not unlikely that the machine will produce several
sets of similar items, we propose to cluster item types that have similar stocking and
changeover costs. The instance aggregation operator is thus Π(P = (I, S, C, H, Q)) =
(ΠI(I), ΠS(S), ΠC(C), H, ΠQ(Q)), where the aggregate set of item types is given by ΠI(I) =
{0, . . . , K − 1}. Their stocking costs are computed as ΠS(S) = S′ with S′

k = mini∈Φ−1(k) Si

for all k ∈ ΠI(I) and the changeover costs as ΠC(C) = C ′ with C ′
kl = mini∈Φ−1(k),j∈Φ−1(l) Cij

for all k, l ∈ ΠI(I). The aggregate demand matrix is defined as ΠQ(Q) = Q′ with Q′k
p =∑

i∈Φ−1(k) Qi
p. However, as the demand matrix is only supposed to contain unit demands,

one must redistribute surplus demands in Q′ to the left.

ALP. Similarly to the item types of the PSP, the aircraft classes can be aggregated to
reduce the complexity of the problem. We thus propose to cluster them based on their
minimum separation time with other classes and define the instance aggregation operator as
Π(P = (N, R, C, A, S, T, L)) = (N, R, ΠC(C), ΠA(A), ΠS(S), T, ΠL(L)). The set of aircrafts,
their target landing time and the number of runways is kept. The aggregate set of classes is
given by ΠC(C) = {0, . . . , K − 1} and their corresponding set of aircrafts is computed as
ΠA(A) = A′ with A′

i = ∪j∈Φ−1(i)Aj for all i ∈ ΠC(C). The smallest separation times between
aggregate classes are kept, as formalized by ΠS(S) = S′ with S′

kl = mini∈Φ−1(k),j∈Φ−1(l) Si,j

for all k, l ∈ ΠC(C). Finally, the aggregation operator adapts the latest landing times of all
the aircrafts so that any aircraft with a given target landing time has a greater latest landing
time than all other aircrafts of the same class with a smaller target landing time: ΠL(L) = L′

with L′
i = max {Lj | Φ(i) = Φ(j), Ti ≤ Tj} for all i ∈ A. This property is assumed to hold

for the original problem instance, and must be preserved so that aircrafts from the same
class can be scheduled sequentially in the DP model.

▶ Example 3. Let us apply the problem instance aggregation to our running example by
creating K = 2 aggregate scenes. Assuming the following clustering is found: Φ(0) = 0, Φ(1) =
1, Φ(2) = 0, Φ(3) = 1 or equivalently Φ−1(0) = {0, 2} , Φ−1(1) = {1, 3}. We thus compute
the aggregate scene durations as: D′ = ⟨D0 + D2, D1 + D3⟩ = ⟨5, 9⟩ and the aggregate actor
requirements as: R′ = ⟨{0, 3} ∩ {0, 2, 3} , {0, 1, 3} ∩ {0, 1, 2, 3}⟩ = ⟨{0, 3} , {0, 1, 3}⟩.
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3.2 State Aggregation and Lower Bound
A second mapping function accompanies the problem instance aggregation operator: the
state aggregation operator π : S → S′ that projects each state of the state space S of the
original problem in the aggregate state space S′. The role of this operator is to translate each
original state to its aggregate version by adapting the state information to fit the aggregate
problem data. Let us denote by B and B′ the exact DD for problem P and Π(P), respectively.
If the aggregation operators Π and π are defined such that v∗(u⇝ t | B) ≥ v∗(u′ ⇝ t′ | B′)
for all u ∈ B, u′ ∈ B′ with π(σ(u)) = σ(u′) and π(σ(t)) = σ(t′), then v∗(u′ ⇝ t′ | B′) can be
used as a lower bound in the original problem, which we will denote by vagg(π(σ(u))).

Assuming the aggregate problem can be pre-solved exactly and the solution of each
subproblem is stored, this aggregation-based lower bound can be retrieved very quickly. One
way to exploit it is to incorporate it in the RLB as shown at line 9 of Algorithm 1 so that it
is used as often as possible. Another possibility would be to use the aggregate state space to
replace the state merging scheme in relaxed DDs. Once a layer with greater width than W is
reached, all the states contained in the nodes of the layer could be mapped to the aggregate
state space to pursue the compilation in a lower dimensional space.

TalentSched. The state compression operator for TalentSched is somewhat complex because
we can only map to states where complete aggregate scenes have yet to be scheduled. As a
result, if a state s contains scenes in s.P that can optionally be scheduled, we map it to a
dummy aggregated state. The same logic is applied when s.M only contains a subset of the
scenes that compose an aggregate scene.

π(s) =


(∅, ∅), if s.P ̸= ∅,
(∅, ∅), if ∃i ∈ ΠN (N) : (Φ−1(i) ∩ s.M) ̸= ∅ ∧ Φ−1(i) ⊈ s.M ,
(M ′, ∅), otherwise, with M ′ =

{
i ∈ ΠN (N) | Φ−1(i) ⊆ s.M

}
.

PSP. If we extend the definition of Φ such that Φ(⊥) = ⊥, the state aggregation operator
can be defined as π(s) = (Φ(s.i), R) with Ri =

∑
j∈Φ−1(i) s.Rj for all i ∈ ΠI(I). The item

type is projected to its corresponding aggregate type, and the remaining number of items to
produce for each type is separately accumulated within each cluster.

ALP. Again, assuming Φ(⊥) = ⊥, the state aggregation operator is defined by π(s) =
(Q′, ROP ′) with the remaining quantities of aircrafts aggregated as Q′

i =
∑

j∈Φ−1(i) s.Qj for
all i ∈ ΠC(C). For the ROP, one only needs to adapt the class of the last aircraft scheduled
on each runway ROP ′

i = (s.ROP0.l, Φ(s.ROP0.c)) for all i ∈ R.
If lower bounds for original states are obtained only by pre-solving the aggregate problem,

it is unlikely that the solution of an aggregate subproblem mapped with the state aggregation
operator will be available, since the aggregate separation times between aircraft classes lead to
very different landing times. However, a lower bound for an aggregate state s1 = (Q1, ROP 1)
can be provided by the solution of any state s2 = (Q2, ROP 2) such that Q1 = Q2 and
ROP 1

i .c = ROP 2
i .c and ROP 1

i .l ≥ ROP 2
i .l for all i ∈ R.

▶ Example 4. Let us compute the aggregation-based lower bound for the root state of
the running example r = ({0, 1, 2, 3} , ∅) given its aggregate version π(r) = ({0, 1} , ∅) and
the clustering performed in Example 3. The aggregate version is trivial to solve since the
objective function is symmetrical and there are only two scenes to schedule. We thus have
vagg(r) = D′

0 × (C0 + C3) + D′
1 × (C0 + C1 + C3) = 5× (1 + 4) + 9× (1 + 2 + 4) = 88, which

is a slightly better lower bound than the one obtained with the relaxed DD of Example 2.
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3.3 Solution Disaggregation and Node Selection Heuristic
In order to exploit the solution of the aggregate version of a subproblem to find good heuristic
solutions for the original subproblem, we need to specify the correspondence between decisions
in the aggregate problem with decisions in the original problem. We therefore define a last
modeling component, called the decision disaggregation operator δ(d) : D′

k → 2Di × · · · × 2Dj

that maps the instantiation of a variable x′
k in the aggregate problem to a vector of possible

corresponding assignments for variables xi, . . . , xj in the original problem.
Finally, we define the path disaggregation operator that transforms a sequence of decisions

in the aggregate problem to a sequence of sets of possible decisions in the original problem:
∆(p = (ak, . . . , an′−1)) = δ(l(ak)) · . . . · δ(l(an′−1)) where n′ is the supposed number of
aggregate variables and · denotes the concatenation of two vectors. Using this operator,
we can compute a score for each decision made during the compilation of restricted DDs.
At line 3 of Algorithm 1, we first retrieve the optimal value assignment of the aggregate
subproblem and apply the path disaggregation operator on it. Then, a binary score is
attributed to each arc at line 15, depending on its compatibility with the disaggregated
solution. At line 2 of Algorithm 2, the maximum score obtained along any path up to each
node can then be used to order nodes from most to least promising, favoring nodes with
incoming paths that are highly compatible with the disaggregated solution. By doing so, the
width of restricted DDs is controlled in the same way as before, enabling the preference of
solutions even when no feasible solution with the maximum possible score is available.

TalentSched. Each aggregate scene corresponds to a set of original scenes, we thus need to
map each aggregate decision to a sequence of original decisions: δ(i) = V where Vj = Φ−1(i)
for all 0 ≤ j < |Φ−1(i)|. It corresponds to any of the scenes from the cluster i, duplicated
|Φ−1(i)| times so that they are all scheduled one after another, preferably.

PSP. The operator is much simpler to define for the PSP, since each decision concerns the
production of one unit of a chosen aggregate item type. It can thus be interpreted as the
decision of producing one unit of any item type in the corresponding cluster: δ(i) =

〈
Φ−1(i)

〉
.

ALP. The only difference with the PSP is that decisions also contain the runway on which
the aircraft is scheduled to land, which remains the same: δ(a, r) =

〈{
(a′, r) | a′ ∈ Φ−1(a)

}〉
.

▶ Example 5. As computed in Example 4, the schedule ⟨0, 1⟩ is optimal for the aggregate
problem. By disaggregating this solution, we get ⟨{0, 2} , {0, 2} , {1, 3} , {1, 3}⟩. We can notice
that the optimal schedule ⟨0, 2, 3, 1⟩ found in Example 1 is compatible with the disaggregated
solution and would thus be favored by the aggregation-based node selection heuristic.

4 Computational Experiments

The impact of the aggregation-based bounds and heuristics was evaluated experimentally by
extending the generic DD-based solver DDO [21] and injecting the modeling of the three
discrete optimization problems presented throughout the paper. The version of DDO used
includes the improvements introduced in [16, 19]. For each problem, random instances were
generated with the following main parameters:

TalentSched: number of scenes n ∈ {20, 22, 24, 26, 28}, number of actors m ∈ {10, 15}
and average fraction of actors required for each scene ρ ∈ {0.3, 0.4}.

CP 2023



13:14 Boosting DD-Based Branch-And-Bound with Aggregate Dynamic Programming

0 100 200 300 400 500 600
time (s)

100

200

300

400

500

600
# 

in
st

an
ce

s s
ol

ve
d 

to
 o

pt
im

al
ity

TALENTSCHED

0 100 200 300 400 500 600
time (s)

0

50

100

150

200

250

300

# 
in

st
an

ce
s s

ol
ve

d 
to

 o
pt

im
al

ity

PSP

0 100 200 300 400 500 600
time (s)

200

250

300

350

# 
in

st
an

ce
s s

ol
ve

d 
to

 o
pt

im
al

ity

ALP

DDO DDO+AggB DDO+AggB+AggH rDDO rDDO+AggB rDDO+AggB+AggH

Figure 3 Number of instances solved over time for each configuration and problem studied.

PSP: number of item types n = 10, horizon H ∈ {100, 150, 200} and fraction of time
periods with a demand ρ ∈ {0.9, 0.95, 1}.
ALP: number of aircrafts n ∈ {25, 50, 75, 100}, number of runways r ∈ {1, 2, 3, 4}, number
of aircraft classes c = 4 and mean inter-arrival time 40/r for generating the target landing
times according to a Poisson arrival process.

Furthermore, the instance generation tries to emulate an increasing number of groups of actor
requirements, item types and aircraft classes that lend themselves more or less to aggregation.
Each instance was presolved in its aggregate state space after aggregating its data according
to k-means clustering for PSP and ALP and a custom hierarchical clustering for TalentSched
that tries to maximize the remaining costs induced by the actor requirements. TalentSched
instances can be presolved exactly with 20 aggregate scenes and PSP instances similarly with
5 aggregate item types. On the other hand, not all ALP instances reduced to 2 aggregate
aircraft have a reasonable number of states so we employ a relaxed DD with maximum width
10000 for the presolving part instead. Note that the present approach does not compete
with the state-of-the-art for TalentSched as it lacks much of the custom symmetry-breaking
logic introduced in [17] and similarly for ALP regarding the dominance-breaking constraints
presented in [28]. Six different configurations were created by combining the default DD-based
solved DDO on one hand and a version using only restricted DDs and no relaxed DDs,
denoted rDDO, on the other hand, with the aggregation-based bounds (AggB) and heuristics
(AggH). Ten minutes were allotted for each configuration to solve each instance.

Figure 3 presents the cumulative number of instances solved with respect to the solving
time. For TalentSched, it appears that any configuration of rDDO performs better than any
of DDO. This suggests that the bounds provided by the relaxed DDs are looser than the RLB
while being more expensive to compute. It confirms our intuition that the state merging
scheme yields bounds with a limited impact for some problems, probably because the state
information gets very dilute when many states are merged together. In this case, the RLB
computation is also quite involved – see [17]. Still, adding the AggB and the AggH to either
configurations improves the results by a small margin, although not that significant. This
can be contrasted with the results obtained for the two other problems, which show a clear
improvement when the AggB and the AggH are added to either configurations. Furthermore,
in cases where rDDO alone yields the worst results, incorporating AggB leads to results that
are similar to or better than those achieved by DDO. Combining it with the AggH performs
better than DDO in both cases and almost equally well than DDO+AggB+AggH.

The impact of the AggB and the AggH can also be measured in terms of end gap UB−LB
UB .

Figure 4 compares the end gap obtained for each instance by DDO and DDO+AggB+AggH.
It shows that except for a few instances, DDO+AggB+AggH is always closer to terminating
the search than DDO, especially for PSP. To validate the relevance of the AggH, we also
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Figure 4 Comparison of the end gap obtained for each instance by DDO and DDO+AggB+AggH.
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Figure 5 Comparison of the value of the first solution found by DDO and DDO+AggB+AggH,
and of the iteration at which the solution is found for ALP.

compare the value of the first solution found by DDO and DDO+AggB+AggH on Figure 5(a).
For TalentSched and PSP, the quality of the first solution is always better when using the
AggH. However, there is no clear trend for the ALP. Unlike TalentSched and PSP, for which
a solution is always found at the first iteration, the landing time windows of ALP make it
difficult to find a feasible solution. This explains both the end gaps close to one in Figure 4
and the ∞ values in Figure 5(a), which represent the absence of a feasible solution. We thus
compare on Figure 5(b) the iteration at which the first solution is found. We observe that
DDO+AggB+AggH finds a feasible solution much earlier than DDO in most cases. This
showcases well the benefits of a node selection heuristic with a more global awareness.

5 Conclusion

This paper explained how ideas from aggregate dynamic programming can be incorporated
in DD-based optimization solvers. We proposed to derive lower bounds and node selection
heuristics from a pre-solved aggregate version of the original problem at hand, and explained
how these can be seamlessly added to the DD-based optimization framework. Computational
experiments on three different problems showed that they provide lower bounds that further
strengthen the current approach, and that could even be used as a replacement for relaxed
DDs in some cases. Furthermore, the aggregation-based node selection heuristics were shown
very valuable as they manage to steer the compilation of relaxed DDs toward better solutions
earlier in the search. When applying this idea to a highly constrained problem, the heuristics
proved to quickly lead to feasible solutions that were hard to find otherwise. These results
suggest that aggregation-based bounds and heuristics capture global problem structures well,
as opposed to the greedy MinLP heuristic traditionally used to compile approximate DDs.
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