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Abstract
The liner shipping network design problem consists, for a shipowner, in determining, on the one
hand, which maritime lines (in the form of rotations serving a set of ports) to open, and, on the
other hand, the assignment of ships (container ships) with the adapted sizes for the different lines to
carry all the container flows. In this paper, we propose a modeling of this problem using constraint
programming. Then, we present a preliminary study of its solving using a state-of-the-art solver,
namely the OR-Tools CP-SAT solver.
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1 Introduction

Nowadays, maritime transport plays a major role in world trade. According to the Interna-
tional Maritime Organization (IMO), more than 80% of international trade is carried out by
sea. The transport of containerized commodities constitutes the major part of this trade. It
relies on more than 5,000 container ships that serve more than 500 ports worldwide. In this
context, many combinatorial optimization problems [6, 9, 28] may arise with non-negligible
economic and ecological impacts given their scale.

In this paper, we focus on the Liner Shipping Network Design Problem (LSNDP [9]).
A shipping line, also called a service, is defined by a cyclic route (called a rotation) that
visits a given set of ports in a given order and at regular times (see, for example, Figure 1).
Generally, each port is thus visited by a vessel of the line at a weekly or biweekly frequency.
All the vessels on a line are assumed to be homogeneous in terms of their main features
(loading capacity, speed, fuel consumption, engines, . . . ). Operating a weekly line with a
rotation lasting k weeks requires k vessels of the same type. Given a set of ports, a fleet of
container ships, and a container flow (defined by a set of triples consisting of the original port
of the commodities, their destination port, and the number of containers they represent), the
LSNDP problem consists, for a shipowner, in determining, on the one hand, which shipping
lines to open, and, on the other hand, which ships to operate on each line in order to carry as
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16:2 A CP Approach for the Liner Shipping Network Design Problem

Figure 1 Example of a line connecting Asia and Europe.

many commodities as possible while ensuring a weekly frequency of visits to each port and
optimizing costs. It is classified as NP-hard [7]. To give an idea of its difficulty, we can note
that, taken separately, each of its two subproblems is already an NP-hard problem [7, 13].
Moreover, from a practical viewpoint, its solving by exact methods is currently limited to
instances with a dozen ports at most. Although recent, this problem has been the subject of
many works, especially in the last ten years. Most of them are from operational research.
Note that, in the literature, different variants of the LSNDP problem are studied according
to the assumptions and properties taken into account (transit time, transshipment, constant
or variable speed from one rotation to another or from one leg (i.e. a trip between two
consecutive ports in the rotation) to another, type of service, possibility of refusing some
commodities, . . . ).

Different approaches have been considered, often based on integer (mixed) linear program-
ming (e.g. [18, 19, 21, 22, 23, 27, 30]). They are mainly based on two types of formulations.
The first type of formulation is service-oriented. The set of possible services is calculated
upstream and provided as input to the model. The latter is then limited to selecting the
services to be kept among the candidates. The main disadvantage of this type of formulation
is that the number of possible services grows exponentially with the number of ports, which
limits its practical interest in the context of a solving performed with complete methods. On
the other hand, it can be interesting in the context of incomplete methods, because one can
then consider only a subset of the possible services. In practice, the solution proposed in [2]
and based on a tabu method coupled with column generation allowed handling instances
up to 120 ports. The second type of formulation is based on the selection of the arcs of the
graph representing the possible links between each pair of ports. A service is then defined
by the arcs that compose it, and the same arc can be used to define several services. From
a practical viewpoint, such modeling coupled with complete methods [18, 23, 22] allows
handling instances with up to a dozen ports [9].

Other approaches (e.g. [1, 2]) are based on two-step solving. Since the LSNDP problem
consists of two subproblems, they process each subproblem separately. For example, the
approaches presented in [2, 5, 13, 12] solve, in the first step, the problem of creating services
and, in the second step, consider the vessel assignment and the management of the commodity
flow based on the services found by the first step. In [17], the first phase is devoted to the
management of the flow, while the second defines the services. Generally, the solving is done
in several passes, the first phase then benefiting from some feedbacks from the second phase
of the previous pass. Of course, this type of approach corresponds to incomplete methods.
In practice, these approaches provide satisfactory results for instances with up to 120 ports
[2]. They are often based on matheuristics (e.g. [5, 13, 12]) or the Variable Neighborhood
Search algorithm (VNS) such as [17].
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Beyond that, there are many related problems to the LSNDP problem. For example,
the Vehicle Routing Problem (VRP [15]) and its variants have strong similarities with the
LSNDP problem. In particular, the routes are circuits and, for some variants, the vehicle load
or transit times can be taken into account. In maritime transport, the Liner Shipping Fleet
Repositioning Problem (LSFRP [28]) consists in moving container ships from one service to
another while taking into account the commodities to be transported, the empty containers
to be relocated and maximizing the difference between the revenues and the costs generated.
Among the approaches studied to solve this problem, we can underline the interest in using
constraint programming (CP) put forward in [14].

While the VRP and LSFRP problems (and other shipping-related problems such as
[16, 24]) have been studied from a CP perspective, this does not seem to be the case for the
LSNDP problem. In this paper, we propose a model to handle a relatively general version
of the LSNDP problem. Our model considers variable speeds from one trip to another and
takes into account transshipments and transit times. Although developed in partnership
with one of the world’s leading container shipping companies, the model presented takes into
account a relatively general version of the LSDNP problem. It can, of course, be adapted
to specific needs, taking advantage of the flexibility of constraint programming. One of the
aims of this work is to study the interest of a CP-based approach to modeling and solving
such problems.

This paper is organized as follows. Section 2 introduces the notions necessary to un-
derstand the paper. Then, in Section 3, we propose a CP model for the LSNDP problem.
Finally, we present some experimental results, in Section 4, before discussing related work in
Section 5 and concluding in Section 6.

2 Preliminary

2.1 Constraint Programming
An instance P of the Constraint Optimization Problem (COP) can be defined as a 4-tuple
(X, D, C, f) where X = {x1, . . . , xn} is the set of variables, D = {Dx1 , . . . , Dxn

} is the set
of domains, the domain Dxi

being related to the variable xi, C = {c1, ..., ce} represents the
set of the constraints which define the interactions between the variables and describe the
allowed combinations of values and f specifies the criterion to be optimized. Solving a COP
instance P = (X, D, C, f) amounts to finding an assignment of all variables of X satisfying
all constraints of C and optimizing the criterion given by f . This is an NP-hard problem.

One of the advantages of constraint programming lies in the existence of specialized
constraints (the global constraints) which will make easier the modeling of problems, but
also, their solving thanks to their dedicated filtering algorithms. In the following, we will
exploit the following global constraints (where ⊙ denotes a relational operator among ≤, <,
=, ̸=, > or ≥):

Alldiff-except(Y, v) [3, 10] which ensures that the values of the variables of Y are
pairwise distinct, except in the case where they are equal to v,
Circuit(Y, ℓ) [4] which imposes that the values of the variables of Y form a circuit of
length ℓ (in the sense of graph theory), each variable yi having for value i if it does not
take part in the circuit, and j (with i ̸= j) if j is the successor of i in the circuit,
Count(Y, V ) ⊙ k [4, 8] which ensures that the number of variables of Y whose value
belongs to V satisfies the condition imposed by the relation ⊙ with respect to k,
Elt(Y, i) = k [29] which ensures that the ith value of Y (using a 0-based indexing) is
equal to k (Y can be here an ordered set of variables or values),

CP 2023
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Eltm(Y, i, j) = k [4, 3] which ensures the same property as Elt, but, for an orderede set
Y of variables or values organized in the form of a two-dimensional matrix,
Maximum(Y ) = k which ensures that the greatest value of Y is equal to k (Y can here be
a set of variables or expressions),
Sum(Y, Λ) ⊙ k which imposes that the sum of the values of Y weighted by the coefficients
of Λ satisfies the condition imposed by the relation ⊙ with respect to k. In the following,
this constraint will be represented in the more explicit form

∑
i

λi.yi ⊙ k.

2.2 The Liner Shipping Network Design Problem
Liner shipping involves the use of standardized vessels that will reliably move cargo between
ports according to a pre-determined route and schedule. It is often compared to scheduled
passenger service, such as a train or bus service because it operates on a fixed schedule
and provides regular and predictable service for shippers and receivers of commodities. A
shipping line, also called a service, is defined by a cyclic route (called a rotation) that serves
a set of ports in a specific order and on a regular schedule. Figure 1 describes the example of
a line connecting Asia and Europe.

In this paper, we consider only the transportation of commodities in their containerized
form, as this mode of transportation constitutes the bulk of freight transportation in terms
of quantity and value. Thus, a customer wishing to move commodities from a port of loading
(POL) to a port of destination (POD) needs to place them inside one or more containers.
Containers have the advantage, for the shipowner, that their dimensions are standardized,
thus facilitating their handling and placement on board of specialized vessels such as container
ships. There are mainly two sizes of containers: 20-foot containers (about 6.1 m) and 40-foot
containers (12.2 m) with a height of 8.6 feet (2.6 m) and a width of 8 feet (2.4 m). The
majority of containers transported are of one of these two sizes. Also, the storage space of
the vessels is divided into 40-foot unit spaces on which it is possible to stack both 40-foot
and 20-foot units. The Twenty-foot Equivalent Unit (TEU) is the unit generally used to
count a number of containers. For example, a 40-foot container counts as 2 TEUs.

From the carrier’s viewpoint, each commodity k is seen as a quantity q(k) of containers
(expressed in TEUs) to be transported from the port of origin pol(k) to the port of destination
pod(k) in exchange for a revenue rev(k) per TEU (expressed in dollars). This revenue may
be zero in the case of empty containers. Some commodities may have a maximal transit
time ttmax(k) that must be respected. This time is the maximum time allowed for their
transport. Generally, such commodities are transported within the framework of premium
offers proposed by the carriers. It should be noted that a batch of containers sent by a
customer from one port to another cannot be divided into several sub-batches. Finally, cargo
can be transported from its port of origin to its port of destination via the successive use
of different lines. The operation of unloading a commodity from one line and loading it on
another is called “transshipment”. It may require the commodities to be stored for several
days in the transshipment port until the vessel of the next line arrives and loads them on
board. This can result in costs (see transshipment costs below) and longer travel times.

Concerning vessels, container ships are grouped by type of vessel with identical or similar
features. Thus, each class v is characterized by its capacity κ(v) (i.e. the maximum number
of containers (in TEU) that can be transported), its daily charter rate tc(v) (corresponding to
the daily cost of using the vessel), its interval of possible speeds [νmin(v), νmax(v)] (in knots),
its hourly consumption cons(v, ν) of fuel for the main engine (in tons per hour), for each
type of fuel fuel(v) and each possible speed ν. Regarding consumption, other parameters
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that could have an impact such as wind strength, sea currents, draft or load on board are
ignored. These parameters can be variable in time and difficult to anticipate, as the lines are
generally defined on a yearly scale.

Each port p also has its own features, namely its productivity prod(p, v) (i.e., the number of
containers loaded or unloaded per hour for vessels of type v), its waiting time wt(p, v) (time at
anchor before entering the port), its maneuvring time manin(p, v) and manout(p, v) to enter
and leave the port respectively, its call charges pc(p, v) (in dollars), and its transshipment
cost ts(p) (in dollars). The times are given in hours and depend on the type v of vessels, as
do the call charges. A canal c (e.g. the Suez or Panama Canal) is characterized by a waiting
time wt(c, v), a traversal time trav(c) (in hours), and a traversal cost pc(c, v) (in dollars).

The number of vessels operating on a service is determined by the length of the rotation
and the frequency of departures. Indeed, a rotation must guarantee a regular frequency of
visits to each port it serves. This rotation frequency is generally weekly or biweekly. For a
weekly frequency, the duration of the rotation must be a multiple of seven days. The number
of vessels deployed per rotation must then be equal to the number of weeks in that rotation.
For example, the line shown in Figure 1 has a duration of 91 days or 13 weeks. It is therefore
operated with 13 vessels.

The liner shipping network design problem (LSNDP) can be defined as follows: Given
a set of ports, a set of vessels divided by type (each type v having nb(v) vessels) and a
set of commodities to be transported, define a set of rotations having a weekly frequency
and determine the vessels operating them to transport the commodities while respecting, if
necessary, the transit times and maximizing the profit. The profit is defined as the difference
between the revenues generated by the commodities transported and all the costs generated
by this transport (fuel costs, vessel operating costs, port call and canal costs, transshipment
costs, . . . ). To calculate fuel costs, for each type of fuel f , we have the price fp(f) per ton
of fuel (expressed in dollars).

While the primary purpose of this problem is to design maritime transportation networks,
it can also be used to assist in decision-making. For example, it can be used to simulate
situations such as traffic jams to enter certain ports and determine whether or not it is
relevant to adapt existing rotations. It can also be used to consider changes in the flow
of containers to be transported, to evaluate the interest in taking market share in certain
commodity flows or to anticipate the construction of new ships.

3 Model

3.1 Modeling Choices
In our model, we adopt the usual assumptions of the literature. In particular, we assume
that all container ships of a given type have identical features and that the frequency of
services is weekly. Furthermore, we choose to treat canals (such as the Suez and Panama
canals) in the same way as ports. The time it takes to cross a canal replaces the time it takes
to load/unload a ship in a port. As a result, the notion of rotation now also takes canals into
account. Since a rotation can pass several times through the same canal, but not through
the same port, we consider, in our model, two instances of each canal so that a canal can be
used both on the “outbound” and on the “return”. For example, we can see that the line
represented in Figure 1 passes twice through the Suez Canal, once on the “outbound” (blue
route) and once on the “return” (red route). Note that creating more than two instances of
the same canal is of little interest because a solution passing more than twice through the
same canal has little chance of being optimal.

CP 2023
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p1 p2 p3 p4 p5

840
0 12 50 60 275 280 600 620 725 740

srp1 = p2 srp2 = p3 srp3 = p4 srp4 = p5

srp5 = p1

Figure 2 A rotation involving five ports.

Circuit({sr
p | p ∈ P ∪ C}, ℓr) r ∈ R (R.1)

vr > 0 ⇒
∑
p∈P

(sr
p ̸= p) ≥ 3 r ∈ R (R.2)

vr > 0 ⇐⇒ ℓr ≥ 3 r ∈ R (R.3)

Figure 3 Constraints related to rotations and routes.

Our model takes, as inputs, all the information about the ports and canals, the flow of
commodities, the types of vessels, and the distances between pairs of ports/canals. It also
relies on the maximum number rmax of rotations to be defined, the time horizon hmax (in
hours), that is the maximum duration to achieve a rotation, and the maximum number tsmax

of transshipments allowed per commodity. One of the particularities of this model is that the
main operations will be time-stamped to handle rotation or transit times of the commodities
as precisely as possible. Moreover, speeds can be different from one leg to another. Finally,
it takes into account the possibility of refusing to transport a commodity in the network if it
is not profitable or impossible.

Thereafter, given the large number of variables, we define the variables progressively
when needed. The set of ports is denoted P = {0, 1, . . . , |P| − 1}, the set of canals C =
{c, c+ |C0| s.t. c ∈ C0} (with C0 = {|P|, . . . , |P|+ |C0|−1} the set of canals before duplication),
the set of type of vessels available V = {1, 2, . . . , |V|} and that of the commodities K =
{1, 2, . . . , |K|}. We note respectively I and I+ the index sets [0, tsmax] and [0, tsmax + 1].
Let R = {1, . . . , rmax} be the set of the indices of the possible rotations.

3.2 Definition of Rotations
Our model does not necessarily use all possible rmax rotations. Therefore, we consider a
variable vr per rotation r. Its value is an integer between 1 and |V| representing the type of
vessels exploited if the rotation is used, 0 otherwise. Each rotation r must correspond to a
circuit. To define such circuits, we introduce a variable sr

p per port/canal p and rotation r.
Its value is p if the port/canal p is not involved in the circuit, the successor of port/canal
p otherwise. Figure 2 illustrates this for a rotation involving five ports. We also introduce
a variable ℓr specifying the length of the circuit associated with rotation r. Thus, for each
rotation r, the existence of a circuit can be guaranteed by constraint (R.1) (see Figure 3).
Note that this constraint avoids the existence of subtours, a property that is not generally easy
to guarantee. For instance, in MIP, avoiding subtours requires adding non-linear constraints
that must then be linearized. Then, thanks to constraint (R.2), a circuit must involve at least
three ports (this is a business rule generally desired by carriers), and so, cannot involve only
canals. Finally, constraint (R.3) ensures that rotation r is used if and only if the associated
circuit has a length at least equal to three.
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portk,0
pol(k)

portk,1 portk,2 portk,nbrk−1 portk,nbrk
pod(k)

rotk,0 rotk,1 · · · rotk,nbrk−1

Figure 4 Transport of a commodity k from its origin port pol(k) to its destination port pod(k).

3.3 Cargo Flow
Our model allows for the possibility of not carrying a commodity k if it is not possible or not
profitable. To do this, we define a Boolean variable αk that is true if commodity k is accepted
in the network, false otherwise. Taking charge of commodity k means that it is loaded
at the original port pol(k) and unloaded at the destination one pod(k), possibly passing
through intermediate ports. In our model, we consider only the intermediate ports where the
commodity will be transshipped as shown in Figure 4. Also, we introduce a variable rotk,i

per commodity k and step i to represent the ith rotation used to transport the commodity
k. rotk,i has the value r if commodity k is carried thanks to rotation r during the ith step,
−1 if this step is not needed. Similarly, the variable portk,i represents the port where the
commodity k enters its ith rotation. By so doing, commodity k enters in its ith rotation at
port portk,i and leaves it at port portk,i+1 (i.e. the port in which it starts its next rotation
if portk,i+1 differs from pod(k)). These variables have the value of the corresponding port
p (p ∈ P) if the ith rotation is used, −1 otherwise. More precisely, the domain of portk,i

is {−1, pol(k)} if i = 0, {−1, pod(k)} if i = tsmax + 1, {−1} ∪ P − {pol(k)} otherwise. For
each commodity k, a variable nbrk specifies the number of rotations used (between 0 and
tsmax + 1).

We can now define the associated constraints (see Figure 5). First, constraint (F.1)
specifies that commodity k is accepted in the network if and only if there is at least one
rotation that carries it. Of course, the port of departure of an accepted commodity k is
necessarily its port of origin pol(k) (constraint (F.2)). The last port used is necessarily
the destination port pod(k). To ensure this, we introduce a variable podk per commodity
k that can take two values: either pod(k) if commodity k is accepted, or −1 otherwise.
Constraint (F.3) guarantees that podk has the relevant value depending on the value of αk

while constraint (F.4) ensures that the last used port is consistent with podk. Naturally, no
port or rotation can be used beyond the destination port (constraints (F.5)–(F.7)). Moreover,
a commodity cannot transit several times through the same port or the same rotation, what
is ensured by constraints (F.8) and (F.9). To facilitate the expression of some constraints
about the path followed by the commodities, we introduce Boolean variables fromr

k,p (resp.
tor

k,p) which are true if commodity k enters (resp. leaves) the rotation r at port p, false
otherwise. These variables are directly related to the previous ones as seen in constraints
(F.10) and (F.11). These variables are also used to link the cargo flow to the definition of
routes. Indeed, if commodity k is (un)loaded at a port p for a rotation r, it implies that
the port p is used in this rotation (constraints (F.12) and (F.13)). Conversely, if a port
p is used in rotation r, then there is at least one commodity that is (un)loaded in that
port for that rotation (see constraints (F.14) and (F.15)). Finally, if a rotation is not used,
no commodities can transit through it, and vice versa (constraint (F.16)). Note that this
constraint is redundant, but in most cases, it allows finding some conflicts earlier.

3.4 Properties of Rotations and Vessels
In some MIP models in the literature (e.g. [18, 9]), each service is associated with a predefined
type of vessel. While this choice facilitates the consideration of the specificities of each type
of vessel, it leads to handling many rotations, few of which will be used in the end. Moreover,

CP 2023
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αk = 1 ⇐⇒ nbrk > 0 k ∈ K (F.1)
αk = 1 ⇐⇒ portk,1 = pol(k) k ∈ K (F.2)
αk = 1 ⇐⇒ podk = pod(k) k ∈ K (F.3)
Elt({portk,i+1 | i ∈ [1, tsmax]}, nbrk) = podk k ∈ K (F.4)
i ≥ nbrk ⇐⇒ rotk,i = −1 k ∈ K, i ∈ I (F.5)
nbrk < i ⇒ portk,i = −1 k ∈ K, i ∈ I+ (F.6)
portk,i = −1 ⇒ nbrk ≤ i k ∈ K, i ∈ I+ (F.7)
Alldiff-except({portk,i | i ∈ I+}, −1) k ∈ K (F.8)
Alldiff-except({rotk,i | i ∈ I}, −1) k ∈ K (F.9)

fromr
k,p =

∑
i∈I

(portk,i = p) · (rotk,i = r) k ∈ K, p ∈ P, r ∈ R (F.10)

tor
k,p =

∑
i∈I

(portk,i+1 = p) · (rotk,i = r) k ∈ K, p ∈ P, r ∈ R (F.11)

fromr
k,p = 1 ⇒ sr

p ̸= p k ∈ K, p ∈ P, r ∈ R (F.12)
tor

k,p = 1 ⇒ sr
p ̸= p k ∈ K, p ∈ P, r ∈ R (F.13)

sr
p ̸= p ⇒ Count({portk,i | k ∈ K, i ∈ I+}, {p}) ≥ 1 p ∈ P, r ∈ R (F.14)

sr
p ̸= p ⇒ Count({rotk,i | k ∈ K, i ∈ I}, {r}) ≥ 1 p ∈ P, r ∈ R (F.15)

vr = 0 ⇐⇒ Count({rotk,i | k ∈ K, i ∈ I+}, {r}) = 0 r ∈ R (F.16)

Figure 5 Constraints related to cargo flow.

trying a new vessel type for a rotation requires the solver to change the assignment of a
lot of variables. In our model, we choose to let the solver decide on the type of vessels
associated with each rotation. Therefore, it is necessary to ensure that the type of vessels
chosen for a rotation matches the features of the rotation. This requires the introduction
of a certain number of variables whose values will then be fixed using Elt constraints. The
variable κr represents the maximum capacity (expressed in TEUs) of commodities that can
be transported via rotation r. Its value is 0 if the rotation is not used, the capacity of the type
of vessel used otherwise. The variables νr

min and νr
max specify the minimum and maximum

speeds of the rotation r (0 if the rotation is not used). The variable fpr expresses the price
per ton of fuel for rotation r (0 if the rotation is not operated). For each rotation r, we post
the constraints (P.1)–(P.4) (see Figure 6). Likewise, some information (call costs, waiting
time, . . . ) related to ports or canals also depends on the type of vessels associated with
rotation r. For each rotation r, we then introduce the variables wtp,r, manin

p,r and manout
p,r

which specify respectively the waiting time of port/canal p and the maneuvring time to enter
and leave port p. The cost of calling at port p for rotation r is represented by the variable
pcp,r while the productivity for port p and rotation r is expressed by the variable prodp,r.
Constraints (P.5)–(P.9) ensure the consistency of these features. Finally, we consider the
variable tcr which, for each rotation r, specifies the daily cost of using the vessels associated
with the rotation and its related constraint (P.10).
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Elt({0} ∪ {κ(v) | v ∈ V}, vr) = κr r ∈ R (P.1)
Elt({0} ∪ {νmin(v) | v ∈ V}, vr) = νr

min r ∈ R (P.2)
Elt({0} ∪ {νmax(v) | v ∈ V}, vr) = νr

max r ∈ R (P.3)
Elt({0} ∪ {fp(fuel(v)) | v ∈ V}, vr) = fpr r ∈ R (P.4)
Elt({0} ∪ {wt(p, v) | v ∈ V}, vr) = wtp,r r ∈ R, p ∈ P ∪ C (P.5)
Elt({0} ∪ {manin(p, v) | v ∈ V}, vr) = manin

p,r r ∈ R, p ∈ P ∪ C (P.6)
Elt({0} ∪ {manout(p, v) | v ∈ V}, vr) = manout

p,r r ∈ R, p ∈ P ∪ C (P.7)
Elt({0} ∪ {pc(p, v) | v ∈ V}, vr) = pcp,r r ∈ R, p ∈ P ∪ C (P.8)
Elt({1} ∪ {prod(p, v) | v ∈ V}, vr) = prodp,r r ∈ R, p ∈ P ∪ C (P.9)
Elt({0} ∪ {tc(v) | v ∈ V}, vr) = tcr r ∈ R (P.10)

Figure 6 Constraint related to properties of rotations and vessels.

fromr
k,p = 1 ⇒ leaver

k,p = 1 k ∈ K, r ∈ R, p ∈ P (L.1)
tor

k,p = 1 ⇒ leaver
k,p = 0 k ∈ K, r ∈ R, p ∈ P (L.2)

(sr
p = p′ ∧ fromr

k,p′ = 0 ∧ tor
k,p′ = 0) ⇒ leaver

k,p = leaver
k,p′ k ∈ K, r ∈ R, p, p′ ∈ P

(L.3)
sr

p = p ⇒ leaver
k,p = 0 k ∈ K, r ∈ R, p ∈ P (L.4)∑

k∈K

q(k) · leaver
k,p ≤ κr r ∈ R, p ∈ P (L.5)

Figure 7 Constraints related to loads.

3.5 Vessel Load
We need to ensure that vessels do not leave each port loaded beyond their maximum capacity.
This requires knowing, for each rotation, which commodities it carries at the exit of each port.
To do this, we use a Boolean variable leaver

k,p per commodity k, port p, and rotation r. This
variable is true if commodity k leaves port p via rotation r, false otherwise. Constraints (L.1)
and (L.2) (see Figure 7) deal with the cases when the commodities are respectively loaded in
rotation r and unloaded from rotation r while constraint (L.3) guarantees the transitivity all
along the trip. Finally, the constraint (L.4) corresponds to the case where a port p does not
appear in rotation r. Constraint (L.5) then allows ensuring that, for each port p, the load,
when leaving the port, does not exceed the maximum capacity κr of rotation r.

3.6 Timestamp and Transit Times

3.6.1 Duration of Port Operations and Canal Traversal
To express the duration of loading/unloading operations in a port or the duration of traversing
a canal, we introduce a variable tr

p per port/canal p and rotation r. In the case of a canal the
value of this variable is defined as equal to the duration of the traversal if the canal is used, 0
otherwise (see constraint (T.1) in Figure 8). For a port p, two cases are possible. If the port
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tr
p = trav(p) · (sr

p ̸= p) r ∈ R, p ∈ C (T.1)
sr

p = p ⇐⇒ tr
p = 0 r ∈ R, p ∈ P (T.2)

teup,r =
∑
k∈K

(fromr
k,p + tor

k,p) · q(k) r ∈ R, p ∈ P (T.3)

sr
p ̸= p ⇒ tr

p =
⌈

µ.teup,r

prodp,r

⌉
r ∈ R, p ∈ P (T.4)

vr = 0 ⇐⇒ depr = −1 r ∈ R (T.5)
vr > 0 ⇒ Maximum({p.(sr

p ̸= p) | p ∈ P}) = depr r ∈ R (T.6)

depr = p ⇒ timein
p,r = 0 r ∈ R, p ∈ P (T.7)

timeout
p,r = timein

p,r + tr
p r ∈ R, p ∈ P ∪ C (T.8)

sr
p = p′ ⇒ str

p =
⌈

δ(p, p′)
νr

p

⌉
r ∈ R, p, p′ ∈ P ∪ C (T.9)

(vr > 0 ∧ sr
p ̸= p) ⇒ νr

p ≥ νr
min r ∈ R, p ∈ P ∪ C (T.10)

vr > 0 ⇒ νr
p ≤ νr

max r ∈ R, p ∈ P ∪ C (T.11)
sr

p = p ⇐⇒ str
p = 0 r ∈ R, p ∈ P ∪ C (T.12)

sr
p = p ⇒ timein

p,r = 0 r ∈ R, p ∈ P ∪ C (T.13)
sr

p = p ⇐⇒ νr
p = 0 r ∈ R, p ∈ P ∪ C (T.14)

(sr
p = p′ ∧ p′ ̸= depr)

⇒ timein
p′,r = timeout

p,r + manout
p,r + str

p + wtp′,r + manin
p′,r r ∈ R, p, p′ ∈ P ∪ C (T.15)

(fromr
k,p ∧ tor

k,p′ )

⇒ (timein
p,r < timein

p′,r ∨ timein
p′,r < timein

p,r < timein
p′,r + Tr) r ∈ R, p, p′ ∈ P ∪ C, k ∈ K (T.16)

Figure 8 Constraints related to timestamps.

is not used in the rotation r, the variable tr
p is 0 (see constraint (T.2)). Otherwise, its value

depends on the number of TEUs loaded and unloaded in the port p for the rotation r. So,
we consider the variable teup,r which indicates the number of TEUs loaded and unloaded at
port p for rotation r. Its value can be defined thanks to constraint (T.3). We can express
the duration of the operations thanks to constraint (T.4). A crane movement allows moving
a container whatever its size. To take into account the existence of 20-foot and 40-foot
containers among the commodities to be handled, the parameter µ makes it possible to
calculate the number of containers to be handled and thus the number of crane movements
necessary from the number of containers expressed in TEUs.

3.6.2 Call Timestamps

In order to establish the schedule for each call, it is necessary to designate a port as the
departure port in each rotation. To do this, we consider a variable depr per rotation r which
has, for value, a port p if the rotation is used, −1 otherwise. The choice of the starting
port being purely arbitrary, we choose the one with the largest index. This can be achieved
thanks to constraints (T.5) and (T.6). Then, in our model, we consider two key moments:
the moment when the vessel arrives at the berth (resp. enters the canal) and the moment
when it leaves the berth (resp. leaves the canal). For each rotation r and each port/canal p,
these two moments are represented respectively by the variables timein

p,r and timeout
p,r which

take their values in [0, hmax]. For each rotation, we consider that time 0 coincides with the
time of arrival at the berth in the departure port thanks to constraint (T.7). The time
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of leaving a port or a canal depends only on the time of arrival and the duration of the
operations in the port or the traversal of the canal (constraint (T.8)). Then, to determine
the arrival time at a port or canal as a function of the exit time from the port/canal ahead
of it in the rotation, we need to define the travel time as a function of the vessel’s speed.
The variables str

p and νr
p represent respectively the travel time from the port/canal p to its

successor (if any) in rotation r and the speed (expressed in knots) used on this leg. The two
variables are correlated by constraint (T.9). Of course, the speeds used must be consistent
with the capabilities of the vessels operating the rotation (constraints (T.10) and (T.11). We
can now define the time of arrival at the port/canal p′ from its predecessor p in rotation r

thanks to constraint (T.15). Note that for canals, we consider that the variables manin
p,r

and manin
p,r are 0. This allows us to avoid defining the previous constraint according to the

different possibilities of port/canal successions. In the case where a port p is not operated in
a rotation r, we set the values of the variables str

p, νr
p and timein

p,r to the value 0 (constraints
(T.12)–(T.14)).

Finally, if a commodity k is loaded in rotation r at port p and unloaded at port p′, this
imposes that the arrival at port p takes place before the arrival at port p′ if the trip between
p and p′ does not pass through the departure port of rotation r. If this path passes through
the departure port, then the arrival at port p′ will occur in the next rotation, and the arrival
at port p is between the two visits to port p′. For example, if we consider the rotation in
Figure 2 (which lasts 840 hours) and a commodity sent from port p2 to port p4, a vessel
operating this rotation enters port p2 at hour 50 (in blue) and arrives in port p4 at hour 600.
In this case, we have timein

p2,r < timein
p4,r. On the other hand, if we consider a commodity

going from p4 to p3, the vessel enters port p3 at hour 275 before visiting p4. This commodity
will then be delivered only at the next passage of the vessel at time 1,115. We then have
timein

p3,r < timein
p4,r < timein

p3,r + Tr. This is ensured by constraint (T.16).

3.6.3 Transit Times
To accurately consider the transit time of commodities, we need to know the key moments
in their transportation, namely when they are loaded on board a rotation or unloaded. To
simplify the model, we consider that a commodity is loaded on board a rotation when the
rotation leaves the port and that it is unloaded when the rotation arrives at the port. These
two times are represented by the variables ctimein

i,k and ctimeout
i,k respectively. Constraints

(T.17) and (T.18) (see Figure 9) ensure the correspondence between the key times of the
rotations and the ones of the commodities.

The time spent by the commodity k in its ith rotation is represented by the variable δi,k.
It corresponds naturally to the difference between the exit time and the entry time. However,
we must take into account the particular case where the journey passes through the port of
departure. In this case, the commodities are unloaded at the next rotation. For example, if
we consider the previous example, a commodity sent from port p2 to port p4 leaves port p2
at hour 60 (in red) and arrives in port p4 at hour 600 (in blue). This gives a travel time of
540 hours. On the other hand, a commodity shipped from port p4 to port p3 leaves port
p4 at time 620 and arrives at port p3 at time 1,115 and thus takes 495 hours to reach its
destination. Constraints (T.19) and (T.20) deal respectively with the first and second cases.

In the case where a transshipment takes place, the time that the commodities spend on
the quay between the two rotations must be taken into account. Given the weekly frequency
of the rotations, this time can be of the order of a week at most. To consider it more precisely,
we introduce a variable ∆i,k per commodity k and ith rotation used. The value of this
variable is related to the weekly frequency of rotations. For example, consider a commodity
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Eltm({timeout
p,r | p ∈ P, r ∈ R}, portk,i, rotk,i) = ctimein

i,k k ∈ K, i ∈ I (T.17)
Eltm({timein

p,r | p ∈ P, r ∈ R}, portk,i+1, rotk,i) = ctimeout
i,k k ∈ K, i ∈ I (T.18)

ctimein
i,k ≤ ctimeout

i,k ⇒ δi,k = ctimeout
i,k − ctimein

i,k k ∈ K, i ∈ I+ (T.19)

(rotk,i = r ∧ ctimein
i,k > ctimeout

i,k ) ⇒ δi,k = ctimeout
i,k − ctimein

i,k + Tr k ∈ K, i ∈ I+

(T.20)
i + 1 < nbrk ⇒ ∆i,k = (ctimein

i+1,k − ctimeout
i,k )%168 k ∈ K, i ∈ I (T.21)

i + 1 ≥ nbrk ⇒ ∆i,k = 0 k ∈ K, i ∈ I (T.22)∑
i∈I+

δi,k +
∑
i∈I

∆i,k ≤ ttmax(k) k ∈ K (T.23)

Figure 9 Constraints related to transit times.

k that arrives at a port p at hour 200 (according to its ctimeout
i,k value) on a rotation r and

leaves it at hour 2,000 (according to its ctimein
i+1,k value) via a rotation r′. The weekly

frequency of the rotations r and r′ implies that, in practice, commodity k leaves the port
at hour 320. Indeed, a vessel of rotation r′ leaves the port at hours 152 (i.e. 2, 000 modulo
(7 × 24)), 320, 488, . . . If the arrival in the port is later than the departure from the port
(according to the values ctimeout

i,k and ctimein
i+1,k), it means that the commodity must wait

for the vessel of the next week and so we have to add 168 hours to the considered difference.
Constraint (T.21) takes into account these two cases. The ith rotations that are not used for
commodity k have a ∆i,k variable whose value is zero (constraint (T.22)). The transit time
of commodity k can then be guaranteed by constraint (T.23). Note that not all commodities
have a transit time constraint. Also, if commodity k does not have a maximum transit time
constraint, the variables and constraints presented here are not considered for it.

3.7 Vessel Availability

Since the frequency of the rotations is weekly, each port is visited by one vessel operating the
rotation each week. The number of vessels needed is therefore the total time of the rotation
divided by the duration of one week. If the variables nr and Tr represent respectively the
number of vessels used by the rotation r and the total time of the rotation r, we can impose
constraint (A.1) (see Figure 10). The time of the rotation is, of course, zero if the rotation
is not used (constraint (A.2)). Otherwise, since each rotation starts at time 0, the total
time is the arrival time at the departure port from the last port of the rotation (constraint
(A.3)). Finally, we guarantee that, for each type of vessel, the number of vessels used does
not exceed the number of available vessels thanks to constraint (A.4).

3.8 Objective Function

Briefly, the objective function is the difference between the revenues generated by accepting
commodities into the network and the total costs of transporting them (fuel, vessel operations,
port calls, . . . ). The fuel cost depends on the fuel price and the fuel consumption of each trip
made. For this latter, we consider a variable consr

p per port and rotation that specifies the
amount of fuel consumed per hour by the rotation r for the trip made between the port/canal
p and its successor. In the absence of successors, the variable consr

p has, of course, the value
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nr =
⌈

Tr

7 × 24

⌉
r ∈ R (A.1)

vr = 0 ⇐⇒ Tr = 0 r ∈ R (A.2)
depr = p′ ∧ sr

p = p′ ⇒ Tr = timeout
p,r + manout

p,r + str
p + wtp′,r + manin

p′,r r ∈ R, p, p′ ∈ P
(A.3)∑

r∈R

nr.(vr = v) ≤ nb(v) v ∈ V (A.4)

Figure 10 Constraints related to vessel availability.

Eltm({cons(v, ν) | v ∈ {0} ∪ V, ν ∈ {0} ∪ [νmin(v), νmax(v)]}, vr, νr
p) = consr

p r ∈ R, p ∈ P ∪ C
(O.1)

teuts
p =

∑
k∈K|p̸=pod(k)

tor
k,p · q(k) p ∈ P (O.2)

Figure 11 Constraints related to the objective function.

0. The quantity consumed here depends only on the type of vessel used and the speed. In
constraint (O.1) (see Figure 11), we assume that cons(v, ν) is 0 if v or ν is 0.

The costs associated with transshipment depend on the port and the quantity of commod-
ities transshipped. So we need to represent the quantity of commodities transshipped at each
port. To do this, we introduce a variable teuts

p per port. The commodities k transshipped at
port p are those that are unloaded at port p (i.e., those for which tor

k,p is 1) and for which
port p is not their destination port (see constraint (O.2)). We can now express our objective
function based on revenues (R), fuel costs (C), canal and port call costs (E), vessel operating
costs (X), and transshipment costs (T):

max
∑

k∈K
rev(k) · q(k) · αk (R)

−
∑

r∈R

∑
p∈P∪C

fpr · consr
p · str

p (C)

−
∑

r∈R

∑
p∈P∪C

pcpr · (sr
p ̸= p) (E)

− 7
∑

r∈R

tcr · nr (X)

−
∑

p∈P
ts(p) · teuts

p (T )

3.9 Additional Constraints
Given the size of the search space, it may be desirable to avoid certain symmetries as much
as possible. Starting each rotation at time 0 (see constraint (T.7)) allows for avoiding
any translation on the time axis. However, other symmetries may exist. For example, the
rotations are interchangeable. To avoid this, we can ensure that the first rotations are
used in priority and these rotations are sorted in decreasing order of their duration thanks
to constraint (S.1) (see Figure 12). One of the main practical difficulties of the LSNDP
problem lies in the enumeration of the different possible circuits. For a circuit of length
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T1 ≥ T2 ≥ . . . ≥ Tr (S.1)∑
r∈R

(sr
p ̸= p) ≤ max(|Kpol

p |, |Kpod
p |) p ∈ P2 (S.2)

vr = v ⇒ sr
p = p r ∈ R, p ∈ P3 (S.3)

teuts
p = 0 p ∈ P4 (S.4)

Figure 12 Possible additional constraints where Pi denotes the set of ports impacted by the
constraint (S.i).

ℓ, since it is possible to go from one port to any other, the solver may have to consider
a non-negligible part of the ℓ! possible permutations. Since, in addition, several rotations
are usually considered simultaneously, this can quickly become very time-consuming. To
reduce the number of rotations and thus of circuits to consider, we introduce constraint
(S.2). Let Kpol

p and Kpod
p denote respectively the set of commodities for which p is the origin

port and one for which p is the destination port. This constraint ensures that the number
of rotations that uses a port p does not exceed the maximum between |Kpol

p | and |Kpod
p |.

In a way, it eliminates some solutions in which the call in the port would only be used for
transshipments. Generally, calling a port for only transshipments is not wished by shipping
companies, except for some particular ports (e.g. hubs). Thanks to the flexibility of CP, we
can add this constraint depending on the needs of the shipowner.

On the other hand, some ports cannot handle certain types of vessels. For example, the
port of Dutch Harbor in Alaska is not deep enough. It can therefore only handle small
container ships. Thus, if v vessels cannot berth at port p, we impose constraint (S.3) for
each rotation r. Similarly, some ports do not have enough space to store containers. It is
therefore impossible to carry out transshipments there. For such ports, we can then exploit
constraint (S.4) to prohibit any transshipment.

4 Experiments

4.1 Experimental Protocol and Implementation Details
The LINER-LIB benchmark1 [7] is the reference for experiments on the LSNDP problem.
It consists of seven instances with 12 to 197 ports, thus allowing the evaluation of both
complete and incomplete methods. In order to have instances of a reasonable and varied
size, we have produced sub-instances from instances of the LINER-LIB benchmark. To do
this, from an instance, we select n ports in the following way. The first selected port is the
one that handles the most commodities. The next n − 1 ports are the ones that exchange
the most commodities with the already selected ports. For our test set, we considered
the smallest instance (Baltic) of the LINER-LIB set and 40 instances produced from the
instances Baltic, EuropeAsia, Mediterranean and WAF. The number of ports varies from
3 to respectively 11, 10, 10 and 17. Moreover, as the LINER-LIB benchmark does not
take into account productivity, waiting or maneuvring times, we generate randomly these
values. Note that this partial random generation introduces no bias, since these values have
a negligible impact on the solving efficiency. For the following experiments, the number of

1 https://github.com/blof/LINERLIB/

https://github.com/blof/LINERLIB/
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rotations rmax is fixed at 4 and that of transhipments at 1 per commodity (a higher value
not being desired by the experts) while the maximum duration hmax is set to 12 weeks. The
chosen values of rmax and hmax seem reasonable to us taking into account the commodities
to be transported and the distances to be covered. In practice, the optimal solutions we
found require less time and fewer rotations than our choice of parameters allows. For µ,
we take the value 0.54 given by the experts. The instances we consider are available at
https://pageperso.lis-lab.fr/cyril.terrioux/LSNDP/instances.zip.

The presented model is implemented in the OR-Tools CP-SAT solver (version 9.6.2534
[26]) via its Python interface. This choice is first guided by the solver efficiency, since the
OR-Tools CP-SAT solver won several gold medals during the past MiniZinc Challenges [25].
Moreover, lazy clause generation [20] provides good results for the LSFRP problem [14].
Finally, another advantage is the possibility of exploiting a certain form of parallelism. Hence,
for the solving, we run from 1 to 16 threads. When a single thread is run, it corresponds to
the CP-SAT solver. Except for the number of threads, all the parameters are the default ones.
The experiments are being conducted on servers with Intel Xeon Gold 5218R processors
running at 2.1 GHz and 192 GB of memory with a time limit of two hours. When exploiting
several threads, each instance is solved 10 times and the reported runtime is the average time.
The solving step involving t threads is denoted ×t. We apply it to our model M , but also,
to two derived versions denoted M -1,2 and M -2. Model M -1,2 does not consider constraints
(S.1) and (S.2) while model M -2 uses constraints (S.1), but not constraints (S.2).

4.2 Results
First, we compare our model with its two derived versions from the efficiency viewpoint
(see Table 12 and Figure 13). Clearly, model M is the most efficient. Indeed, the addition
of constraints (S.1) and (S.2) allows us to solve optimally more instances (24 instances for
model M against 14 for models M -1,2 and M -2 when using a single thread) while reducing
significantly the runtime. As there often exists an arc between each pair of ports/canals, the
circuit constraint admits a huge number of allowed tuples. In practice, the number of allowed
tuples studied by the solver is mainly restricted by the load and transit time constraints or
the objective function. In the latter case, as the objective function considers all the rotations,
it may take some time for the solver to realize that a rotation is not suitable. So finding an
optimal solution may require exploring a huge number of feasible solutions. Constraints (S.1)
and (S.2) allow us to reduce this number significantly, as we can see in our results. Then, as
shown in Table 1, exploiting several threads allows improving the efficiency, but mostly by
reducing the runtime. For instance, using 16 threads instead of a single one leads to reducing
the runtime by a factor of 5 on average and up to 20 at best.

Figure 13 indicates that the runtime increases exponentially with the number of ports.
However, other parameters affect the runtime like the number of commodities to be processed
or the type of instances. For example, our model performs well on Baltic and WAF instances,
which corresponds to feedering instances (i.e. a collection of small services that ensures the
transport of commodities between some main ports and satellite ones). In contrast, it turns
out to be less efficient for instances like EuropeAsia ones that connect the more important
ports of two commercial areas. Then, our model finds interesting solutions even if it does not
accept all the commodities or visit all the ports (see Table 2). One explanation is related to

2 See Appendix A for the other instances.
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Table 1 Runtimes in seconds for some representative instances (a runtime different from 7,200 s
corresponds to an instance solved optimally).

Instance M -1,2 ×1 M -2 ×1 M×1 M×2 M×4 M×8 M×16
Baltic 7,200 7,200 3,502 3,385 386 372 343

Baltic_sub7 1,483 301 6.7 4.8 3.0 3.3 3.2
EuropeAsia_sub7 7,200 7,200 7,200 7,200 7,200 7,200 7,200

Mediterranean_sub7 7,200 7,200 7,200 7,200 7,200 7,001 6,234
WAF_sub7 7,200 7,200 27.4 19.0 6.6 5.6 5.7
WAF_sub17 7,200 7,200 7,200 7,200 7,200 7,021 5,117

Table 2 Information of some instances and solutions (the value in k$ of the best solution found,
the number of visited ports, accepted commodities and used rotations).

Instance Solution
Name |P| |K| Cost #ports #comm. #rot
Baltic 12 22 4,752 10 16 3

Baltic_sub7 7 12 2,508 6 9 2
EuropeAsia_sub7 7 42 4,228 6 23 3

Mediterranean_sub7 7 26 225 6 15 2
WAF_sub7 7 12 5,823 7 12 3
WAF_sub17 17 32 11,952 10 16 4

the way the LINER-LIB benchmark was built (namely by aggregating data from different
shipowners without ensuring that the considered fleet can handle all the commodities).

Finally, our approach manages to optimally solve some instances of up to 17 ports. While
the literature reports solving of up to a dozen ports, it is difficult to compare accurately with
existing exact methods: implementations are generally not available and each work treats
the problem with a different point of view, in particular regarding the working hypotheses or
the cost function to optimize (see Section 5).
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Figure 13 Runtime (in s) for Baltic (a) and WAF (b) instances w.r.t. the number of ports.

5 Related Work

The Liner Shipping Fleet Repositioning Problem (LSFRP [28]) aims to adapt the network
in order to take into account some evolution of the customer needs (e.g. seasonality, port
congestion, increase or decrease of the demands, . . . ). Moving container ships from one
service to another while considering commodity transport is a complex and expensive task
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for shipping companies. In this context, the CP approach presented in [14] turns out to
be more efficient than MIP ones. In the case of LSFRP, services are already defined while
LSNDP aims to design them. Moreover, the number of vessels and commodities to handle
may be reduced for LSFRP. Finally, an LSFRP instance corresponds to a one-shot task while
an LSNDP one leads to a schedule for several weeks or months.

LSNDP is close to Vehicle Routing Problem (VRP [15]) and its variants like the pickup
and delivery problem (PDP [11]). Indeed, in both cases, vehicles carry commodities from one
location to another. The first difference is that generally, for VRP and PDP, a commodity is
carried by a single vehicle whereas, for LSNDP, the transport can be achieved by several vessels
operating different rotations thanks to transshipments. Taking into account transshipments
makes the problem more difficult. This requires additional variables and constraints, while
significantly increasing the number of possible routes for commodities (and therefore the
number of feasible solutions to study). Moreover, in general, VRP and PDP aim to transport
all the commodities while, for LSNDP, some commodities may be rejected. Finally, the
objective function is often more complex for LSNDP than for VRP and PDP. For instance,
the variety of considered costs (e.g. call cost, transshipment cost, fuel cost, charter rate, . . . )
is more important.

Regarding the exact solving of LSNDP, unlike our model, the models proposed in
[18, 23, 22] use a constant speed for each leg and do not handle transit time constraints.
Those of [18, 23] cannot reject a commodity. In contrast, [18] takes into account the
empty container repositioning while [23, 22] consider the transshipment costs. The objective
functions consist in minimizing costs [18, 23] or maximizing the profit [22]. Regarding the
type of service, the three models consider a more general form than ours. For instance,
they can exploit butterfly services (i.e. services that can call several times in the same
port). However, such an extension could be taken into account in our model by duplicating
ports as we do for canals and relaxing some constraints like constraints (F.9). Note that
the experimentations achieved in [22] rely on the LINER-LIB benchmark, but the proposed
approach does not succeed in solving optimally the Baltic instance.

6 Conclusions and Perspectives

In this paper, we have proposed a first CP model to solve the LSNDP problem. The first
practical results are very encouraging with optimally solved instances with up to 17 ports
and show the interest in a CP approach. In the future, this model will have to be extended
to better handle some kinds of instances and take into account other forms of services (e.g.
butterflies) or the constraints imposed by the International Maritime Organization (IMO)
concerning the gas emissions of ships (e.g. related to carbon intensity indicator). Another
extension would be to differentiate containers by type (full, empty, reefers, . . . ). In particular,
the repositioning of empty containers is an important issue, while the transport of reefers is
highly profitable and raises specific questions. Moreover, to facilitate scaling up, the use of
incomplete methods will need to be explored more deeply.
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A Detailed Results

Tables 3 and 4 provide the same information as Tables 1 and 2 but for all the instances we
consider.

CP 2023

https://doi.org/10.1016/j.ejor.2013.10.057
https://doi.org/10.1007/s10696-011-9105-4
https://doi.org/10.1007/s43069-020-00036-x
https://developers.google.com/optimization/cp/cp_solver
https://developers.google.com/optimization/cp/cp_solver
https://doi.org/10.1007/s10696-016-9262-6
https://doi.org/10.1007/978-3-319-17665-9
https://doi.org/10.1016/j.cor.2013.08.014


16:20 A CP Approach for the Liner Shipping Network Design Problem

Table 3 Runtimes in seconds for all the considered instances (a runtime different from 7,200 s
corresponds to an instance solved optimally).

Instance M -1,2 ×1 M -2 ×1 M×1 M×2 M×4 M×8 M×16
Baltic_sub3 0.4 0.2 0.2 0.2 0.2 0.3 0.3
Baltic_sub4 15.8 4.5 0.6 0.4 0.4 0.4 0.5
Baltic_sub5 134 16.9 1.6 2.8 2.3 1.6 1.2
Baltic_sub6 256 120 2.9 1.9 1.3 1.4 1.4
Baltic_sub7 1,483 301 6.7 4.8 3.0 3.3 3.2
Baltic_sub8 7,200 7,200 29.2 14.2 5.8 5.2 5.1
Baltic_sub9 7,200 7,200 87.7 55.8 12.9 9.8 10.6
Baltic_sub10 7,200 7,200 158 126 22.9 16.9 15.2
Baltic_sub11 7,200 7,200 637 504 49.6 42.6 38.7

Baltic 7,200 7,200 3,502 3,385 386 372 343
EuropeAsia_sub3 2.5 1.0 0.9 1.0 1.2 1.3 1.2
EuropeAsia_sub4 157 244 134 100 37.3 18.1 10.5
EuropeAsia_sub5 7,200 7,200 7,200 3,736 4,101 4,459 2,356
EuropeAsia_sub6 7,200 7,200 7,200 7,200 7,200 7,200 7,200
EuropeAsia_sub7 7,200 7,200 7,200 7,200 7,200 7,200 7,200
EuropeAsia_sub8 7,200 7,200 7,200 7,200 7,200 7,200 7,200
EuropeAsia_sub9 7,200 7,200 7,200 7,200 7,200 7,200 7,200
EuropeAsia_sub10 7,200 7,200 7,200 7,200 7,200 7,200 7,200

Mediterranean_sub3 0.4 0.2 0.3 0.3 0.3 0.3 0.3
Mediterranean_sub4 2.8 0.8 0.8 0.8 0.8 0.9 1.0
Mediterranean_sub5 85.0 28.9 26.5 22.4 5.2 3.8 3.8
Mediterranean_sub6 621 229 281 307 30.6 25.2 21.5
Mediterranean_sub7 7,200 7,200 7,200 7,200 7,200 7,001 6,234
Mediterranean_sub8 7,200 7,200 7,200 7,200 7,200 7,200 7,200
Mediterranean_sub9 7,200 7,200 7,200 7,200 7,200 7,200 7,200
Mediterranean_sub10 7,200 7,200 7,200 7,200 7,200 7,200 7,200

WAF_sub3 0.9 0.7 0.6 0.3 0.3 0.4 0.3
WAF_sub4 401 42.8 0.8 0.6 0.7 0.6 1.1
WAF_sub5 896 248 1.8 1.8 1.6 1.6 1.4
WAF_sub6 7,200 7,200 7.5 4.4 3.9 3.4 3.5
WAF_sub7 7,200 7,200 27.4 19.0 6.6 5.6 5.7
WAF_sub8 7,200 7,200 31.3 19.9 6.7 6.1 6.1
WAF_sub9 7,200 7,200 17.0 18.0 7.5 7.0 7.0
WAF_sub10 7,200 7,200 39.4 35.7 16.0 12.3 12.7
WAF_sub11 7,200 7,200 249 187 32.2 32.6 29.3
WAF_sub12 7,200 7,200 1,093 600 73.4 66.7 64.9
WAF_sub13 7,200 7,200 7,200 7,200 815 792 499
WAF_sub14 7,200 7,200 4,662 3,779 323 262 263
WAF_sub15 7,200 7,200 7,034 5,365 542 494 349
WAF_sub16 7,200 7,200 7,200 7,200 4,182 3,106 2,154
WAF_sub17 7,200 7,200 7,200 7,200 7,200 7,021 5,117
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Table 4 Some information about instances and solutions. For solutions, we provide the value
(in k$) of the best solution found, the number of visited ports, one of accepted commodities and one
of used rotations.

Instance Solution
Name |P| |K| Cost #ports #comm. #rot

Baltic_sub3 3 4 1,876 3 4 1
Baltic_sub4 4 6 1,895 3 4 1
Baltic_sub5 5 8 2,074 5 8 2
Baltic_sub6 6 10 2,074 5 8 2
Baltic_sub7 7 12 2,508 6 9 2
Baltic_sub8 8 14 3,322 7 10 3
Baltic_sub9 9 16 3,733 8 11 3
Baltic_sub10 10 18 4,187 9 13 3
Baltic_sub11 11 20 4,345 10 15 3

Baltic 12 22 4,752 10 16 3
EuropeAsia_sub3 3 6 616 3 4 1
EuropeAsia_sub4 4 12 616 3 4 1
EuropeAsia_sub5 5 20 1,463 4 8 1
EuropeAsia_sub6 6 30 1,463 4 8 1
EuropeAsia_sub7 7 42 4,228 6 23 3
EuropeAsia_sub8 8 56 4,425 6 19 2
EuropeAsia_sub9 9 72 4,425 6 19 2
EuropeAsia_sub10 10 89 2,935 7 24 2

Mediterranean_sub3 3 5 177 3 5 1
Mediterranean_sub4 4 9 177 3 5 1
Mediterranean_sub5 5 14 196 4 8 1
Mediterranean_sub6 6 20 196 4 8 1
Mediterranean_sub7 7 26 225 6 15 2
Mediterranean_sub8 8 34 302 8 30 2
Mediterranean_sub9 9 43 509 8 30 2
Mediterranean_sub10 10 53 605 9 38 2

WAF_sub3 3 4 1,293 3 4 1
WAF_sub4 4 6 1,308 4 6 3
WAF_sub5 5 8 2,329 5 8 3
WAF_sub6 6 10 2,911 6 10 3
WAF_sub7 7 12 5,823 7 12 3
WAF_sub8 8 14 5,823 7 12 3
WAF_sub9 9 16 5,823 7 12 3
WAF_sub10 10 18 7,543 8 14 3
WAF_sub11 11 20 8,831 9 15 4
WAF_sub12 12 22 9,764 10 16 4
WAF_sub13 13 24 11,282 11 18 4
WAF_sub14 14 26 11,952 10 16 4
WAF_sub15 15 28 11,952 10 16 4
WAF_sub16 16 30 11,952 10 16 4
WAF_sub17 17 32 11,952 10 16 4
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