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Abstract
In this paper, we propose an enhancement of the filtering power of the edge finding rule, based
on the Profile and the TimeTable data structures. The minimal slack and the maximum density
criteria are used to select potential task intervals for the edge finding rule. The strong detection rule
of the horizontally elastic edge finder of Fetgo and Tayou is then applied on those intervals, which
results in a new filtering rule, named Slack-Density Horizontally Elastic Edge Finder. The new rule
subsumes the edge finding rule and it is not comparable to the Gingras and Quimper horizontally
elastic edge finder rule and the TimeTable edge finder rule. A two-phase filtering algorithm of
complexity O(n2) (where n is the number of tasks sharing the resource) is proposed for the new
rule. Improvements based on the TimeTable are obtained by considering fix part of external tasks
which overlap with the potential task intervals. The detection and the adjustment of the improve
algorithm are further increased, while the algorithm remains quadratic. Experimental results, on
a well-known suite of benchmark instances of Resource-Constrained Project Scheduling Problems,
show that the propounded algorithms are competitive with the state-of-the-art algorithms, in terms
of running time and tree search reduction.
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1 Introduction

Scheduling is the allocation of scarce resources to tasks or activities over time. The economic
impact of the scheduling in industries and organizations [6] makes it an important combin-
atorial optimization problem. Industrial resources are workers, machines, electricity power
and raw materials, etc. In computer science, the resources are processors while tasks are
processes to be proceeded. The success of constraint programming on scheduling problems
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is due to the existence of specific global constraints like unary [28] and cumulative [1]
combined with special search strategies [2, 3, 28]. The global constraint is repeatedly called
at each node of the tree search, to remove values from the variables domains when there are
inconsistent by resource constraint. It is NP-hard [12] to remove all such inconsistent values
from the variables domain.

The filtering algorithms used to prune the domain of variables are generally based on
the relaxation of the problem. It can be called many times at each node of the tree search.
Therefore, each filtering algorithm has to be fast, sound, and powerful. The global constraint
cumulative [1] generally embeds timetabling [14, 21, 4] and edge finding [29, 19, 22] as basis.
Some extensions and enhancement of the edge-finding filtering power have been proposed for
more pruning of the domains of variables [18, 23, 30, 15, 11]. Energetic reasoning [24, 2, 7]
and not-first/not-last rules [9, 16, 17, 27] are two other rules generally embedded in the
cumulative constraint when the problem is highly cumulative [2]. The energetic reasoning
rule subsumes all other rules except the not-first / not-last rule [2, 30, 11].

In this paper, we propose a new enhancement of the edge finder rule with the Profile [15]
and to the TimeTable [30] data structures. The new rule called Slack-Density Horizontally
Elastic Edge Finder uses the minimum slack and the maximum density criteria of [19] to
select the potential edge finding task intervals on which the detection rule of [11] is going
to be applied. This new rule subsumes the edge finding rule, is not comparable to the
Gingras and Quimper rule [15], and the TimeTable edge finding rule [30]. A quadratic
algorithm of two-phase (Detection and Adjustment) is proposed for the new rule. To further
enhance the algorithm, we improve the new algorithm by considering the fix part of external
tasks, which overlap with the intervals during the horizontally elastic scheduling of the task
intervals. The final algorithm remains with a quadratic complexity. Experimental results
on a well-known suite of benchmark instances of Resource-Constrained Project Scheduling
Problems (RCPSPs) from the BL set [2] and the PSPLib set [20] show that, the propounded
algorithms are competitive to the state-of-the-art algorithms, in terms of running time and
tree search reduction.

The remaining part of the paper is organized as follows: Section 2 is devoted to preliminary
notions and related works on previous enhancement of the edge finder rule with data structures;
Section 3 presents the new rule based on the global minimum slack and maximum density
criteria; Section 4 proposes an O(n2) algorithm (where n is the number of tasks sharing
the resource) for the new rule; Section 5 uses the TimeTable data structure to improve the
detection and the adjustment of the previous algorithm; Section 6 consists of an empirical
evaluation of the propounded algorithms with the state-of-the-art algorithms on RCPSP
instances; and Section 7 concludes the paper.

2 Preliminaries

This section specifies the Cumulative Scheduling Problem (CuSP) and reviews the edge
finder rule and its enhancements based on data structures.

2.1 A Cumulative Scheduling Problem (CuSP)
In a Cumulative Scheduling Problem (CuSP), a set of tasks T has to be executed on a
resource of capacity C. Each task i ∈ T is executed without interruption during pi time
units and uses ci ≤ C units of the resource. For a task i ∈ T , the earliest starting time
esti and the latest completion time lcti are specified. A solution of a CuSP instance is an
assignment of a valid starting time si to each task i ∈ T such that the resource constraint is
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satisfied, i.e.,

∀i ∈ T, esti ≤ si ≤ si + pi ≤ lcti (1)

∀τ,
∑

i∈T, si≤τ<si+pi

ci ≤ C (2)

Inequalities in (1) ensure that each task is assigned a feasible starting and ending time, while
(2) enforces the resource constraint. We use the notation ei to denote the energy of a task
i ∈ T and it is computed with ei = ci · pi. Each task i ∈ T has an earliest completion time
ecti = esti + pi and a latest starting time lsti = lcti − pi. These notations can be extended
to nonempty sets of tasks as follows:

eΩ =
∑
j∈Ω

ej , estΩ = min
j∈Ω

estj , lctΩ = max
j∈Ω

lctj . (3)

By convention, for empty sets, we have: e∅ = 0, est∅ = +∞ and lct∅ = −∞. Throughout
the paper, we assume that for any task i ∈ T , ecti ≤ lcti and ci ≤ C, otherwise the problem
has no solution. We let n = |T | denote the number of tasks and k = |{ci, i ∈ T}| denote
the number of distinct capacity demands of the tasks. The global constraint cumulative
[1] is used to solve the CuSP problem, which is a NP-Hard problem [12]. The constraint
removes inconsistent values from the domain of starting time variable si ∈ [esti, lsti] and it
is NP-Hard to remove all such values.

2.2 Task Interval, Minimum Slack and Maximum Density
Given two tasks l and u with estl < lctu. A task interval denoted Ωl

u is a set of tasks that
must run entirely within the interval [estl, lctu]. It is formally specified in the following
definition.

▶ Definition 1. [8] Let u and l be two tasks that satisfy estl < lctu. The task interval Ωl
u is

a set of tasks specified by Ωl
u = {j ∈ T | estl ≤ estj ∧ lctj ≤ lctu}.

When the condition estl ≤ estj is released in the definition of the task interval, it is called
in [29] the left cut of T by task u denoted LCut(T, u), i.e., LCut(T, u) = {j ∈ T | lctj ≤ lctu}.
The slack and the density of a task interval are concepts that are useful when designing an
edge-finding algorithm [19].

▶ Definition 2. Let l and u be two tasks that satisfy estl < lctu.
1. The slack of the task interval Ωl

u is the integer denoted sl(Ωl
u) and defined by

sl(Ωl
u) = C · (lctu − estl)− eΩl

u
. (4)

2. The density of the task interval Ωl
u is the real number denoted ds(Ωl

u) and defined by

ds(Ωl
u) =

eΩl
u

lctu − estl
. (5)

In [19], the minimum slack and the maximum density criteria are successfully used to design
a fast edge-finding algorithm.

▶ Definition 3. [19] Let u ∈ T be a task.
1. The task interval of minimum slack Ωτ(u)

u (where τ(u) is a task depending on task u) is
the task interval satisfying the condition:

sl(Ωτ(u)
u ) ≤ sl(Ωl

u), ∀l ∈ T with estl < lctu. (6)

CP 2023
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2. The task interval of maximum density Ωρ(u)
u (where ρ(u) is a task depending on task u) is

the task interval satisfying the condition:

ds(Ωρ(u)
u ) ≥ ds(Ωl

u), ∀l ∈ T with estl < lctu. (7)

These two concepts are used in [19, 18] to select the task intervals that are of interest for the
(extended) edge-finder rule.

2.3 (Extended) Edge Finding Rule
Let Ω ⊂ T be a set of tasks, and i /∈ Ω be a task. If the scheduling of the set of tasks Ω
and the contribution of task i in the interval [estΩ, lctΩ) when task i starts at esti cause an
overload of the interval [estΩ, lctΩ), then it is deduced that all tasks in Ω end before the
end of i and is denoted Ω ⋖ i. The detection rules are specified by the formulas: ∀Ω ⊂ T ,
∀i ∈ T \ Ω

eΩ + ei > C · (lctΩ − estΩ∪{i})⇒ Ω ⋖ i (EF)
esti < estΩ
∧
eΩ + ci · (ecti − estΩ) > C · (lctΩ − estΩ)

⇒ Ω ⋖ i (EEF)

The rule (EF) is called edge-finder detection rule, while (EEF) is known as its extension.
After each detection, the adjustment follows, using this rule:

Ω ⋖ i⇒ esti ≥ max
Θ⊆Ω∧rest(Θ,ci)>0

estΘ +
⌈

rest(Θ, ci)
ci

⌉
(Adj)

where rest(Θ, ci) = eΘ − (C − ci) · (lctΘ − estΘ) is the energy of eΘ that disables the starting
time of task i when scheduled on a resource of capacity C − ci in the interval [estΘ, lctΘ).
A two-phase algorithm of complexity O(kn log(n)) (where n is the number of tasks and k

the different number of resource demands of tasks) based on Θ-Λ-tree data structure was
proposed in [29]. A quadratic algorithm based on the minimum slack and the maximum
density of task intervals is proposed in [19].

2.4 TimeTable Edge Finding Rule
Research revealed that, the first enhancement of the filtering power of the edge finder rule
was made with the TimeTable data structure in [30]. The fix part of the task is taken into
account in the computation of the energy of the set of tasks, resulting in a strengthened rule.
If i ∈ T is a task satisfying lsti < ecti, then the interval [lsti, ecti) determines the mandatory
spanning interval of i. We denote by f(Ω, t) the aggregate of the fix parts over time t by
tasks in Ω, and f(Ω, [a, b)) the fix parts aggregation over the time interval [a, b) by the tasks
in Ω.

f(Ω, t) =
∑

i∈Ω|lsti≤t<ecti

ci; (8)

f(Ω, [a, b)) =
∑

t∈[a,b)

f(Ω, t). (9)

Let eT T
Ω be the TimeTable energy of tasks in Ω. This energy is equal to the energy of

Ω plus the fix energy of the tasks in T \ Ω spent within the interval [estΩ, lctΩ), i.e.,
eT T

Ω = eΩ + f(T \ Ω, [estΩ, lctΩ)). The TimeTable edge finder rule, denoted (TT-EF), is
obtained from (EF), (EEF) and (Adj) by substituting eΩ and eΘ by eT T

Ω and eT T
Θ respectively.
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A quadratic algorithm was proposed in [30] and later refined in [23]. This algorithm
was used in [26] with the lazy clause generation approach, where the explanation of its
propagation is incorporated as nogoods.

2.5 Horizontally Elastic Earliest Completion Time of Tasks Set
The computation of the earliest completion time of a set of tasks for scheduling problems
with resource constraints is known to be NP-hard [12]. Depending on the way tasks are
scheduled, a lower bound of the earliest completion time can be computed. According to
[2], the set of tasks Ω is said to be fully elastic scheduled, if each task i ∈ Ω starts at estΩ
and occupies a total area of ei = ci · pi. At any time t ∈ [estΩ, lctΩ), a task i can occupy
more or less ci units of height and when time t reaches the height C, time t + 1 starts being
occupied. The fully elastic earliest completion time of Ω (denoted ectF

Ω) occurs when all
tasks are completed. It is computed in [29] with the formula.

ectF
Ω =

⌈
max{CestΩ′ + eΩ′ |Ω′ ⊆ Ω}

C

⌉
(10)

In [15], a new way of scheduling a set of tasks called horizontally elastic scheduling is
introduced. A set of tasks Ω is said to be horizontally elastic scheduled, when each task i ∈ Ω
starts at its earliest starting time esti and cannot consume more than its required capacity
at any time during the time interval [esti, lcti). At any time t ∈ [estΩ, lctΩ), the energy that
cannot be executed, due to the limited capacity, is accumulated as an overflow and released
when the resource is no longer saturated. The horizontally elastic earliest completion time of
Ω denoted ectH

Ω occurs when all tasks are completed. The computation of the horizontally
elastic earliest completion time of tasks set is done with a data structure called Profile that
stores the resource utilization over time. The tuples ⟨time, cap, ∆max, ∆req⟩ (where time is
the starting time, cap is the remaining capacity of the resource at the starting time, ∆max
is the maximum resource available at starting time, and ∆req is the maximum resource
required by tasks at starting time) are stored in a sorted linked-list whose nodes are called
time points. The Profile is initialized with a time point of capacity C for every distinct value
of est, ect and lct. A sufficiently large time point is added to act as a sentinel. Finally, while
initializing the data structure, the pointers t.esti, t.ecti and t.lcti are used to return the time
point associated with esti, ecti, and lcti for each task i ∈ T . The horizontally elastic earliest
completion time of a set of tasks Ω denoted ectH

Ω is computed using the functions creq(t),
cmax(t), ccons(t) and ov(t) on the Profile P .

cmax(t) = min
( ∑

i∈Ω|esti≤t<lcti

ci, C

)
is the amount of resource that can be allocated to

the tasks in Ω at time t;
creq(t) =

∑
i∈Ω|esti≤t<ecti

ci is the amount of resource required at time t by the tasks in Ω

if they were all starting at their earliest starting times;
ov(t) is the overflow of energy from creq(t) that cannot be executed at time t due to the
limited capacity cmax(t), and
ccons(t) is the amount of resource that is actually consumed at time t with ccons(t) =
min(creq(t) + ov(t− 1), cmax(t)); ov(t) = ov(t− 1) + creq(t)− ccons(t) and ov(−1) = 0.

The horizontally elastic earliest completion time occurs when all tasks are completed.
Given a set of tasks Ω, the horizontally elastic schedule of Ω uses in [15] the function
ScheduleTasks(Ω, C) of Algorithm 1 to compute the horizontally elastic earliest completion

CP 2023
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time of Ω. The properties of this data structure is the linearity of the function ScheduleTasks,
since the Profile contains at most 4n + 1 time points. For a set of tasks Ω, it is proved in
[15] that ectF

Ω ≤ ectH
Ω ≤ ectΩ where ectΩ is the earliest completion time of Ω.

Algorithm 1 ScheduleTasks(Ω, C) algorithm in O(n) time from [15].

Input: All time point t of the profile P , Ω a set of tasks, C the resource capacity.
Output: the earliest completion time ectH of the set Ω

1 forall t ∈ P do
2 t.∆max ← 0 and t.∆req ← 0
3 for i ∈ Ω do
4 Increase t.esti.∆max and t.esti.∆req by ci

5 Decrease t.lcti.∆max and t.ecti.∆req by ci

6 ect← −∞; ov ← 0; creq ← 0; S ← 0
7 t← P.first

8 while t.time < lctΩ do
9 l← t.next.time− t.time; S ← S + t.∆max; cmax ← min(S, C);

creq ← creq + t.∆req; ccons ← min(creq + ov, cmax)
10 if ov > 0 ∧ ov < (ccons − creq) ∗ l then
11 l← ⌈ ov

ccons−creq
⌉

12 t.InsertAfter(t.time + l, t.cap)
13 ov ← ov + (creq − ccons) ∗ l

14 t.cap = C − ccons

15 if t.cap < C then
16 ect← t.next.time;
17 t← t.next

18 if ov > 0 then
19 return +∞;
20 return ect

2.6 Existing Horizontally Elastic Edge Finder
The Profile data structure is used in [15] to enhance the edge finding rule with the detection
rule: for all i, j ∈ T with lcti > lctj ,

ectH
LCut(T,j)∪{i} > lctj ⇒ LCut(T, j) ⋖ i. (GQHE-EF)

where LCut(T, j) = {k ∈ T | lctk ≤ lctj}. The detection proceeds by batching of tasks of the
same height (capacity demand) and all precedences are made in O(kn2) where k ≤ n is the
number of distinct capacities required by the tasks, and n the number of tasks that share the
resource [15]. If the free energy of height ci of the profile of LCut(T, j) from lctj to esti is
less than the contribution of task i in the interval [esti, lctj) when i starts at esti, then it is
deducted that LCut(T, j) ⋖ i. When the relation LCut(T, j) ⋖ i is detected, the adjustment
phase schedules the tasks of LCut(T, j) on the lower part of the resource of capacity C − ci.
Because of the capacity restriction, it results in an overflow, scheduled on the upper part of
the resource of capacity ci. The ending time of the scheduling is where the earliest starting
time of task i (esti) is adjusted. A quadratic algorithm is presented in [15] for the adjustment
phase.
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In the horizontally elastic edge finder of [11], task i is more constrained than in the
previous one [15] (preemption is allowed to task i). The new rule is based on the formulation:
for all i, j ∈ T with lcti > lctj ,

ectH
LCut(T,j)∪{i′} > lctj ⇒ LCut(T, j) ⋖ i (FTHE-EF)

where i′ is a task derived from tasks i and j whose parameters ⟨esti′ , lcti′ , pi′ , ci′⟩ are

⟨esti, min(ecti, lctj), min(ecti, lctj)− esti, ci⟩.

It is proved in [11] that this rule is stronger than rule (GQHE-EF). Its authors propose
an algorithm of complexity O(kn2) (where k ≤ n is the number of distinct capacities required
by the tasks and n the number of tasks sharing the resource) for the detection. A quadratic
algorithm was proposed for the adjustment of this rule for an overall complexity of O(kn2)
[11].

3 Slack-Density Horizontally Elastic Edge Finder Detection Rule

According to [15, 10, 11], the most challenging part of the strengthening of edge finding rule
with Profile is the detection phase. The rule (GQHE-EF) proposed in [15] is a relaxation
of the rule (FTHE-EF) proposed in [11]. In this section, we propose another relaxation of
this rule based on the notions of minimum slack and maximum density. In fact, in [19], it
is proved that a complete edge finder can be designed using the minimum slack and the
maximum density of task intervals.

For a given task i ∈ T and for a given task u ∈ T with lcti > lctu, there exists a task
τ(u, i) such that estτ(u,i) ≤ esti and for all l ∈ T with estl ≤ esti we have sl(Ωτ(u,i)

u ) ≤ sl(Ωl
u)

(See Definition 6 of [19]). We denote by Ωα(i)
β(i) the task interval of minimum slack among the

task interval Ωτ(u,i)
u for all u ∈ T with lcti > lctu, i.e.,

Ωα(i)
β(i) = argmin{sl(Ωτ(u,i)

u ) | ∀u ∈ T with lcti > lctu}. (11)

In the following lemma, we are going to prove that each detection of the rule (EF) with pair
(Ω, i) is realized by the rule (FTHE-EF) with pair (LCut(T, β(i)), i).

▶ Lemma 4. Let i be a task and Ω be a set of tasks such that i /∈ Ω. If the edge finding rule
(EF) holds with the set Ω and task i, then the rule (FTHE-EF) holds also with LCut(T, β(i))
and task i.

Proof. Let u be the task such that lctu = lctΩ. We have sl(Ωα(i)
β(i)) ≤ sl(Ωτ(u,i)

u ) ≤ sl(Ω) by
definition of Ωα(i)

β(i) and Ωτ(u,i)
u . The rule (EF) applies to Ω and i (i.e., eΩ +ei > C(lctΩ−estΩ))

is equivalent to sl(Ω) < ei which implies sl(Ωα(i)
β(i)) < ei. According to [11, 15], we have

the following dominance properties (FTHE-EF) ⪰ (GQHE-EF) ⪰ (EF) + (EEF) where
(A) ⪰ (B) means that rule (A) subsumes rule (B) and (A) + (B) means the conjunction of
rules (A) and (B). Therefore, from the inequalities ectH

LCut(T,β(i))∪{i′} ≥ ectH
LCut(T,β(i))∪{i} ≥

ectF
LCut(T,β(i))∪{i} > lctβ(i), it follows that the rule (FTHE-EF) holds for LCut(T, β(i)) and

task i. ◀

▶ Example 5. Consider the CuSP instance of Figure 1a where four tasks share a resource of
capacity 2. The rule (EF) holds for Ω = {b, c} and i = d. The tasks interval of minimum
slack Ωα(d)

β(d) is the set Ωα(d)
β(d) = {b, c} and LCut(T, β(d)) = {a, b, c}. The profile of the set

LCut(T, β(d)) ∪ {d′} is depicted in Figure 1b. The overflow remaining after time 6 allows to
detect that LCut(T, β(d)) ⋖ d.

CP 2023



20:8 Horizontally Elastic Edge Finder Rule Based on Slack and Density

0 4 8

a b c
d

esta=0

estb,c,d=2 lctd=11lcta,b,c=6

(a) CuSP instance of four tasks sharing a resource of
capacity 2

0 4 8
ov

ccons creq cmax

(b) The profile of the set LCut(T, β(d))∪{d′} =
{a, b, c, d′}

Figure 1 1a: CuSP instance of four tasks sharing a resource of capacity 2 where (EF) detects
{b, c} ⋖ d; 1b: The profile of the set LCut(T, β(d)) ∪ {d′} = {a, b, c, d′} and it is detected that
LCut(T, β(d)) ⋖ d.

For a given task i ∈ T and for a given task u ∈ T with lcti > lctu, there exists a task ρ(u, i)
such that esti < estρ(u, i) and for all l ∈ T with esti < estl we have ds(Ωρ(u,i)

u ) ≥ ds(Ωl
u)

(See Definition 8 of [19]). We denote by Ωγ(i)
δ(i) the task interval of maximum density among

the task interval Ωρ(u,i)
u for all u ∈ T with lcti > lctu, i.e.,

Ωγ(i)
δ(i) = argmax{ds(Ωρ(u,i)

u ) | ∀u ∈ T with lcti > lctu}. (12)

If the extended edge finding rule (EEF) holds with a set Ω and a task i, then the rule
(FTHE-EF) holds also with LCut(T, δ(i)) and task i as it is proved in the following lemma.

▶ Lemma 6. Let i be a task and Ω be a set of tasks such that i /∈ Ω. If the extended edge
finding rule (EEF) holds with the set Ω and task i, then the rule (FTHE-EF) holds also with
LCut(T, δ(i)) and task i.

Proof. Let i be a task and Ω be a set of tasks such that i /∈ Ω. We assume that the extended
edge finding rule (EEF) holds with the set Ω and task i. Let Θ be the set of tasks used
to update the earliest starting time of task i by rule (Adj). The proof of this lemma will
distinguish the case ecti ≥ lctδ(i) from the case ecti < lctδ(i).

If ecti ≥ lctδ(i) then ds(Ωγ(i)
δ(i) ) ≥ ds(Θ) > C − ci since rest(Θ, ci) > 0. The rule (EEF) is

detected by Ωγ(i)
δ(i) and task i since the contribution of task i in the interval [estγ(i), lctδ(i))

is ci(lctδ − estγ(i)). Thus, ectH
LCut(T,δ(i))∪{i′} ≥ ectH

LCut(T,δ(i))∪{i} ≥ ectF
LCut(T,δ(i))∪{i} >

lctδ(i), and the rule (FTHE-EF) holds for LCut(T, δ(i)) and task i.
We assume that ecti < lctδ(i). Let u be a task such that lctu = lctΩ. The task interval
Ωγ(i)

δ(i) has the highest resource consumption spike. Therefore, the set of tasks LCut(T, δ(i))
is the most indicated to disable the start time of task i. The rest of the proof is going to
distinguish two cases: lctδ < lctu and lctδ ≥ lctu.

If lctδ(i) < lctu then, LCut(T, δ(i)) ⊆ LCut(T, u) and the horizontally elastic scheduling
of ω = LCut(T, u) \ LCut(T, δ(i)) is not enough to fill the profile from lctu to lctδ(i).
Therefore, the slack of LCut(T, u) is greater than the one of LCut(T, δ(i)). Task i

has the same contribution in both intervals LCut(T, u) and LCut(T, δ(i)). When this
contribution is considered during the horizontally elastic scheduling of LCut(T, u), it
results to in an overload. The same overload happens when the contribution of task
i is considered during the scheduling of the interval LCut(T, δ(i)). Thus, the rule
(FTHE-EF) holds for LCut(T, δ(i)) and task i.
If lctδ(i) ≥ lctu then, LCut(T, u) ⊆ LCut(T, δ(i)) and the horizontally elastic scheduling
of ω = LCut(T, δ(i)) \ LCut(T, u) is not enough to fill the profile from lctδ(i) to lctu).
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Therefore, the slack of LCut(T, u) is greater than the one of LCut(T, δ(i)). The
contribution of task i in LCut(T, δ(i)) is greater than its contribution in LCut(T, u).
When this contribution is considered during the scheduling of LCut(T, u), it results
in an overload. Therefore, the same overload happens when the contribution of task
i is considered during the scheduling of the interval LCut(T, δ(i)). Thus, the rule
(FTHE-EF) holds for LCut(T, δ(i)) and task i. ◀

According to Lemmas 4 and 6, the application of rule (FTHE-EF) to the intervals
LCut(T, β(i)) and LCut(T, δ(i)) is enough to subsume the (extended) edge finding detection
rule. The new detection rule is based on the application of the rule (FTHE-EF) on the
intervals LCut(T, β(i)) and LCut(T, δ(i)) for all i ∈ T . This rule, denoted Slack-Density
Horizontally Elastic Edge Finder detection, is specified by the formula: for all i ∈ T ,{

ectH
LCut(T,β(i))∪{i′} > lctβ(i) ⇒ LCut(T, β(i)) ⋖ i

ectH
LCut(T,δ(i))∪{i′} > lctδ(i) ⇒ LCut(T, δ(i)) ⋖ i

(SDHE-EF)

We denote by (SDHE-EF) the filtering rule resulting from the combination of the detection
rule (SDHE-EF) with the adjustment of [15]. This rule subsumes the edge finding rule and
its extension combined with the rule (Adj).

▶ Theorem 7. When the detection rule (SDHE-EF) is combined with the adjustment of [15],
the resulting filtering rule subsumes the conjunction of rules (EF) and (EEF) combined with
the adjustment rule (Adj).

Proof. According to Lemmas 4 and 6, any detection made by (EF) and (EEF) is also done by
(SDHE-EF). It is proved in (Theorem 4 of [15]) that the adjustment of [15] is better than the
one performed by rule (Adj) after detection made by rules (EF) and (EEF). Therefore, the
propagation of (SDHE-EF) combined with the adjustment of [15] subsumes the conjunction
of rules (EF) and (EEF) combined with the adjustment rule (Adj). ◀

Back to the CuSP of Figure 1a, after filling the lower part of the resource of capacity 1,
the overflow of three units of energy remains. This overflow is scheduled on the upper part
of the resource of capacity 1. No energy is consumed in the interval [1, 2) since no task is
scheduled in this interval. The scheduling of the upper part of the profile ends at time 4
which corresponds to the same adjustment value made by rule (Adj) with Θ = {b, c}. Indeed,
rest(Θ, cd) = 2 > 0 and estΘ + rest(Θ, cd)/cd = 4. It is known from [11] that (GQHE-EF) is
a relaxation of (FTHE-EF). Therefore, (GQHE-EF) and (SDHE-EF) are both relaxations
of (FTHE-EF) which subsumes the (extended) edge finding rule. In the following theorem,
we prove that the rules (GQHE-EF) and (SDHE-EF) are not comparable, i.e., there exists
propagation only performed by (GQHE-EF) and propagation only performed by (SDHE-EF).

▶ Theorem 8. The rules (SDHE-EF) and (GQHE-EF) are not comparable.

Proof. Consider the CuSP instance of Figure 2a, where three tasks {x, y, z} share a resource
of capacity 2. We have Ωα(z)

β(z) = {x, y} and the rule (SDHE-EF) detects {x, y} ⋖ z. This
precedence is missed by the rule (GQHE-EF) since, in the profile of {x, y}, from time 8 back
to time 2, we have enough free energy to schedule task z.

Converse, we consider the CuSP instance of figure 2b, where four tasks {a, b, c, d} share a
resource of capacity 2. In the profile of {a, b, c}, it remains three units of free energy of height
1 when we move from time 8 back to time 2. This free energy is not enough to schedule task
d and the rule (GQHE-EF) detects the relation {a, b, c}⋖ d. We have Ωα(d)

β(d) = {b, c} and the
rule (SDHE-EF) misses the relation {a, b, c}⋖ d. ◀
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(a) CuSP instance of three tasks sharing a
resource of capacity 2

0 4 8
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b c d

esta=0

estb,c,d=2 lctd=11
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lctb,c=6

(b) CuSP instance of four tasks sharing a resource
of capacity 2

Figure 2 2a: (SDHE-EF) detects {x, y} ⋖ z while (GQHE-EF) misses the detection; (2b):
(GQHE-EF) detects {a, b, c} ⋖ d while (SDHE-EF) misses the detection.

The rule (SDHE-EF) is a relaxation of the rule (FTHE-EF), since it restricts the detection
to two intervals instead of n. It is proved in [11] that the rule (FTHE-EF) is not comparable
to the rule (TT-EF). This result remains between (SDHE-EF) and (TT-EF) as it is proved
in the following theorem.

▶ Theorem 9. The rules (SDHE-EF) and (TTEF) are not comparable.

Proof. Consider the CuSP instance of Figure 3a where five tasks {a, b, c, d, e} share a resource
of capacity 2. We have Ωα(d)

β(d) = {a, b, c, d} and the rule (SDHE-EF) detects {a, b, c, d}⋖ e.
This precedence is missed by the rule (TTEF). Indeed, none of the tasks has a fix part and
the edge finding rule (EF) fails to detect {a, b, c, d}⋖ e.

Conversely, we consider the CuSP instance of figure 3b where six tasks {u, v, w, x, y, z}
share a resource of capacity 2. When the fix part of task x which intersects the interval
[0, 6] is considered, it is detected that {u, v, w} ⋖ z and the rule (TTEF) holds. This
detection is missed by the rule (SDHE-EF), since the contribution of task x in the interval
LCut(T, u) = {u, v, w} is not considered. ◀

0 4 8
a b

c d e

esta=0

estb,c,d,e=1 lcte=11lcta,b,c,d=7

(a) CuSP instance of five tasks sharing a
resource of capacity 2

0 4 8 12
u v
w x

y
z

estx,y=4estu,v,w,z=0 lctz=12lctx,y=8

lctu,v,w=6

(b) CuSP instance of six tasks sharing a
resource of capacity 2

Figure 3 3a: (SDHE-EF) detects {a, b, c, d} ⋖ e while (TTEF) misses the detection; 3b: (TTEF)
detects {u, v, w} ⋖ z while (SDHE-EF) misses the detection.

4 Slack-Density Horizontally Elastic Edge Finder Algorithm

The detection algorithm identifies the right bound of the task intervals Ωα(i)
β(i) and Ωγ(i)

δ(i) for
any task i ∈ T . To do so, the function ComputesBound() receives as input the set Test (resp.
Tlct) of tasks sorted in increasing order of est (resp. lct). The global maximum density and
minimum slack are initialized at line 2, while the local maximum density and minimum slack
are initialized at line 4 of the loop of line 3. The loop of line 5 updates the value of the local
maximum density at line 9 and the global value at line 12. Similarly, the loop of line 14
updates the value of the local minimum slack at line 17 and the global value at line 19.

The function ComputesBound has a quadratic complexity as it is shown in Proposition 10.

▶ Proposition 10. ComputesBound runs in O(n2) in time.
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Algorithm 2 ComputesBound(Test, Tlct) in O(n2) time.

Input: Test and Tlct the sets of tasks sorted in increasing order of est and lct
respectively .

Output: The bounds β(i) and δ(i) for all task i ∈ T .
1 forall i ∈ Test do
2 β(i)← −1, δ(i)← −1, maxDensity(i)← 0, minSlack(i)←∞
3 forall j ∈ Tlct with lctj < lctj+1 do
4 E ← 0, maxD ← 0, minS ←∞
5 forall k ∈ Test in reverse order of est do
6 if lctk ≤ lctj then
7 E ← E + ek, density ← E/(lctj − estk)
8 if density ≥ maxD then
9 maxD ← density

10 else
11 if maxD ≥ maxDensity(k) then
12 maxDensity(k)← maxD, δ(k)← j

13 Energy(k)← E

14 forall k ∈ Test do
15 slack ← C(lctj − estk)− Energy(k)
16 if slack < minS then
17 minS ← slack

18 if lctk > lctj ∧minS < minSlack(k) then
19 minSlack(k)← minS, β(k)← j

Proof. The loop of line 3 of complexity O(n) calls sequentially the loops of lines 5 and 14 of
complexity O(n) each. Therefore, the overall complexity of ComputesBound is O(n(n+n)) =
O(n2). ◀

In Algorithm 3, the bounds of the task interval of minimum slack and maximum density
are computed at line 1. In the loop of line 2, for any unscheduled task (line 3), it is checked
at line 6 whether the task interval of minimum slack precedes the task and the relation is
recorded at line 7. When no detection is made by the task interval of minimum slack (line 8),
the task interval of maximum density is used to check the relation at line 10 and the relation
is recorded at line 11.

The complexity of Slack-Density Horizontally Elastic Edge Finder is analyzed in Proposi-
tion 11.

▶ Proposition 11. Slack-Density Horizontally Elastic Edge Finder runs in O(n2) in time.

Proof. The linear function ScheduleTasks is sequentially called twice in the linear loop of
line 2. Combined with the quadratic complexity of the function ComputesBound, the overall
complexity of Slack-Density Horizontally Elastic Edge Finder isO(n2+n(n+n)) = O(n2). ◀

We combine this detection algorithm with the quadratic adjustment algorithm of [15]
proposed for the rule (GQHE-EF). Therefore, the complexity of the two-phase algorithm
(Detection and Adjustment) is O(n2). To our knowledge, this is the first quadratic horizontally
elastic edge finder algorithm.
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Algorithm 3 Slack-Density Horizontally Elastic Edge Finder(Test, Tlct) in O(n2) time.

Input: Test and Tlct the sets of tasks sorted in increasing order of est and lct
respectively.

Output: Prec: the precedence relation.
1 β, δ ← ComputesBound(Test, Tlct)
2 forall i ∈ Tlct do
3 if ecti < lcti then
4 if β(i) ̸= −1 then
5 ect← ScheduleTask(LCut(T, β(i)) ∪ {i′})
6 if ect > lctβ(i) then
7 Prec(i)← β(i)
8 if Prec(i) ̸= −1 ∧ δ(i) ̸= −1 then
9 ect← ScheduleTask(LCut(T, δ(i)) ∪ {i′})

10 if ect > lctδ(i) then
11 Prec(i)← δ(i)

0 4 8

u v w x
y

estu,v,w,x,y=0
lctw,x=5

lctu,v=3

lcty=11

Figure 4 A CuSP instance of five tasks sharing a resource of capacity 3.

▶ Example 12. Consider the CuSP instance of Figure 4 where five tasks share a resource of
capacity 3.

In this example, Ωu
u = {u, v}, sl(Ωu

u) = 5 while Ωu
w = {u, v, w, x}, sl(Ωu

w) = 6. Therefore,
Ωα(y)

β(y) = {u, v} and the rules (EF) and (SDHE-EF) detect that Ωα(y)
β(y) ⋖ y.

5 Improvements

To improve our algorithm, we have taken into account the fix part of tasks T \LCut(T, β(i))∪
{i} (resp. T \ LCut(T, δ(i)) ∪ {i}) which overlap with LCut(T, β(i)) (resp. LCut(T, δ(i)))
during the computation of ectH

LCut(T,β(i))∪{i′} (resp. ectH
LCut(T,δ(i))∪{i′}) and the adjustment.

For a given task j ∈ T \ LCut(T, β(i)) ∪ {i} with a fix part (i.e., lstj < ectj), which
overlap with LCut(T, β(i)) (i.e., lstj < lctβ(i)), a new task denoted f(j, β(i)) is deduced
with the following attributes ⟨lstj , min(ectj , lctβ(i)), min(ectj , lctβ(i))− lstj , cj⟩. We denote
by f(T \ LCut(T, β(i)) ∪ {i}, β(i)) the set of deduced fix parts of tasks which overlap with
LCut(T, β(i)). Analogously, the set of fix part of tasks f(T \ LCut(T, δ(i)) ∪ {i}, δ(i)) which
overlap with LCut(T, δ(i)) is considered during the computation of ectH

LCut(T,δ(i))∪{i′}.
To do so, we first extend the initial time points, by adding those corresponding to

the lsti for all i ∈ T . The number of time points moves from 4n + 1 to 5n + 1 and the
function ScheduleTasks remains linear. During the initialization of increments, for any task
j ∈ T \ LCut(T, β(i)) ∪ {i} (resp. j ∈ T \ LCut(T, δ(i)) ∪ {i}), if tasks j has a fix part
which overlap with LCut(T, β(i)) (resp. LCut(T, δ(i))), ∆max and ∆req are increased by
cj at t.lstj . If ectj < lctβ(i) (resp. ectj < lctδ(i)) then ∆max and ∆req are decreased by cj
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at t.ectj . If ectj ≥ lctβ(i) (resp. ectj ≥ lctδ(i)) then ∆max and ∆req are decreased by cj at
t.lctβ(i) (resp. t.lctδ(i)). For the adjustment, the fix part tasks f(T \LCut(T, β(i))∪{i}, β(i))
(resp. f(T \ LCut(T, δ(i))∪ {i}, δ(i))) is considered during the computation of the maximum
overflow obtained when the set LCut(T, β(i)) (resp. LCut(T, δ(i))) is scheduled on a resource
of restricted capacity C − ci. The additional fix part of tasks can increase both the detection
and the adjustment of the Slack-Density Horizontally Elastic Edge Finder algorithm. For
example, in the CuSP of Figure 2b, when the fix part of task a is considered, the task interval
Ωα(d)

β(d) = {b, c} can detect that Ωα(d)
β(d) ⋖ d and the adjustment follows. It is also the case for

the CuSP instance of Figure 3b, when the fix part of task x is considered.

6 Experimental Results

The new algorithm with improvements was compared to the state-of-the-art horizontally
elastic edge finder algorithms ([15, 11]) on Resource-Constrained Project Scheduling Problems
(RCPSPs). Comparisons are done on instances of benchmark suites of RCPSP of libraries
BL [2] and PSPLib [20] (on sets j30, j60 and j90). Starting time of tasks and makespan
was used as variables of the model. They were constrained by the precedence graph and
resource limitations. Each resource was modeled with a single cumulative constraint [1].
The lower bound of the makespan variable was updated with the horizontally elastic earliest
completion time of the whole set of tasks T . The TimeTabling algorithm of [21] was added
to the common core model. The optimization is based on depth-first search and restart.
Anytime a solution is found, the resolution restarts with an additional constraint, which
states that the next makespan must be (strictly) better than the current one. The optimum
solution is the last solution found within the time limit.

Three configurations of the global constraint cumulative was considered. The first one
denoted GQHE-EF uses the horizontally elastic edge-finder from [15], while the second one
denoted FTHE-EF considers the horizontally elastic edge-finder algorithm of [11]. The last
configuration denoted SDHE-EF is based on the Algorithm 3 for detection, combined with
the adjustment algorithm of [15], all with improvements of Section 5.

Three strategies of selection of variables and values were used to speed up the solving
process. Static heuristic were unscheduled tasks are selected in the chronological order of the
indices and assigned to their lower bound value. COS + DomOvWDeg where the Conflict
Ordering Search heuristic (COS) [13] is combined with the default search strategy of Choco
solver domOverWDeg [5]. COS + Smallest where the COS is combined to the smallest
heuristic (a variable of smallest lower bound among those not yet instantiated is selected
and assigned to its lower bound). The implementation was done in Java using Choco solver
4.10.8 [25]. Any search taking more than 10 minutes was counted as a failure.

In Table 1, the column “solve” indicates the number of instances solved to optimality by
each configuration, “common solve” indicates the numbers of instances each configuration
solves commonly with the baseline configuration SDHE-EF. The column “back<” (resp.
“back>”) indicates the number of instances were each configuration reduces (resp. need) more
backtracks than the baseline configuration. The column “back” (resp. “time”) indicates the
average number of backtracks (resp. runtime in sec) on common solved instances for each
configuration with the baseline configuration.

SDHE-EF always solves more instances than the other configurations, whatever the
heuristic selection considers. On common instances solves with static heuristic by SDHE-EF
and GQHE-EF (resp. SDHE-EF and FTHE-EF) 100 (resp. 67) instances were solved by
SDHE-EF with fewer backtracks (see Table 1). Figures 5a, 5c and 5e compare the number of
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Table 1 Number of instances solved, commonly solved with the baseline configuration SDHE-EF,
where the number of backtracks is less (resp. great) than the one of the baseline. The average
number of backtracks and runtime (in sec) are also provided for commonly solved instances. The
one of the baseline configuration are in brackets.

solve common solve back< back> back time
Static

GQHE-EF 1037 1030 72 100 5569 (5939) 8.294 (4.666)
FTHE-EF 1031 1024 93 67 6997 (7810) 6.552 (3.695)
SDHE-EF 1044 - - - - -

COS + DomOvWDeg
GQHE-EF 1097 1093 213 238 4675 (4912) 9.377 (5.207)
FTHE-EF 1086 1085 209 219 3304 (3209) 11.788 (3.479
SDHE-EF 1121 - - - - -

COS + Smallest
GQHE-EF 1053 1053 32 87 6219 (5859) 7.976 (4.489)
FTHE-EF 1049 1049 42 69 2417 (2360) 10.003 (3.132)
SDHE-EF 1060 - - - - -

backtracks of GQHE-EF and FTHE-EF with the baseline configuration SDHE-EF on each
instances commonly solved. The points above the line y = x shown that SDHE-EF records
less backtracks than the other configurations. Figures 5b, 5d and 5f represent the number
of solved instances as a function of time for each configuration. The running time gains
between SDHE-EF and the two other configurations for static heuristic, is not significant
enough as it is illustrated in Figure 5b.

When the heuristic COS + DomOvWDeg is considered, the average number of backtracks
of SDHE-EF is 3209, which is less than the average number of backtracks of FTHE-EF
(3304), on commonly solved instances with baseline configuration (see Table 1). The average
number of backtracks of GQHE-EF (4675) is less than the one of SDHE-EF (4912). The
average runtime of SDHE-EF is half of the other configurations whatever the heuristic
selection considered (see Table 1). The running time gains between SDHE-EF and the two
other configurations is more prominent as illustrated in Figure 5d and 5f.

7 Conclusion

In this paper, we have proposed a new strengthening of the edge finder rule based on the
Profile data structure. The minimum slack and the maximum density are used to select
the potential task interval for the edge finder rule. The application of the Profile on those
task intervals results in a new rule named Slack-Density Horizontally Elastic Edge Finder.
This new rule subsumes the classic (extended) edge finder rule, but is not comparable to
Gingras and Quimper’s horizontally elastic edge finder rule [15], and the TimeTable edge
finding rule [30]. A quadratic detection algorithm for the new rule is combined with the
quadratic adjustment algorithm of [15], which results in an overall complexity of O(n2) in
time. Improvements based on the TimeTable data structure are obtained by considering fix
part of external tasks during the horizontally elastic scheduling of task intervals. Experimental
results showed that our new algorithm is competitive with start-of-the-art strengthening of
edge finding algorithms, with Profile for time and tree search reduction. It is a good trade-off
between the speed and the filtering power for the rule (FTHE-EF) of [11].

Future works will be devoted to the utilization of the Profile data structure in the energetic
reasoning to reduce its complexity and increase its filtering power.
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(a) # Backtrack Comparison (b) Runtime(sec) Comparison

(c) # Backtrack Comparison (d) Runtime(sec) Comparison

(e) # Backtrack Comparison (f) Runtime(sec) Comparison

Figure 5 5a, 5c and 5e: Comparison of the number of backtracks of different configurations of
the cumulative constraint. SDHE-EF is used as the baseline model. 5b, 5d and 5f : Number of
solved instances as a function of time for the different configurations of the cumulative constraint.
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